矩阵的概念与运算

合集下载

矩阵的基本概念和运算

矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的基本概念之一,广泛应用于数学、工程学、计算机科学和物理学等领域。

它是一个由数字排列成的矩形阵列,其中的数字称为矩阵的元素。

本文将详细介绍矩阵的基本概念和运算。

一、矩阵的基本概念矩阵由m行n列的数字排列组成,可以表示为一个m×n的矩阵。

其中,m为矩阵的行数,n为矩阵的列数。

每个元素可以用下标表示,例如矩阵A的第i行第j列的元素可以用A(i,j)表示。

二、矩阵的表示和分类矩阵可以用方括号表示,例如A = [aij],其中aij表示矩阵A的第i 行第j列的元素。

矩阵还可以分为不同的类型,如行矩阵、列矩阵、方阵等。

行矩阵是只有一行的矩阵,可以表示为A = [a1, a2, ..., an],其中ai 为矩阵A的第i个元素。

列矩阵是只有一列的矩阵,可以表示为A = [a1; a2; ...; an],其中ai 为矩阵A的第i个元素。

方阵是行数和列数相等的矩阵,可以表示为A = [aij],其中i和j都从1到n。

三、矩阵的运算1. 矩阵的加法对于两个相同大小的矩阵A和B,它们的加法可以定义为A + B = [aij+ bij],其中aij和bij分别为矩阵A和B的对应元素。

2. 矩阵的减法对于两个相同大小的矩阵A和B,它们的减法可以定义为A - B = [aij- bij],其中aij和bij分别为矩阵A和B的对应元素。

3. 矩阵的数乘对于一个矩阵A和一个实数k,它们的数乘可以定义为kA = [kaij],其中aij为矩阵A的元素。

4. 矩阵的乘法对于两个矩阵A和B,它们的乘法可以定义为C = AB,其中C的第i行第j列的元素可以表示为C(i,j) = ∑(ai,k * bk,j),其中k从1到n,n为矩阵A和B的列数。

四、矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。

例如,若A = [aij]为一个m×n的矩阵,它的转置矩阵记作AT,即AT = [aji],其中a ji为矩阵A的第j行第i列的元素。

矩阵的基本概念和运算

矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

本文将介绍矩阵的基本概念以及常见的矩阵运算。

一、矩阵的基本概念1.1 定义矩阵是一个由m行n列元素组成的矩形数组,记作A=[a_ij],其中i表示行数,j表示列数,a_ij表示矩阵A中第i行第j列的元素。

1.2 矩阵的类型根据矩阵元素的性质和特点,矩阵可以分为以下几种类型:- 零矩阵:所有元素都为0的矩阵,记作O。

- 方阵:行数等于列数的矩阵,记作A(m×m)。

- 行矩阵:只有一行的矩阵,记作A(1×n)。

- 列矩阵:只有一列的矩阵,记作A(m×1)。

- 对角矩阵:非主对角线上的元素都为0的方阵。

1.3 矩阵的运算矩阵的运算包括加法、减法、数乘以及矩阵乘法等。

二、矩阵的运算2.1 矩阵的加法和减法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和记作C=A+B,差记作D=A-B。

矩阵的加法和减法满足以下性质:- 交换律:A+B=B+A,A-B≠B-A。

- 结合律:(A+B)+C=A+(B+C),(A-B)-C=A-(B-C)。

- 零元素:A+O=A,A-O=A。

- 负元素:A+(-A)=O。

2.2 矩阵的数乘设有一个m×n的矩阵A=[a_ij],数k,则kA记作E=[ka_ij],即矩阵A中的每个元素乘以k。

2.3 矩阵的乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],它们的乘积记作C=A•B,其中C的第i行第j列的元素为:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj矩阵的乘法需要满足以下条件:- 矩阵A的列数等于矩阵B的行数时,才能进行乘法运算。

- 乘法不满足交换律,即A•B≠B•A。

- 结合律成立:(A•B)•C=A•(B•C)。

2.4 矩阵的转置设有一个m×n的矩阵A=[a_ij],A的转置记作A^T,其中A^T 的第i行第j列的元素为a_ji。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。

它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。

一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。

例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。

矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。

二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。

矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。

即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。

例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。

结果仍为同一维度的矩阵。

记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。

矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。

《线性代数》矩阵的运算与概念

《线性代数》矩阵的运算与概念
• 代价是尼奥必须进入矩阵,删除叛逃异变的强大病 毒—史密斯。
负矩阵
称矩阵
零矩阵
-a11 -a12 -a1n -a21 -a22 -a2n -am1 -am2 -amn
为A的负矩阵,记作 –A.
所有元素均为0的矩阵称为零矩阵,记为O.
行矩阵与列矩阵
只有一行的矩阵称为行矩阵,只有一列的矩阵称为列矩阵.常用小 写黑体字母 a,b,x,y 等表示.例如
反例.设 A 0 10 1 1 21 5
则 AB 0 10 1 1 21 5
, B = 1 2 3 . 2 1 0
1 2 3 无意义. 2 1 0
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .
2 1 0 31
23 解: AB 1 2
31
1 2 3 2 1 0
8 7 6
(1)先行后列法
3. 矩阵的乘法
某厂家向A, B, C三个代理商发送四款产品.
产品 甲 乙 丙 丁
单价(元/箱)20 50 30 25 重量(Kg/箱)16 20 16 16
数量(箱) 产品 A B C
甲 200 180 190 乙 100 120 100 丙 150 160 140 丁 180 150 150
ABC 总价(元) 18000 18150 16750 总重(Kg)
2 1 0 31
23
8 7 6
解:AB 1 2 1 2 3 3 0 3 ;
3 1 2 1 0
5 7 9
BA 1 2 3 2 1 0
23 1 2 9 4
38 31
通常采用:先行后列法
23 例3.设 A 1 2 , B = 1 2 3 ,求AB及BA .

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本概念、运算规则以及常见的应用。

一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。

矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。

矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。

矩阵可以是实数矩阵,也可以是复数矩阵。

实数矩阵的元素全为实数,复数矩阵的元素可以是复数。

例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数学科中的基础工具,这是因为矩阵可以用来表示线性变换和线性方程组。

对于矩阵的基本概念与运算,我们需要从以下几个方面来分析。

一、矩阵的基本概念1、定义与记法矩阵是一个由m行n列元素排成的矩形阵列,常用大写字母表示,如A、B、C等。

其中,阵列中的m表示矩阵的行数,n则表示矩阵的列数。

因此,一个m行n列的矩阵可以写成:$A_{m×n}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}& \cdots&a_{mn}\\\end{bmatrix}$其中,$a_{ij}$ 表示矩阵 A 中第 i 行第 j 列的元素。

2、矩阵的类型按照元素类型可以将矩阵分为实矩阵、复矩阵和布尔矩阵等。

按照矩阵的形状,矩阵可以分为方矩阵、长方矩阵和列矩阵等。

二、矩阵的基本运算1、矩阵的加法假设有两个矩阵 $A_{m×n}$ 和 $B_{m×n}$,它们对应位置相加的结果记作 $C=A+B$,则:$C_{ij}=A_{ij}+B_{ij}$2、矩阵的数乘假设有一个矩阵 $A_{m×n}$ 和一个数 $\lambda$,则它们的乘积记作 $B=\lambda A$,则:$B_{ij}=\lambda A_{ij}$3、矩阵的乘法假设有两个矩阵 $A_{m×n}$ 和 $B_{n×p}$,它们的乘积记作$C=AB$,则:$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$矩阵乘法需要满足结合律,但不满足交换律,也就是说,$AB$ 与 $BA$ 不一定相等。

2.1 矩阵的概念 2.2矩阵的运算

2.1 矩阵的概念    2.2矩阵的运算

a11 b11 a 21 b21 a b m1 m1
a12 b12 a 22 b22 a m 2 bm 2
a1n b1n a 2 n b2 n a mn bmn
简记为:A B (aij ) (bij ) (aij bij )
三、矩阵与矩阵的乘法
定义2· 5
B 设矩阵 A (aij ) ms , (bij ) sn,由元素
cij ai1b1 j ai 2b2 j aisbsj aikbkj
k 1
s
构成的矩阵 C (cij ) mn称为矩阵A与矩阵B的乘积。 记为 即:
a11 a i1 a m1
a12 a 22 am2

a1n a2n a mn

1.
矩阵概念与行列式概念的区别:
a11 a12 a1n a 21 a 22 a 2 n 一个行列式 D a n1 a n 2 a nn
代表一个数
(*)
把方程组中系数aij及常数项 bi 按原来次序取出, 作一个矩阵
a11 a 21 a m1 a12 a 22 a1n a2n b1 b2 bm m×(n+1)
=A
增广矩阵
a m 2 a mn
则线性方程组(*)与 A 之间的关系是1-1对应的
则称矩阵A与矩阵B相等。记为:A=B
1 a c 1 1 例如:若 A B 且A=B 2 b 3 0 d
则有c=0; a=-1; b=2; d=3
一、矩阵的加法

线性代数中矩阵的基本概念与运算

线性代数中矩阵的基本概念与运算

线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。

本文将简单介绍矩阵的基本概念和运算。

矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。

一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。

对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。

也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。

矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。

对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。

1-1矩阵的基本概念及运算

1-1矩阵的基本概念及运算

作业2
2.
即 AB AC× B C.
但也有例外,比如设
A 2 0, 0 2
B 1 1, 1 1
则有 AB 2 2, 2 2
BA 2 2
2 2
AB BA.
这属于特例,称之 为“可交换矩阵”。
4. 单位矩阵——如同数和乘法中的 1
单位矩阵是一个方阵,并且除左上角到右下角的对 角线(称为主对角线)上的元素均为1以外,其他元素 全都为0, 即
一般的线性方程组
a11x1 a12 x2
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
可以非常简单地表示为矩阵方程 AX B
a11 a12
这里,
A
a21
a22
am1 am2
a1n
x1 b1
a2n
X
2 0
5 T 1
4 2 5
2
0
1
1 2 3 4 2
0
1
0 2
0
2 1 3 5 1
A BT = AT BT .
2、矩阵的倍数 (即数与矩阵相乘)
1) 定义
数与矩阵A的乘积记作A或A , 规定为
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2) 数乘矩阵的运算规律
这里,Aj为列向量,Bi为行向量。
B1
B2
Bm
特殊矩阵
特殊矩阵
零矩阵:所有元素全等于零的矩阵。 矩阵相等:
①行数和列数分别相等; ②对应的元素都相等。

矩阵的概念和运算

矩阵的概念和运算

矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。

本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。

一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。

一般用大写字母表示矩阵,例如A、B、C等。

矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。

例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。

矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。

若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。

三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。

例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。

通过矩阵的运算,可以求解出未知数向量x。

2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。

特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。

矩阵的基本运算与性质知识点

矩阵的基本运算与性质知识点

矩阵的基本运算与性质知识点矩阵是线性代数中重要的概念之一,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本运算与性质知识点,包括矩阵的定义、加法、数乘、乘法、转置、逆矩阵等内容。

一、矩阵的定义矩阵是由m行n列数字组成的一个矩形数组,通常用大写字母表示。

其中,m表示矩阵的行数,n表示矩阵的列数。

例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中a11, a12, a21等表示矩阵中的元素。

二、矩阵的加法对于两个同型矩阵A和B,即行数和列数相等的矩阵,可以进行加法运算。

加法的结果是一个同型矩阵C,其每个元素等于相应位置的两个矩阵元素之和。

例如,对于两个3行2列的矩阵A和B,其加法C可以表示为:C = A + B = [a11 + b11 a12 + b12a21 + b21 a22 + b22a31 + b31 a32 + b32]三、矩阵的数乘矩阵的数乘是指将一个数与矩阵的每个元素相乘。

结果是一个与原矩阵同型的矩阵。

例如,将一个3行2列的矩阵A乘以一个数k,得到的结果可以表示为:C = kA = [ka11 ka12ka21 ka22ka31 ka32]四、矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B 相乘,得到一个m行p列的矩阵C。

矩阵乘法的定义是,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。

例如,对于一个2行3列的矩阵A和一个3行2列的矩阵B,其乘法C可以表示为:C = AB = [a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32]五、矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。

如果原矩阵为A,转置后的矩阵表示为A^T。

例如,对于一个3行2列的矩阵A,其转置矩阵表示为:A^T = [a11 a21 a31a12 a22 a32]六、逆矩阵对于一个n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,矩阵B称为矩阵A的逆矩阵,记作A^-1。

矩阵的概念及其线性运算

矩阵的概念及其线性运算

.第二章 矩阵§2.1 矩阵的概念及其线性运算学习本节内容,特别要注意与行列式的有关概念、运算相区别。

一.矩阵的概念矩阵是一张简化了的表格,一般地⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a 212222111211 称为n m ⨯矩阵,它有m 行、n 列,共n m ⨯个元素,其中第i 行、第j 列的元素用j i a 表示。

通常我们用大写黑体字母A 、B 、C ……表示矩阵。

为了标明矩阵的行数m 和列数n ,可用n m ⨯A 或()i jm na ⨯表示。

矩阵既然是一张表,就不能象行列式那样算出一个数来。

所有元素均为0的矩阵,称为零矩阵,记作O 。

两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。

记作B A =。

如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。

n 阶矩阵有一条从左上角到右下角的主对角线。

n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。

在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。

主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001E n ⨯1矩阵(只有一行)又称为n 维行向量;1⨯n 矩阵(只有一列)又称为n 维列向量。

行向量、列向量统称为向量。

向量通常用小写黑体字母a ,b ,x ,y ……表示。

向量中的元素又称为向量的分量。

11⨯矩阵因只有一个元素,故视之为数量,即()a a =。

二.矩阵的加、减运算如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。

分别称为矩阵A 、B 的和与差。

B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。

矩阵的概念及其线性运算知识讲解

矩阵的概念及其线性运算知识讲解

第二章 矩阵§2.1 矩阵的概念及其线性运算学习本节内容,特别要注意与行列式的有关概念、运算相区别。

一.矩阵的概念矩阵是一张简化了的表格,一般地⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 称为n m ⨯矩阵,它有m 行、n 列,共n m ⨯个元素,其中第i 行、第j 列的元素用j i a 表示。

通常我们用大写黑体字母A 、B 、C ……表示矩阵。

为了标明矩阵的行数m 和列数n ,可用n m ⨯A 或()i jm na ⨯表示。

矩阵既然是一张表,就不能象行列式那样算出一个数来。

所有元素均为0的矩阵,称为零矩阵,记作O 。

两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。

记作B A =。

如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。

n 阶矩阵有一条从左上角到右下角的主对角线。

n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。

在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。

主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛE n ⨯1矩阵(只有一行)又称为n 维行向量;1⨯n 矩阵(只有一列)又称为n 维列向量。

行向量、列向量统称为向量。

向量通常用小写黑体字母a ,b ,x ,y ……表示。

向量中的元素又称为向量的分量。

11⨯矩阵因只有一个元素,故视之为数量,即()a a =。

二.矩阵的加、减运算如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。

分别称为矩阵A 、B 的和与差。

B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的基本概念之一,它具有广泛的应用。

本文将介绍矩阵的基本概念以及涉及的运算方法。

一、矩阵的定义与表示方法矩阵是一个按照矩形排列的数阵,它由m行n列的数构成。

一个矩阵可以用一个大写字母加上下标的方式表示,例如A、B、C等。

如果一个矩阵共有m行n列,我们将其记作A(m×n)。

二、矩阵的基本运算1. 矩阵的加法设有两个矩阵A(m×n)和B(m×n),矩阵A与矩阵B的和记作A + B,其定义为矩阵中对应元素相加所得的新矩阵,即(A + B)(i,j) = A(i,j) +B(i,j)。

需要注意的是,两个矩阵进行加法运算时,必须满足相加的两个矩阵具有相同的行数和列数。

2. 矩阵的数乘设有一个矩阵A(m×n)和一个常数k,矩阵A乘以常数k的结果记作kA,其定义为将矩阵A的每个元素都乘以k所得的新矩阵,即(kA)(i,j) = k * A(i,j)。

同样需要注意的是,常数与矩阵的乘法满足交换律,即kA = Ak。

3. 矩阵的乘法矩阵的乘法是矩阵运算中的重要一环。

设有两个矩阵A(m×n)和B(n×p),这两个矩阵可以相乘得到一个新的矩阵C,记作C = A * B。

新矩阵C的元素由矩阵A的行向量与矩阵B的列向量的内积所得,即C(i,j) = A(i,1) * B(1,j) + A(i,2) * B(2,j) + ... + A(i,n) * B(n,j)。

4. 矩阵的转置设有一个矩阵A(m×n),将A的行换成列,列换成行所得到的新矩阵称为A的转置矩阵,记作A^T。

三、矩阵的特殊类型1. 零矩阵零矩阵是指所有元素都为零的矩阵,记作O。

零矩阵的尺寸通常根据上下文来确定。

2. 方阵方阵是行数与列数相等的矩阵,记作A(n×n)。

方阵具有许多重要的性质和特点。

3. 单位矩阵单位矩阵是一个主对角线上元素都为1,其余元素都为零的方阵,记作I。

初二数学矩阵的概念

初二数学矩阵的概念

初二数学矩阵的概念矩阵是数学中一种重要的工具和概念,它在各个领域中都有着广泛的应用。

本文将从基本概念、矩阵的表示和运算、矩阵的性质和特殊矩阵等方面详细介绍初二数学矩阵的概念。

一、基本概念矩阵是由m行n列元素排列成矩形的数表,常用大写字母表示,如A。

其中m表示矩阵的行数,n表示矩阵的列数。

每个元素在矩阵中的位置可以用一个二元组(i,j)表示,i表示所在的行号,j表示所在的列号。

例如,对于一个3行2列的矩阵A,可以表示为:A = [a11 a12a21 a22a31 a32]二、矩阵的表示和运算矩阵可以用于表示线性方程组、图形变换、概率模型等问题。

在矩阵的表示中,可以用列表或者方括号表示元素。

例如,对于一个3行3列的矩阵B,可以表示为:B = [b11 b12 b13b21 b22 b23b31 b32 b33]矩阵的运算包括加法和数乘两种基本运算。

对于两个同型矩阵A和B,它们的和写作A + B,其中对应位置元素相加。

例如,对于上述的A和B,它们的和为:A +B = [a11+b11 a12+b12 a13+b13a21+b21 a22+b22 a23+b23a31+b31 a32+b32 a33+b33]矩阵的数乘运算指的是一个矩阵的每个元素乘以一个数。

例如,对于一个数k和矩阵A,它们的数乘写作kA,其中每个元素都乘以k。

例如:kA = [ka11 ka12 ka13ka21 ka22 ka23ka31 ka32 ka33]三、矩阵的性质矩阵具有一些特殊的性质。

例如,矩阵的转置是指将矩阵的行和列交换得到的新矩阵。

如果A是一个m行n列的矩阵,它的转置记作A^T。

例如,对于矩阵A:A = [a11 a12 a13a21 a22 a23]它的转置为:A^T = [a11 a21a13 a23]另外,矩阵的乘法是矩阵运算中的重要部分。

对于两个矩阵A和B,它们的乘积写作AB,其中A的列数必须等于B的行数。

若A是一个m行n列的矩阵,B是一个n行p列的矩阵,它们的乘积C是一个m行p列的矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 8
1 9
1 6
6 0
8 1
不存在.
1 2
3
3 2
1 3 2 2
3 1
10.
1
制作人:杨寿渊
第15页/共38页
矩阵乘法的运算规律
1 ABC ABC ; 2 AB C AB AC,
1.1 导入
B C A BA CA;
3 AB AB AB (其中 为数);
4 AE EA A;
5
若A是 n 阶矩阵,则 Ak
Ak AAA 并且 Am A
为A的
k Am
k k,
次幂,即 Am k Amk
.
k个
m ,k为正整数
制作人:杨寿渊
第16页/共38页
1.1 导入
注意 矩阵不满足交换律,即:
AB BA, ABk Ak Bk .
例3 设 A 1 1 B 1 1 1 1 1 1
A
A
a21
a22
am1 am1
a1n
a2n
.
amn
制作人:杨寿渊
第11页/共38页
数乘矩阵的运算规律
1.1 导入
(设 A、B为 m n 矩阵, ,为数)
1 A A;
2 A A A;
3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
制作人:杨寿渊
第12页/共38页
3 6 8 3 2 1 12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4. 3 3 6 2 8 1 6 8 9
制作人:杨寿渊
第9页/共38页
1.1 导入
矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
对应元素相等,即
aij bij i 1,2, ,m; j 1,2, ,n,
则称矩阵 A与B相等,记作 A B.
制作人:杨寿渊
第6页/共38页
矩阵与行列式有本质的区别:
1.1 导入
1.行列式是一个算式,一个数字行列式经过计算可 求得其值,而矩阵仅仅是一个数表;
2.矩阵的行数和列数可以不同.行列式相同;
0
1 O
0 0
O
0 0
1
称为单位矩阵(或单位阵).
全为1
同型矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 型矩阵.
制作人:杨寿渊
第5页/共38页1.1源自导入例如1 562 与 184
3 4
为同型矩阵.
3 7 3 9
2.两个矩阵 A aij 与B bij 为同型矩阵,并且
1.1 导入
记作 A diag1,2 , ,n .
(4)元素全为零的矩阵称为零矩阵,m n 零
矩阵记作 omn 或 o .
注意 不同阶数的零矩阵是不相等的.
例如
0 0 0 0
0 0
0 0
0 0
0 0
0
0
0
0.
0 0 0 0
制作人:杨寿渊
第4页/共38页
1.1 导入
(5)方阵
1 0
E
En
三、矩阵与矩阵相乘
1.1 导入
一般地,设A aij i1,2,,m, 是一个m n矩阵,B bij i1,2,,n,
j 1,2,, n
j1,2,, p
是一个n p矩阵,则C AB是一个m p矩阵,其元素为
n
cij aikbkj ,i 1, 2,, m, j 1, 2,L , p. k 1
1
1
1 C AB 1
0
0 1 5
1 3 1
402
0 1 3 1
3 2 1 2
4 1 1
1
5 6 7
10 2 6.
2 17 10
制作人:杨寿渊
第14页/共38页
1.1 导入
注意 只有当第一个矩阵的列数等于第二个矩阵 的行数时,两个矩阵才能相乘.
1 2 3
例如
3 5
一、矩阵的概念
1.1 导入
定义2.1.1 把m n个数排列成m行n列的数表,并用方括 号或圆括号括起来:
主对角线 a11 a12 L
A
a21
a22
L
L L L
am1 am1 L
a1n 副对角线
a2n
,
L
aij 矩阵元素
amn
这样的一个数表便称为一个m行n列的矩阵,简记为m n
则 AB 0 0, BA 2 2 ,
0 0
3.矩阵用小括号或中括号表示,行列式用两竖;
联系:对于一个nxn的方阵可以求其行列式
制作人:杨寿渊
第7页/共38页
二、矩阵的运算
1.1 导入
1、加法运算
设有两个m n矩阵 A aij , B bij , 那末矩阵
A 与 B 的和记作A B,规定为
a11 b11
A
B
a21
b21
矩阵。 记号:
A Amn
aij
mn
aij
.
元素是实数的矩阵称为实矩阵;元素是复数的矩阵称为
复矩阵.
制作人:杨寿渊
第1页/共38页
1.1 导入
几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶
方阵.也可记作 An .
例如
13 2
6 2
2i 2
是一个3 阶方阵.
2 2 2
例1.设
A
2 1
4 2
,
B
2 3
46,C AB,则
C 2 1
4 2 222 3
4
622
16 8
?
32 16 22
制作人:杨寿渊
第13页/共38页
0 3 4
1.1 导入
1
例2.设
A
1
0
0 1 5
1 3 1
2 0 4
,
B
1 3 1
2 1 2
1
,C
AB,则
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
制作人:杨寿渊
第8页/共38页
1.1 导入
说明 只有当两个矩阵是同型矩阵时,才能进 行加法运算.
12 3 5 1 8 9 例如 1 9 0 6 5 4
a11
3
A
a21
am1
a12 a22 am1
a1n
a2n
aij
,
amn
称为矩阵A的负矩阵.
4 A A 0, A B A B.
制作人:杨寿渊
第10页/共38页
二、数与矩阵相乘
1.1 导入
1、定义
数与矩阵A的乘积记作A或A , 规定为
a11 a12
(2)只有一行的矩阵
A a1,a2 , ,an ,
称为行矩阵(或行向量).
制作人:杨寿渊
第2页/共38页
1.1 导入
只有一列的矩阵
a1
B
a2 ,
an
称为列矩阵(或列向量). 不全为0
1 0
(3)形如
0
2
0 O 0
0
O0
的方阵,称为对角
n
矩阵(或对角阵).
制作人:杨寿渊
第3页/共38页
相关文档
最新文档