新课标_新课程高一物理第五章机械能守恒定律测试题

合集下载

高中物理必修二第五章 机械能及守恒定律章末测评(附答案)

高中物理必修二第五章 机械能及守恒定律章末测评(附答案)

第五章机械能及守恒定律章末测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图所示实例中均不考虑空气阻力,系统机械能守恒的是()【解析】人上楼、跳绳过程中机械能不守恒,从能量转化角度看都是消耗人体的化学能;水滴石穿,水滴的机械能减少的部分转变为内能;弓箭射出过程中是弹性势能与动能、重力势能的相互转化,只有重力和弹力做功,机械能守恒.【答案】 D2.如图1所示,在加速运动的车厢中,一个人用力沿车前进的方向推车厢,已知人与车厢始终保持相对静止,那么人对车厢做功的情况是()图1A.做正功B.做负功C .不做功D .无法确定【解析】 人随车一起向车前进的方向加速运动,表明车对人在水平方向上的合力向前,根据牛顿第三定律,人对车在水平方向的合力与车运动方向相反,故人对车做负功,B 正确.【答案】 B3.用一根绳子竖直向上拉一个物块,物块从静止开始运动,绳子拉力的功率按如图2所示规律变化,已知物块的质量为m ,重力加速度为g,0~t 0时间内物块做匀加速直线运动,t 0时刻后功率保持不变,t 1时刻物块达到最大速度,则下列说法正确的是( )图2A .物块始终做匀加速直线运动B .0~t 0时间内物块的加速度大小为P 0mt 0C .t 0时刻物块的速度大小为P 0mgD .0~t 1时间内物块上升的高度为P 0mg ⎝ ⎛⎭⎪⎫t 1-t 02-P 22m 2g 3【解析】 由题图可知,0~t 0时间内功率与时间成正比,则由F -mg =ma ,v =at ,P =F v ,得P =m (a +g )at ,因此图线斜率P 0t 0=m (a +g )a ,B 选项错误;t 0时刻后功率保持不变,拉力大于重力,物块继续加速运动,由P 0v -mg =ma ,物块加速度逐渐减小,t 1时刻速度最大,则a =0,最大速度为v m =P 0mg,A 、C 选项错误;P -t 图线与t 轴所围的面积表示0~t 1时间内拉力做的功W =P 0t 02+P 0(t 1-t 0)=P 0t 1-P 0t 02,由动能定理得W -mgh =m v 2m2,得h =P 0mg ⎝ ⎛⎭⎪⎫t 1-t 02-P 202m 2g 3,D 选项正确.【答案】 D4.如图3所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为()图3A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg【解析】设小环到大环最低点的速度为v,由能量守恒定律,得12m v2=mg2R①小环在大环上做圆周运动,在最低点时,大环对它的支持力方向竖直向上,设为F N,由牛顿第二定律,得F N-mg=m v2R②由①②得F N=5mg,由牛顿第三定律可知,小环对大环竖直向下的压力F N′=F N=5mg.大环平衡,轻杆对大环的拉力为F=F N′+Mg=Mg+5mg,选项C 正确.【答案】 C5.如图4所示,P是固定在水平面上的光滑圆弧凹槽,现有一小球从B点以初速度v0水平抛出,恰能从凹槽圆弧轨道的左端A点沿圆弧切线方向进入轨道,O是圆弧轨道的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,重力加速度为g,则由已知条件()图4A.可以判断θ1与θ2互余B.可以求得A、B两点间的高度差C.可以求得圆弧轨道的半径D.可以求得小球运动至圆弧轨道最低点C时对圆弧轨道的压力大小【解析】 由题意可知,小球做平抛运动,竖直位移y =12gt 2,水平位移x =v 0t ,tan θ2=x y =2v 0gt ,联立得y =2v 20g tan 2θ2,B 正确;由题意可知,tan θ1=v y v x =gt v 0,所以tan θ1·tan θ2=2,故A 错误;小球由A 点运动至圆弧轨道最低点C 的过程,根据动能定理有mgR (1-cos θ1)=12m v 2C -12m v 2A ,小球在C 点时有F N -mg =m v 2CR ,由于不知道小球在C 点时的速度大小和小球的质量,所以无法求得圆弧轨道的半径及小球在圆弧轨道最低点C 时对圆弧轨道的压力大小,C 、D 均错误.【答案】 B6.滑块以某一初速度v 0沿固定粗糙的斜面由底端向上运动,当它回到出发点时速率为v 1,若滑块向上运动的时间中点为A ,取斜面底端重力势能为零,则下列说法正确的是( )A .上升时机械能减小,下降时机械能也减小B .v 0=v 1C .上升过程中势能是动能3倍的位置在A 点上方D .上升过程中势能是动能3倍的位置在A 点下方【解析】 斜面与滑块间有摩擦,滑块无论向上运动还是向下运动时,都有机械能损失,v 0>v 1,故A 正确,B 错误;可知A 点的速度v A =v 02,点A 的动能E k 和势能E p 分别是:E k =12ml v 2A=18m v 20,物体沿斜面向上运动时,加速度a =g sin θ+μg cos θE p =mgL sin θ=mg v 20-⎝ ⎛⎭⎪⎫v 0222a sin θ=3m v 208⎝ ⎛⎭⎪⎫g sin θa <3m v 208,所以在点A 有:E p<3E k ,在上升过程中,势能增加,动能减小,所以上升过程中势能是动能3倍的位置在A 点上方,故C 正确,D 错误.【答案】 AC7.某位溜冰爱好者先在岸上从O 点由静止开始匀加速助跑,2 s 后到达岸边A 处,接着进入冰面(冰面与岸边基本相平)开始滑行,又经3 s 停在了冰上的B 点,如图5所示.若该过程中,他的位移是x ,速度是v ,受的合外力是F ,机械能是E ,则对以上各量随时间变化规律的描述,下列选项中正确的是( )图5【解析】 由题意知,初末速度均为0,前2 s 匀加速运动,后3 s 做匀减速运动,位移一直增加,选项A 错误;加速度的大小关系为3∶2,由牛顿第二定律得受的合外力的大小关系为3∶2,选项B 、C 正确;运动过程中重力势能不变,而动能先增大后减小,所以机械能先增大后减小,选项D 错误.【答案】 BC8.由光滑细管组成的轨道如图6所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( )图6A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R【解析】 要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12m v 2,所以H >2R ,故选项C 正确,选项D错误;小球从A点水平抛出时的速度v=2gH-4gR,小球离开A点后做平抛运动,则有2R=12gt2,水平位移x=v t,联立以上各式可得水平位移x=22RH-4R2,选项A错误,选项B正确.【答案】BC二、非选择题(共4小题,共52分,按题目要求作答)9.(8分)下表是在探究功与物体速度变化的关系时得到的数据.请根据以下数据在图中完成W-v、W-v2、W-v3图象,并由图象确定功与速度变化的关系是________.W(一条橡皮筋做的功作为功的单位)12345678 v(m/s) 1.4 2.0 2.4 2.8 3.2 3.5 3.7 4.0 v2(m2/s2)v3(m3/s3)【解析】v2、v3的数值如下表所示:W(一条橡皮筋做的功作为功的单位)12345678v(m/s) 1.4 2.0 2.4 2.8 3.2 3.5 3.7 4.0 v2(m2/s2) 1.96 4.0 5.767.8410.2412.2513.6916.0 v3(m3/s3) 2.748.013.8221.9532.7742.8850.6564.0由图可得力对物体做的功与速度的平方成正比.【答案】见解析10.(10分)用如图7实验装置验证m1、m2组成的系统机械能守恒.m2从高处由静止开始下落,m1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律.图8甲给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图8甲所示.已知m1=50 g,m2=150 g,打点计时器工作频率为50 Hz,则(g 取10 m/s2,结果保留两位有效数字)图7(1)纸带上打下计数点5时的速度v=________m/s;(2)在打0~5的过程中系统动能的增量ΔE k=________J,系统势能的减少量ΔE p=________J,由此得出的结论是____________________________________.(3)若某同学作出12v2-h图象如图8乙所示,则当地的重力加速度g′=________m/s2.甲乙图8【解析】(1)在纸带上打下计数点5时的速度大小为v=x46t46=21.60+26.402×5×0.02×10-2m/s=2.4 m/s.(2)在打点0~5过程中系统动能的增量为ΔE k =12(m 1+m 2)v 2-0=12×(50+150)×10-3×2.42J -0≈0.58 J 系统重力势能的减少量为ΔE p =(m 2-m 1)gh 05=(150-50)×10-3×10×(38.40+21.60)×10-2J =0.60 J 实验结果表明,在误差允许的范围内,m 1、m 2组成的系统重力势能的减少量等于动能的增加量,即系统的机械能守恒.(3)m 1、m 2组成的系统机械能守恒,则m 2g ′h -m 1g ′h =12m 2v 2+12m 1v 2-0,整理得v 2=g ′h可见,重力加速度g ′大小等于v 22-h 图象斜率的2倍,则g ′=2×5.821.20 m/s 2=9.7 m/s2.【答案】 (1)2.4 (2)0.58 0.60 系统的机械能守恒 (3)9.711.(16分)质量为2 000 kg 的汽车在平直公路上行驶,所能达到的最大速度为20 m/s ,设汽车所受阻力为车重的0.2倍(即f =0.2G ).如果汽车在运动的初始阶段是以2 m/s 2的加速度由静止开始作匀加速行驶,试求:(1)汽车的额定功率;(2)汽车在匀加速行驶时的牵引力; (3)汽车做匀加速运动的最长时间; (4)汽车在第3 s 末的瞬时功率; (5)试画出汽车在8 s 内的P -t 图象. 【解析】 (1)P 额=f v =0.2G v m =80 kW. (2)F =f +ma =8 000 N.(3)设汽车匀加速运动所能达到的最大速度为v 0, 对汽车由牛顿第二定律得F -f =ma 即P 额v 0-f =ma代入数据得v 0=10 m/s所以汽车做匀加速直线运动的时间 t 0=v 0a =102s =5 s.(4)P =F v =Fat =48 kW. (5)汽车在8 s 内的P -t 图象为【答案】 (1)80 kW (2)8000 N (3)5 s (4)48 kW (5)见解析12.(18分)如图9所示,一小球从A 点以某一水平向右的初速度出发,沿水平直线轨道运动到B 点后,进入半径R =10 cm 的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C 点右侧有一壕沟,C 、D 两点的竖直高度h =0.8 m ,水平距离s =1.2 m ,水平轨道AB 长为L 1=1 m ,BC 长为L 2=3 m ,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.(1)若小球恰能通过圆形轨道的最高点,求小球在A 点的初速度;(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A 点初速度的范围是多少?图9【解析】 (1)小球恰能通过最高点,有mg =m v 2R , 由B 到最高点有12m v 2B =12m v 2+mg ·2R . 由A →B 有-μmgL 1=12m v 2B -12m v 2A . 解得在A 点的初速度v A =3 m/s. (2)若小球恰好停在C 处,则有 -μmg (L 1+L 2)=0-12m v 2A , 解得在A 点的初速度v A =4 m/s.若小球停在BC 段,则有3 m/s ≤v A ≤4 m/s. 若小球能通过C 点,并恰好越过壕沟,则有h =12gt 2,s =v C t ,-μmg (L 1+L 2)=12m v 2C-12m v 2A , 则有v A =5 m/s.若小球能过D 点,则v A ≥5 m/s. 综上,初速度范围是:3 m/s ≤v A ≤4 m/s 或v A ≥5 m/s.【答案】 (1)3 m/s (2) 3m/s ≤v A ≤4 m/s 或 v A ≥5 m/s。

高一物理机械能守恒试题答案及解析

高一物理机械能守恒试题答案及解析

高一物理机械能守恒试题答案及解析1.从地面以仰角θ斜向上抛一质量为m的物体,初速度为V,不计空气阻力,取地面为零势能面,重力加速度为g。

当物体的重力势能是其动能的3倍时,物体离地面的高度为。

【答案】【解析】设物体离地面的高度为H,且速度为v,由题意知:,再由机械能守恒定律得:,联立解得:。

【考点】考查了机械能守恒2.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则()A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能【答案】C【解析】 t1时刻小球小球刚与弹簧接触,与弹簧接触后,先做加速度不断减小的加速运动,当弹力增大到与重力平衡,即加速度减为零时,速度达到最大,故A错误;t2时刻,弹力最大,故弹簧的压缩量最大,小球运动到最低点,速度等于零,故B错误;t2~t3这段时间内,小球处于上升过程,先做加速度不断减小的加速运动,后做加速度不断增大的减速运动,故C正确;t2~t3段时间内,小球和弹簧系统机械能守恒,故小球增加的动能和重力势能之和等于弹簧减少的弹性势能,故D错误;故选C.【考点】牛顿定律及动能定理的应用。

3.半径为r和R(r<R)的光滑半圆形槽,其圆心均在同一水平面上,如图所示,质量相等的两物体分别自半圆形槽左边缘的最高点无初速地释放,在下滑过程中两物体A.机械能均逐渐减小B.经最低点时动能相等C.在最低点对轨道的压力相等D.在最低点的机械能不相等【答案】C【解析】圆形槽光滑,两小球下滑过程中,均只有重力做功,机械能均守恒,即机械能均保持不变,故A错误;根据机械能守恒定律得:,同理有:,由于,则,故B错误;设在最低点时轨道对小球的支持力为,则根据牛顿第二定律,得:,得:,与圆形槽的半径无关.根据牛顿第三定律可知物体在最低点对轨道的压力与轨道半径也无关,则在最低点时两球对轨道的压力相等,故C正确;取圆形槽圆心所在水平面为参考平面,则在最高点时,两球机械能均为零,而且相等,下滑过程中机械能均守恒,则在最低点时机械能仍相等,故D错误。

高一物理机械能及其守恒条件试题答案及解析

高一物理机械能及其守恒条件试题答案及解析

高一物理机械能及其守恒条件试题答案及解析1.在下列所述实例中,若不计空气阻力,机械能守恒的是A.石块自由下落的过程B.在竖直面内做匀速圆周运动的物体C.电梯加速上升的过程D.木箱沿粗糙斜面匀速下滑的过程【答案】A【解析】物体机械能守恒的条件是只有重力或者是弹力做功,根据机械能守恒的条件逐个分析物体的受力的情况,即可判断物体是否是机械能守恒.石块自由下落的过程,只受重力,所以石块机械能守恒,故A正确。

在竖直面内做匀速圆周运动过程中动能不变,重力势能在变化,所以机械能不守恒,B错误。

电梯加速上升的过程,动能增加,重力势能增加,故机械能增加,故C错误。

木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,所以机械能减小,故D错误。

【考点】考查了机械能守恒2.下列说法正确的是()A.物体机械能守恒时,一定只受重力作用B.物体处于平衡状态时机械能一定守恒C.若物体除受重力外还受到其他力作用,物体的机械能也可能守恒D.物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功【答案】CD【解析】物体机械能守恒的条件是受重力与弹力,故A中说一定只受重力作用是不对的;物体处于平衡状态时也可能是竖直向上或向下做匀速直线运动,我们知道此时的机械能是不守恒的,故B也不对;物体除受重力外,如果还受弹力的作用,则它的机械能也是守恒的,故C是正确的;如果物体的动能与重力势能的和增大,则必定有重力以外的其他力对物体做功是正确的,故D也对。

【考点】机械能守恒的条件。

3.神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段【答案】BC【解析】根据机械能守恒的条件,只有重力(或引力)做功时机械能守恒。

飞船升空的阶段,燃料要对火箭产生动力,对火箭做正功,火箭的机械能增加;飞船在椭圆轨道上绕地球运行的阶段,只有地球引力做功所以机械能守恒;返回舱在大气层外向着地球做无动力飞行阶段,也是只有地球引力做功,机械能守恒;降落伞张开后,返回舱下降的阶段,除重力做功外还有空气阻力做功,所以机械能减少。

高一物理 第五章《机械能及其守恒律》测试题

高一物理 第五章《机械能及其守恒律》测试题

象对市爱好阳光实验学校高一物理 第五章<机械能及其守恒律>测试题本章的概念包括: 1. 追寻守恒量A. 势能B. 动能 2. 时间和位移C. 功— cos W Fl α=D. 正功和负功 3. 运动快慢的描述——速度E. 功率—W tP = F. 额功率和实际功率G. 功率和速度— P Fv =4. 重力势能 H. 重力的功— 12()G W mg h h =-I. 重力势能—P E mgh=重力做的功与重力势能的关系—12P P P E E E =-J. 重力势能的相对性— 势能是系统所共有的5. 探究弹性势能的表达式—〔体会探究的过程和方法〕6. 探究功与物体速度变化的关系7. 动能和动能原理 K. 动能的表达式— 212W mv=L. 动能原理—21k k W E E =-8. 机械能守恒律9. :探究机械能守恒律 10. 能量守恒与能源M. 能量守恒律 N. 能源和能量耗散 分类试题汇编 一、选择题1.【01粤·豫综合】假设列车从静止开始匀加速运动,经过500m 的路程后,速度到达360km/h 。

整个列车的质量为1.00×105kg ,如果不计阻力,在匀加速阶段、牵引力的最大功率是A .7×106kWB .1.0×105kWC .1.0×108kWD .7×109kW2.【01】在一种叫做“蹦极跳〞有的运动中,质量为m 的游戏者系一根长为L 、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5L 时到达最低点。

假设在下落过程中不计空气阻力,那么以下说法正确的选项是 A .速度先增大后减小 B .加速度先减小后增大C .动能增加了mgLD .重力势能减少了mgL3.【01春招】将物体以一的初速度竖直上抛.假设不计空气阻力,从抛出到落回原地的整个过程中,以下四个图线中正确的选项是 4.【01】一升降机在箱底装有假设干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,那么升降机在从弹簧下端触地后直到最低点的一段运动过程中, 〔A 〕升降机的速度不断减小 〔B 〕升降机的加速度不断变大〔C〕先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功〔D〕到最低点时,升降机加速度的值一大于重力加速度的值。

机械能守恒定律练习题及答案

机械能守恒定律练习题及答案

高一物理周练(机械能守恒定律)班级_________ 姓名_________ 学号_________ 得分_________一、选择题(每题6分,共36分)1、下列说法正确的是:()A、物体机械能守恒时,一定只受重力和弹力的作用。

B、物体处于平衡状态时机械能一定守恒。

C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。

D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。

2、从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。

今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。

在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是()A、减少的重力势能大于增加的弹性势能B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为()A、mghB、mgHC、mg(H+h)D、mg(H-h)5、某人用手将1kg物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是()A.手对物体做功12JB.合外力做功2JC.合外力做功12JD.物体克服重力做功10J6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹克服阻力做的功与木块获得的动能相等B.阻力对子弹做的功与子弹动能的减少相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为____________。

高一物理专第五章重力势能 机械能守恒 动能定理 功和能 功率 等六大部分精编习题集及详解答案

高一物理专第五章重力势能 机械能守恒 动能定理 功和能 功率 等六大部分精编习题集及详解答案

高一物理专题复习重力势能机械能守恒动能定理功和能功率等六大部分精编习题集及详解答案第一部分重力势能机械能守恒定律班级姓名学号一、选择题(每小题中至少有一个选项是正确的)1.关于重力势能的说法正确的是()A.重力势能由重物本身因素决定B.重力势能有负值,因此说重力势能是矢量C.重力做功才有重力势能,重力不做功,物体就不具有重力势能D.重力做功引起重力势能变化2.关于重力、摩擦力做功的叙述中,下列叙述正确的是()A.物体克服重力做了多少功,物体的重力势能就增加多少B.重力对物体做功只与始、末位置有关,而与路径无关C.摩擦力对物体做功也与路径无关D.摩擦力对物体做功与路径有关3.下面的实例中,机械能守恒的是:()A.小球自由下落,落在竖直弹簧上,将弹簧压缩后又被弹簧弹起来。

B.拉着物体沿光滑的斜面匀速上升。

C.跳伞运动员张开伞后,在空中匀速下降。

D.木块沿光滑的斜面以速度v0从底端向上滑动的过程中。

4.下述说法正确的是()A.物体所受的合力为零,机械能一定守恒B.物体所受合力不为零,机械能一定不守恒C.物体受到重力、弹力以外的力作用时,机械能一定不守恒D.物体在重力、弹力以外的力做功时,机械能一定不守恒5.关于动能、势能和机械能,正确的说法是:()A.速度大的物体动能不一定大;B.机械能大的物体动能不一定大;C.质量大的物体重力势能一定大;D.形变大的物体弹性势能一定大。

6.当重力对物体做正功时,物体的重力势能和动能可能的变化情况,下面说法正确的是()A.重力势能一定增加,动能一定减小;B.重力势能一定减小,动能一定增加;C.重力势能一定减小,动能不一定增加;D.重力势能不一定减小,动能一定增加。

7.质量为m的小球,以速度v在高为H的光滑平台上运动,当它滑离平台下落经过高为h的某一点,它的()A.重力势能为mg(H—h)B.动能为mgh+m v2/2;C.动能的增加量为mg(H—h)D.机械能为mgH+ m v2/2。

高一物理机械能守恒定律检测题(WORD版含答案)

高一物理机械能守恒定律检测题(WORD版含答案)

一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。

下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。

AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。

C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。

高一物理机械能守恒定律复习训练题含答案

高一物理机械能守恒定律复习训练题含答案

高一物理机械能守恒定律复习训练题含答案1.下列说法中正确的是 ( )A . 功是矢量,正负表示方向;B . 功是标量,正负表示大小;C . 力做功总是在某一个过程中完成的,所以没有某一时刻的功;D . 以上说法都错误。

2. 下面关于功率的说法中正确的是 ( ) A .做功多的汽车,功率一定大; B .功率大的汽车做功一定快;C .功率是描述做功快慢的物理量,所以-10kW 的功率小于5kW 的功率;D .以上说法都不对。

3. 讨论力F 在下列几种情况下做功的多少:( )①用水平推力F 推质量是m 的物体在光滑水平面上前进了s .②用水平推力F 推质量为2m 的物体沿动摩擦因数为μ的水平面前进了s .③斜面倾角为θ,与斜面平行的推力F ,推一个质量为2m 的物体沿光滑斜面向上推进了s .A .③做功最多B .②做功最多C .做功相等D .不能确定4.如图所示,一物体从A 点沿粗糙面AB 与光 滑面AC 分别滑到同一水平面上的B 点与C 点,则下列说 法中正确的是 ( )A .沿AB 面重力做功多; B .沿两个面重力的功相同;C .沿AB 面重力势能减少多;D .沿AC 面重力势能减少多。

5.物体机械能守恒的条件是“只有重力对物体做功”,这句话的意思是( ). A.物体只能受重力的作用,而不能受其他力的作用; B.物体除受重力作用以外,可以受其他力的作用,但其他力不做功或其他力做功代数和为零;C.只要物体受到的重力对物体做了功,物体的机械能就守恒,与其他力做不做功无关;D.以上说法都正确。

6.物体在地面上20 m 高的地方以7 m /s 2的加速度竖直下落,则在下落的过程中,物体的机械能变化是 ( ) A .不变 B .减小 C .增大D .无法判定7.关于摩擦力对物体做功,下述几种论断正确的是( ) A .滑动摩擦力对物体一定做负功; B .静摩擦力不可能对物体做功;C .滑动摩擦力既可对物体做负功,也可以对物体做正功;D .静摩擦力对物体一定做负功。

高一物理机械能及其守恒条件试题

高一物理机械能及其守恒条件试题

高一物理机械能及其守恒条件试题1.地面上方某一高度有一小球,其重力势能为10J,现让它由静止开始下落,若不计空气阻力,则它在着地前瞬间的动能为()A.10 J B.30 J C.5J D.20J【答案】C【解析】小球做自由落体运动,机械能守恒,重力势能的减小量等于动能的增加量,重力势能减小10J,故动能增加10J,故A正确。

【考点】考查了机械能守恒2.下列运动过程中,机械能一定守恒的是:A.做自由落体运动的小球B.在竖直平面内做匀速圆周运动的物体C.在粗糙斜面上匀加速下滑的物块D.匀速下落的跳伞运动员【答案】A【解析】判断机械能是否守恒有两种方法,一是根据条件判断;二是直接判断动能和势能的总和是否保持不变.做自由落体运动的小球,只有重力做功,A正确;做竖直面上的匀速圆周运动的物体,在运动中重力势能改变,而动能不变,机械能不守恒,故B错误.沿粗糙斜面加速滑下的物块,由于摩擦力做功,所以机械能一定不守恒,C错误;跳伞员带着张开的降落伞匀速下降,动能不变,重力势能减小,所以机械能减小,故D错误。

【考点】考查了机械能守恒定律3.如图所示的装置中,木块通过一细线系在O点,子弹沿水平方向射入木块(子弹射入木块过程时间极短,可认为细线不发生摆动)后留在木块内,接着细线摆过一角度θ。

若不考虑空气阻力,对子弹和木块组成的系统,下列说法正确的是A.在子弹射入木块的过程中机械能守恒B.在子弹射入木块后,细线摆动的过程机械能守恒C.从子弹开始射入木块到细线摆过θ角的整个过程机械能守恒D.无论是子弹射入木块过程,还是子弹射入木块后细线摆动的过程机械能都不守恒【答案】B【解析】在子弹射入木块的过程中由于有热能产生,所以机械能不守恒,选项AC错误;在子弹射入木块后,细线摆动的过程只有重力做功,所以机械能守恒,选项B正确,选项D错误;【考点】机械能守恒的条件。

4.如图所示,m1与m2通过轻质绳连接,m1<m2.滑轮光滑且质量不计,在m2下降一段距离(不计空气阻力)的过程中,下列说法正确的是A.m1的机械能守恒B.m2的机械能减小C.m1和m2的总机械能减少D.m1和m2组成的系统机械能守恒【答案】BD【解析】在m2下降一段距离的过程中,绳子的拉力对m2做负功,对m1做正功,所以m2的机械能减小,.m1的机械能增加;对.m1和m2组成的系统,只有重力做功,所以机械能守恒。

高一物理机械能守恒综合应用试题答案及解析

高一物理机械能守恒综合应用试题答案及解析

高一物理机械能守恒综合应用试题答案及解析1.如图所示,用长为l的绳子一端系着一个质量为m的小球,另一端固定在O点,拉小球至A点,此时绳偏离竖直方向θ,空气阻力不计,松手后小球经过最低点时的速率为()A.B.C.D.【答案】B【解析】松手后小球下摆的运动满足机械能守恒,,解得小球经过最低点时的速率为,故B选项正确。

【考点】机械能守恒定律2.有三个质量都是m的小球a、b、c,以相同的速度v在空中分别竖直向上、水平和竖直向下抛出,三球落地时相同的物理量是(不计空气阻力)A.速度B.动量C.动能D.机械能【答案】CD【解析】根据机械能守恒定律,小球落到地面的速度大小相等,方向不同,所以速度和动量不同,而动能和机械能相同。

选项CD正确。

【考点】机械能守恒定律及动量的概念。

3.如图所示,一物体以初速度v冲上光滑的足够长斜面AB能沿斜面升高h,不计空气阻力。

则下列说法中正确的是A.若把斜面的倾角变大,物体沿斜面将不能冲到h高B.若把斜面的倾角变小,物体沿斜面将冲到比h更高的上方C.若斜面从C处锯掉,物体冲出C点后能升到h高D.若斜面从C处锯掉,物体冲出C点后不能升到h高【答案】D【解析】物体冲上斜面的过程中机械能守恒,到达最高点的速度为零,所以根据,不管斜面的倾角如何,物体都能沿斜面到达高h的地方,选项AB错误;若斜面从C处锯掉,则物,根据,则<h。

体离开斜面将做斜上抛运动,到达最高点时仍然有水平速度v1【考点】机械能守恒定律。

4.如图所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且轻弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点的过程中:A.重物的重力势能增加B.重力对重物一直做正功C.弹簧的弹性势能增加D.系统的机械能增加【答案】BC【解析】整个过程中,球和弹簧的系统,机械能守恒,因此在下落过程中,小球减小的重力势能转化为弹簧势能和球的动能之和,因此BC正确。

(完整word)高一物理机械能守恒定律练习题及答案

(完整word)高一物理机械能守恒定律练习题及答案

机械能守恒定律计算题(基础练习)班别:姓名:1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2)图5-1-82.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?图5-3-13.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.Fmg图5-2-5h 1h 2图5-4-45.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?图5-3-27.如图5-4-2使一小球沿半径为R的圆形轨道从最低点B上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).图5-4-2R V0图5-4-89.如图5-5-1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的图5-5-1 最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.图5-5-1111.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?12.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是. (3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .2AB20CD22图5-8-9答案1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2【解析】利用w =Fs cos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N则力2F F '==60N 物体从静止开始运动,3s 内的位移为221at s ==21×2×32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等. 即='=='s F W W F F 120×9=1080J2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间?【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at图5-1-8图5-3-1得t =16s3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma 解得 =a 2m/s 2 5s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功 W =FS =24×25=600J 5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin αμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故Fmg图5-2-5h 1h 2图5-4-4ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111hsh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为图5-3-2221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212B mv R mg =⋅ 从而得gR v B 2=【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足Rv m N mg AA 2=+式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当N A =0时, v A 最小,v A =gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度v A gR ≥【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得图5-4-2A B N mRgR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列图5-5-1RV 0 图5-4-8HABR图5-5-11mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv mmg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍? 【解析】以小球和地球为研究对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BA .(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 .(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.。

高一物理机械能守恒试题答案及解析

高一物理机械能守恒试题答案及解析

高一物理机械能守恒试题答案及解析,不计空气阻力,取地面为零势能1.从地面以仰角θ斜向上抛一质量为m的物体,初速度为V面,重力加速度为g。

当物体的重力势能是其动能的3倍时,物体离地面的高度为。

【答案】【解析】设物体离地面的高度为H,且速度为v,由题意知:,再由机械能守恒定律得:,联立解得:。

【考点】考查了机械能守恒平抛的运动轨迹2.如图所示,放置在竖直平面内的光滑杆AB,是按照从高度为h处以初速度v制成的,A端为抛出点,B端为落地点。

现将一小球套于其上,由静止开始从轨道A端滑下。

已知重力加速度为g,当小球到达轨道B端时()A.小球的速率为B.小球竖直方向的速度大小为C.小球在水平方向的速度大小为D.小球在水平方向的速度大小为【答案】D【解析】由机械能守恒定律,mgh=mv2,解得小球到达轨道B端时速率为v=;AB错误;当小球滑到B点时,设小球的速度与水平方向间的夹角为θ,则tanθ=,cosθ=;cosθ=,D正确。

小球在水平方向的速度v=v【考点】本题考查平抛运动、运动的合成与分解。

3.如图所示,竖立在水平地面上的轻弹簧,下端与地面固定,将一个金属球放置在弹簧顶端(球与弹簧不粘连),并用力向下压球,使弹簧作弹性压缩,稳定后用细线把弹簧拴牢,烧断细线,球将被弹起,脱离弹簧后能继续向上运动,那么该球从细线被烧断到刚脱离弹簧的这一运动过程中A.球所受的合力先增大后减小B.球的动能减小而它的机械能增加C.球刚脱离弹簧时弹簧的弹性势能最小D.球刚脱离弹簧时的动能最大【答案】 C【解析】试题分析: 从细线被烧断到弹簧的弹力等于小球的重力的过程中,小球受重力和弹力,弹力逐渐减小到零;开始时弹力大于重力,小球向上做加速运动,加速度逐渐减小到零;之后做减速运动,加速度反向增加;即加速度先减小后增加,合力先减小后增大,故A正确;、当小球的弹簧的弹力等于小球的重力时速度最大,所以小球的动能先增大后减小,所以球刚脱离弹簧时的动能不是最大,故B、D错误;从细线被烧断到刚脱离弹簧的运动过程中,弹簧的压缩量逐渐减小,弹簧的弹性势能逐渐减小,所以球刚脱离弹簧时弹簧的弹性势能最小.故C正确。

高一物理机械能守恒试题

高一物理机械能守恒试题

高一物理机械能守恒试题1.在距地面高度为H的位置斜向上抛出一个质量为m的小球,小球到达最高点时的速度大小为v 1,小球落地时的速度大小为v2,忽略空气阻力。

则小球抛出时的动能为()A.B.C.D.【答案】A【解析】试题解析:小球上抛后的运动过程中,只受重力作用,故它遵循机械能守恒的规律,设小球抛出时的动能为为Ek ,则存在如下关系式:mgh+Ek=,故小球抛出时的动能Ek=,A是正确的。

【考点】机械能守恒。

2.有一个固定的光滑直杆,该直杆与水平面的夹角为53°,杆上套着一个质量为m=2 kg的滑块(可视为质点)。

(1)如图甲所示,滑块从O点由静止释放,下滑了位移x="1" m后到达P点,求滑块此时的速率。

(2)如果用不可伸长的细绳将滑块m与另一个质量为M="2.7" kg的物块通过光滑的定滑轮相连接,细绳因悬挂M而绷紧,此时滑轮左侧绳恰好水平,其长度L=m(如图乙所示)。

再次将滑块从O点由静止释放,求滑块滑至P点的速度大小。

(整个运动过程中M不会触地,sin53°=0.8,cos 53°=0.6,g取10 m/s2)【答案】(1)(2)【解析】(1)滑块下滑位移1m时下落的高度,滑块下落过程中只有重力做功,根据动能定理得:。

(2)由于图中杆子与水平方向成53°,可以解出图中虚线长度:,所以滑块运动到P时,m下落,M下落,当m到达P点与m相连的绳子此时垂直杆子方向的速度为零,即M速度为零,全过程两物体减小的重力势能等于m物体的动能增加:,解得:【考点】考查了动能定理的综合应用3.如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,火箭升空的过程中,若匀速升空机械能守恒,若加速升空机械能不守恒B.乙图中物体匀速运动,机械能守恒C.丙图中小球做匀速圆周运动,机械能守恒D.丁图中,轻弹簧将A、B两小车弹开,两小车组成的系统机械能不守恒,两小车和弹簧组成的系统机械能守恒【答案】CD【解析】A中火箭升空的过程中,外力对火箭做了功,故火箭的机械能不守恒,无论匀速升空还是加速升空都不守恒,故A错误;B中物体在外力的作用下上升,外力对物体做了功,故机械能也不守恒,B错误;C中小球做匀速圆周运动,其速度不变,动能不变,小球的高度不变,重力势能不变,故其机械能守恒,C正确;D中对于小车而言,由于弹簧对它们做了功,故机械能不守恒,而对于小车与弹簧而言,整个系统没有受到外力的作用,其整个系统的机械能是守恒的,D正确。

高一物理第五章机械能及其守恒定律单元测试卷(A)

高一物理第五章机械能及其守恒定律单元测试卷(A)

机械能一、选择题1、某人用同一力先后拉同一物体,第一次使此物体沿光滑水平面前进s距离,第二次使此物体沿粗糙水平面也前进s距离,若先后两次拉力做的功为W1和W2,拉力做功的功率是P1和P2,则( )A.W1=W2,P1=P2B.W1=W2,P1>P2C.W1>W2,P1>P2D.W1>W2,P1=P22.下面各个实例中,机械能不守恒的是()A. 在竖直方向上弹簧吊着一个物体上下运动B.物体从高处以0.9g的加速度竖直下落C. 铅球运动员抛出的铅球从抛出到落地前的运动D.拉着一个物体沿光滑的斜面匀速上升3.一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于()A.物体势能的增加量 B.物体动能的增加量C.物体动能的增加量加上物体势能的增加量D.物体动能的增加量加上克服重力所做的功4.一物体在竖直弹簧的上方h米处下落,然后又被弹簧弹回,则物体动能最大时是A.物体刚接触弹簧时 B.物体将弹簧压缩至最短时C.物体重力与弹力相等时 D.弹簧等于原长时5、汽车以恒定功率P由静止出发,沿平直路面行驶,最大速度为v,则下列判断正确的A.汽车先做匀加速运动,最后做匀速运动B.汽车先做加速度越来越大的加速运动,最后做匀速运动C.汽车先做加速度越来越小的加速运动,最后做匀速运动D.汽车先做加速运动,再做减速运动,最后做匀速运动6、以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,空气阻力的大小恒为f,则从抛出至回到原出发点的过程中,空气阻力对小球做的功为( )A.0B.-fhC.-2fhD.-4fh7.下列说法正确的是()A. 静摩擦力一定做负功B. 重力对物体做功,物体的重力势能一定减少C. 动摩擦力只能做负功D. 重力对物体做功,物体的重力势能可能增加8.如图所示,站在汽车上的人用手推车的力为F,脚对车向后的静摩擦力为F′,下列说法正确的是()A.当车匀速运动时,F和F′所做的总功为零B.当车加速运动时,F和F′的总功为负功C.当车加速运动时,F和F′的总功为正功D.不管车做何种运动,F和F′的总功都为零第7题9、一质量分布均匀的不可伸长的绳索重为G ,A 、B 两端固定在水平天花板上,如图所示,今在绳的最低点C 施加一竖直向下的力将绳绷直,在此过程中,绳索AB 的重心位置( )A.逐渐升高B.逐渐降低C.先降低后升高D.始终不变10.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为V ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( )A .返回斜面底端时的动能为EB .返回斜面底端时的动能为3E/2C .返回斜面底端时的速度大小为2VD .返回斜面底端时的速度大小为V 2二、实验题1.在“验证机械能守恒定律”的实验中,如果纸带上前面几点比较密集,不够清楚,可舍去前面比较密集的点,在后面取一段打点比较清楚的纸带,同样可以验证.如图所示,取O 点为起始点,各点的间距已量出并标注在纸带上,所用交流电的频率为50Hz ,g 取10m/s 2,重锤的质量为m (为什么不需要测量其值?).(1)打A 点时,重锤下落的速度为v A = ,重锤的动能E kA = .(2)打F 点时,重锤下落的速度为v F = ,重锤的动能E kF = .(3)打点计时器自打A 点开始到打出F 点,重锤重力势能的减少量ΔE P = ,动能的增加量为ΔE k = .三、计算题1.如图所示,长为l 的细线下系一质量为m 的小球,线上端固定在O 点,小球可以在竖直面内摆动,不计空气阻力,当小球从摆角为θ的位置由静止运动到最低点的过程中,求:(1)重力对小球做的功?(2)小球到最低点时的速度为多大?(3)小球在最低点时,细线对小球的拉力?第1题 第15题2.如图所示,m A =4kg ,m B =1kg,A 与桌面间的动摩擦因数μ=0.2,B 与地面间的距离s=0.8m ,A 、B 原来静止,求:(1)B 落到地面时的速度为多大;(2)B 落地后,A 在桌面上能继续滑行多远才能静止下来.(g 取10m/s 2)3.如图所示,一木块沿倾角30θ︒=的斜面从某初始位置以v 0=4.5m /s 的初速度向上运动,已知木块与斜面之间的摩擦因数0.35μ=,规定木块初始位置的重力势能为零.试求木块动能等于重力势能处相对其初始位置的高度.4、如图所示,质量为m 的滑块在离地面高H=0.45m 的光滑弧形轨道上由静止开始下滑求:(1)滑块到达轨道底端B 时的速度大小为多大?(2)如果滑块在水平面上滑行的最大距离是2.25m ,则滑块与水平面间的动摩擦因数为多大?(g 取10m /s 2)第2题第19题。

高一物理机械能守恒综合应用试题答案及解析

高一物理机械能守恒综合应用试题答案及解析

高一物理机械能守恒综合应用试题答案及解析1.如图所示,在水平台面上的A点,一个质量为m的物体以初速度v抛出.不计空气阻力,当它达到B点时物体的动能为A.mv02/2+mgH B.mv2/2+mghC.D.mv2/2+mg(H-h)【答案】B【解析】对A到B运用动能定理得,,解得B点的动能,故B 正确。

【考点】考查了动能定理的应用2.如图所示,一根跨越一固定水平光滑细杆的轻绳,两端各系一个小球,球Q置于地面,球P被拉到与细杆同一水平的位置。

在绳刚被拉直时,球P从静止状态向下摆动,当球P摆到竖直位置时,球Q刚要离开地面,则两球质量之比mQ : mP为:A.4B.3C.2D.1【答案】B【解析】球P从静止摆到最低位置的过程中,做圆周运动,绳的拉力始终与速度垂直不做功,仅有重力做功,机械能守恒,设球P摆到竖直位置时的速度为,根据机械能守恒定律得:,解得:球P摆到竖直位置时受有竖直向上的拉力和竖直向下的重力,合力提供向心力,由牛顿第二定律得:,解得:因当球P摆到竖直位置时,球Q刚要离开地面,则有:,于是有:,所以两球质量之比mQ : mP为:,故选B。

【考点】本题考查了机械能守恒定律、牛顿第二定律、圆周运动等知识点,意在考查考生的理解能力、逻辑推理能力和综合应用能力。

3.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b。

a球质量为2m,静置于地面;b球质量为3m,用手托住b球,此时b球离地高度为h,轻绳刚好拉紧,从静止开始释放b后,a可能达到的最大高度为()A.h B.0.2h C.2h D.1.2h【答案】D【解析】b下落a上升的过程中,对ab系统机械能守恒,设b落地的瞬时速度为v,则,则,解得;b球落地后a球做上抛运动,还能上升的高度为h1,解得h=0.2h,所以a可能达到的最大高度为1.2h,选项D正确。

1【考点】此题考查了机械能守恒定律4.如图所示,粗细均匀的U形管内装有同种液体,在管口右端用盖板A密闭,两管内液面的高度差为h,U形管中液柱的总长为3h。

高一物理机械能守恒计算题

高一物理机械能守恒计算题

1.如图示,在光滑的水平桌面上有一质量为M 的小车, 小车与绳的一端相连,绳子的另一端通过滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h ,由静释放砝码,则当其着地前的一瞬间(小车末 2. 离开桌子)小车的速度为多大?3.一根细绳绕过光滑的定滑轮,两端分别系住质量为M 和m 的长方形物块,且M>m , 开始时用手握住M ,使系统处于如图示状态。

求(1)当M 由静止释放下落h 高时的速度(h 远小于半绳长,绳与滑轮的质量不计)。

(2)如果M 下降h 刚好触地,那么m 上升的总高度是多少? 4.如图所示,一固定的三角形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。

一柔软的细线跨过定滑轮,两端分别与物块A 和B 连接,A 的质量为4m ,B 的质量为m 。

开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。

物块A 与斜面间无摩擦。

设当A 沿斜面下滑S 距离后,细线突然断了。

求物块B 上升的最大高度H 。

5. 设飞机在飞行中所受空气阻力与它的速度平方成正比,当飞机以速度v 水平匀速飞行时,发动机的功率为P .若飞机以速度3v 水平飞行时,发动机的功率为多少?6. 质量为2 t 的汽车,发动机的功率为30 kW ,在水平公路上能以54 km/h 的最大速度行驶,如果保持功率不变,汽车速度为36 km/h 时,汽车的加速度为多少?7.美国的NBA 篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s 的时候运动员把球投出且准备命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W ,出手高度为h 1,篮框距地面高度为h 2,球的质量为m ,空气阻力不计,则篮球进框时的动能为多少?8. 以10m/s 的速度将质量为m 的物体竖直向上抛出,若空气阻力忽略,g =10m/s 2,则物体上升的最大高度是多少米,当物体上升至高度为多少米时重力势能和动能相等?9. 总质量为M 的列车,沿水平直线轨道以v 匀速前进,最后一节车厢质量为m ,中途脱钩,司机发觉时,已行驶了L 的距离,于是立即关闭油门,除去牵引力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章机械能及其守恒定律测试卷
班级_______姓名________座号________(计算过程g 取10m/s 2)
一、选择题(每小题4分,共40分)
1.关于功率公式t
W P =和P=Fv 的说法正确的是 ( ) A.由t
W P =知,只要知道W 和t 就可求出任意时刻的功率
B.由P=Fv 只能求某一时刻的瞬时功率
C.从P=Fv 知汽车的功率与它的速度成正比
D.从P=Fv 知当汽车发动机功率一定时,牵引力与速度成反比 2.下列物体中,机械能守恒的是 ( )
A.做竖直上抛运动的物体
B.被匀速吊起的集装箱
C.光滑曲面上自由运动的物体
D.在粗糙水平面上运动的物体 3.下列几种情况下力F 都对物体做了功
①水平推力F 推着质量为m 的物体在光滑水平面上前进了s ②水平推力F 推着质量为2m 的物体在粗糙水平面上前进了s ③沿倾角为θ的光滑斜面的推力F 将质量为m的物体向上推了s 。

下列说法中正确的是( ).
A.③做功最多
B.②做功最多
C.做功都相等
D.不能确定
4.两个物体质量比为1∶4,速度大小之比为4∶1,则这两个物体的动能之比为( ) A.1∶1 B.1∶4 C.4∶1 D.2∶1
5.下列关于运动物体所受合外力做功和动能变化的关系正确的是( ) A.如果物体所受合外力为零,则合外力对物体做的功一定为零 B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下做变速运动,动能一定发生变化 D.物体的动能不变,所受合外力一定为零
6.一辆汽车从静止出发在平直公路上加速前进,如果汽车发动机功率一定,在达到最大速度之前( )
A .汽车的加速度大小不变
B .汽车的加速度不断增加
C .汽车的加速度不断减小
D .汽车的加速度大小跟速度成反比
7.某人用手将1kg 物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是( )
A.手对物体做功12J
B.合外力做功2J
C.合外力做功12J
D.物体克服重力做功10J 8.关于机械能是否守恒的叙述,正确的是( ) A.做匀速直线运动的物体机械能一定守恒 B.做变速运动的物体机械能可能守恒
C.外力对物体做功为零时,机械能一定守恒
D.若只有重力对物体做功,物体的机械能一定守恒
9.质量为m 的物体,在距地面h 高处以 的加速度由静止竖直下落到地面,下列说法中正确的是( ) A.物体重力势能减少
mgh
31 B.物体的机械能减少
mgh
3
2
C.物体的动能增加mgh
D.重力做功mgh
10.质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块,并留在其中,下列说法正确的是( )
A.子弹克服阻力做的功与木块获得的动能相等
B.阻力对子弹做的功与子弹动能的减少相等
C.子弹克服阻力做的功与子弹对木块做的功相等
D.子弹克服阻力做的功大于子弹对木块做的功 二、填空题(每题5分,共20分)
11.如图:用F =40N的水平推力推一个质量m =3.0 kg 的木块,
使其沿着光滑斜面向上移动2m,则在这一过程中,F 做的功为_______J ,重力做的功为_______J.
12. 质量10t 的汽车,额定功率是60kw ,在水平路面上行驶的最大速度为15m/s ,
设它所受运动阻力保持不变,则汽车受到的运动阻力是________;在额定功率下,当汽车速度为10m/s 时的加速度_________。

13. 甲、乙、丙三辆汽车的质量之比是1:2:3,如果它们的动能相等,且轮胎与水平
地面之间的动摩擦因数都相等, 则它们关闭发动机后滑行距离之比是_______。

14.从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的
k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为
____________
g
3
1
三、实验题(12分)
15. 在“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50Hz。

查得当地的重力加速度为g=9.80m/s2,某同学选择了一条理想的纸带,用刻度尺测量时各计数点对应刻度尺的读数如图所示。

图中O点是打点计时器打出的第一个点,A、B、C、D分别是每打两个点取出的计数点,则重物由O点运动到B 点时,求;(重物质量为m)
(1)重力势能减小量为多少?
(2)动能的增加量是什么?
(3)根据计算的数据可得出什么结论?产生误差的主要原因是什么?
四、计算题(共28分)
16.以10m/s的初速度从10m高的塔上抛出一颗石子,不计空气阻力,求石子落地时速
度的大小.
17. 半径R=1m的1/4圆弧轨道下端与一水平轨道连接,水平轨道离地面高度h=1m,如
图所示,有一质量m=1.0kg的小滑块自圆轨道最高点A由静止开始滑下,经过水平
轨迹末端B时速度为4m/s,滑块最终落在地面上,试求:
(1)不计空气阻力,滑块落在地面上时速度多大?
(2)滑块在轨道上滑行时克服摩擦力做功多少?
1.D
2.AC
3.C
4.C
5.A
6.C
7.ABD
8.BD
9.BD 10.BD 11. 69.3 J ;-30 J 12. N f 3104⨯= s m a /2.0= 13. 6:3:2 14.H /k 15. 解:
(1)重力势能的减小量为:m mgh E OB P 911.1==∆(J ) (2)重锤下落到B 点时的速度为944
.12==T
h v AC B
(m/s )
重锤下落到B 点时增加的动能为m
mv E B
kB 89.12
12==
∆(J )
(3)在实验误差允许的范围内,重锤减小的重力势能等于其动能的增加,验证了
机械能守恒定律。

重锤减小的重力势能略大于其增加的动能,其原因是重锤在下落时要受到阻力作用(对纸带的摩擦力、空气阻力),必须克服阻力做功,减小的重力势能等于增加的动能加上克服阻力所做的功。

16. 解:设抛出时的速度为v 0,落地时的速度为v t ,根据机械能定律可得
17. 解:
(1)因滑块经过水平轨迹末端B 后下落时只有重力做功,所以取滑块经过水平轨迹末
端B 时为初状态, 落在地面上时为末状态,根据机械能定律可得
(2)取滑块在圆轨道最高点A 时为初状态, 落在地面上时为末状态,根据动能定理
可得
即滑块在轨道上滑行时克服摩擦力做功2J
s
m s m gh v v mv mgh mv t t /3.17/101021020
2
12
12
2
02
2
0=⨯⨯+=
+=⇒+=
+s
m s m gh v v mv mgh mv t t B /6/1102420
2
12
12
2
02
2
=⨯⨯+=
+=⇒+=
+J
J J h R mg mv W mv W mv W W W t G t f t f G 2)11(101612
1)
(2
12
10
2
12
2
2
2
-=+⨯⨯-⨯⨯=+-=
-=⇒-=+=总。

相关文档
最新文档