2017年历年甘肃省天水市数学中考真题及答案
甘肃天水2017中考试题数学卷(word版含解析)
2017年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是9.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s 的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA ﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是.12.分解因式:x3﹣x=.13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=.14.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P 南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【考点】15:绝对值;14:相反数.【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【考点】4H:整式的除法;35:合并同类项;49:单项式乘单项式.【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【考点】X3:概率的意义.【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【考点】27:实数.【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断. 【解答】解:A 、=2,所以此选项叙述正确;B 、面积是8的正方形的边长是,所以此选项叙述正确;C 、=2,它是无理数,所以此选项叙述不正确;D 、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确; 本题选择叙述不正确的, 故选C .8.下列给出的函数中,其图象是中心对称图形的是( ) ①函数y=x ;②函数y=x 2;③函数y=. A .①②B .②③C .①③D .都不是【考点】G2:反比例函数的图象;F4:正比例函数的图象;H2:二次函数的图象;R5:中心对称图形.【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形. 故选C9.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=( )A .2πB .πC .πD .π【考点】M5:圆周角定理;M2:垂径定理;MO :扇形面积的计算. 【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S扇形ODB﹣S △DOE +S △BEC .【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s 的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA ﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B 点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是x≥﹣2且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【考点】38:规律型:图形的变化类.【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【考点】SA:相似三角形的应用.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE 周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P 南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt △APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;R2:旋转的性质.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D 的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣∴S△ACE3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).2017年7月2日。
天水市中考数学试卷及答案
2017年天水市初中毕业与升学学业考试(中考)试卷数学A 卷(共100分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若x 与3互为相反数,则3x +等于( )A.0B.1C.2D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3.下列运算正确的是( )A.22x y xy +=B.2222x y xy ?C.222x x x ?D.451x x -=-4.下列说法正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为12C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000 kg 的煤产生的能量,把 130 000 000 kg 用科学计数法可表示为( )A.71310kg ´B.80.1310kg ´C.71.310kg ´D.81.310kg ´6.在正方形网格中ABC △的位置如图所示,则cos B ∠的值为( )A.12B.22C.32D.337.关于8的叙述不正确的是( ) A.822=B.面积是8的正方形的边长是8C.8是有理数D.在数轴上可以找到表示8的点 8.下列给出的函数中,其图象是中心对称图形的是( )①函数y x =;②函数2y x =;③函数1y x =A.①②B.②③C.①③D.都不是9.如图所示,AB 是圆O 的直径,弦CD AB ^,垂足为E ,30BCD =∠°,43CD =,则S =阴影( )A.2pB.83pC.43pD.38p 10.如图所示,在等腰ABC △中,4cm AB AC ==,30B =∠°,点P 从点B 出发,以3cm /s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm /s 的速度沿BA AC →方向运动到点C 停止,若BPQ △的面积为()2cm y ,运动时间为()s x ,则下列最能反映y 与x 之间函数关系的图象是( )二、填空题(每题4分,满分32分,将答案填在答题纸上)11.若代数式2x x+有意义,则x 的取值范围是 . 12.分解因式:3x x -= .13.定义一种新的运算:2*x y x y x+=,如:32153*133+?==,则()2*3*2= . 14.如图所示,在矩形ABCD 中,65DAC =∠°,点E 是CD 上一点,BE 交AC 于点F ,将BCE △沿BE 折叠,点C 恰好落在AB 边上的点'C 处,则'AFC =∠ .15.观察下列的“蜂窝图”则第n 个图案中“”的个数是 .(用含有n 的代数式表示)16.如图所示,路灯距离地面8米,身高1.6米的小明站在距离路灯的底部(点O )20米的A 处,则小明的影子AM 的长为 米.17.如图所示,正方形ABCD 的边长为4,E 是边BC 上的一点,且1BE =,P 是对角线AC 上的一动点,连接PB 、PE ,当点P 在AC 上运动时,PBE △周长的最小值是 .18.如图是抛物线()210y ax bx c a =++?的图象的一部分,抛物线的顶点坐标是()1,3A ,与x 轴的一个交点是()4,0B ,直线()20y mx n m =+?与抛物线交于A ,B 两点,下列结论:①0abc >;②方程23ax bx c ++=有两个相等的实数根;③抛物线与x 轴的另一个交点是()1,0-; ④当14x <<时,有21y y >;⑤()x ax b a b +?,其中正确的结论是 .(只填写序号)三、解答题 (本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:()2041112sin 6052p -骣琪-++--琪桫°. (2)先化简,再求值:2121122x x x x 骣++琪-?琪++桫,其中31x =-. 20.一艘轮船位于灯塔P 南偏西60°方向的A 处,它向东航行20海里到达灯塔P 南偏西45°方向上的B 处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P 的最短距离.(结果保留根号)21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说““戏剧”“散文”“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布和扇形统计图:根据图表提供的信息,解答下列问题:(1) 八年级一班有多少名学生?(2) 请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比.(3) 在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.B 卷(共50分)四、解答题 (本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)22.如图所示,一次函数y kx b =+与反比例函数m y x=的图象交于()2,4A ,()4,B n -两点. (1)分别求出一次函数与反比例函数的表达式;(2)过点B 作BC x ^轴,垂足为点C ,连接AC ,求ACB △的面积.23.如图所示,ABD △是O ⊙的内接三角形,E 是弦BD 的中点,点C 是O ⊙外一点且DBC A =∠∠,连接OE 并延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是O ⊙的切线;(2)若O ⊙的半径为6,8BC =,求弦BD 的长.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少? 25.ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ==∠∠°,DEF △的顶点E 与ABC △的斜边BC 的中点重合,将DEF △绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图(1),当点Q 在线段AC 上,且AP AQ =时,求证:BPE CQE △≌△.(2)如图(2),当点Q 在线段CA 的延长线上时,求证:BPE CEQ △∽△;并求当2BP =,9CQ =时BC 的长.26.如图所示,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =-+<与x 轴交于,A B 两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)求,A B 两点的坐标及抛物线的对称轴;(2)求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(3)点E 是直线l 上方的抛物线上的动点,若ACE △的面积的最大值为54,求a 的值; (4)设P 是抛物线的对称轴上的一点,点Q 在抛物线,以点,,,A D P Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.。
2017年甘肃省中考数学试卷含答案
绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A.439.310⨯B.53.9310⨯ C.63.9310⨯ D.60.39310⨯ 3.4的平方根是( ) A.16B.2C.2±D.2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A.224x x x +=B.824x x x ÷=C.236x x x =gD.22()0x x --=6.将一把直尺与一块三角板如图放置,若145=o ∠,则2∠为( ) A.115o B.120o C.135o D.145o7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A.0,0k b >> B.0,0k b >< C.0,0k b <> D.0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A.222a b c +-B.22a b +C.2cD.09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A.(322)(20)570x x --=B.322203220570x x +⨯=⨯-C.(32)(20)3220570x x --=⨯-D.2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是 ( )A.22cmB.32cmC.42cmD.52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共18页)11.分解因式:221x x-+=.12.估计51-与0.5的大小关系:51-0.5(填“>”或“=”或“<”).13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式201520172016m n c++的值为.14.如图,ABC△内接于Oe,若32OAB=o∠,则C=∠o.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=o∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===o∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则»CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭o.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC△,请用圆规和直尺作出ABC△的一条中位线EF(不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得4565DAC DBC==o o∠,∠.若132AB=米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14o o o≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷第3页(共18页). . .(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表 成绩x (分)频数(人) 频率5060x ≤<10 0.056070x ≤< 30 0.15 7080x ≤< 40n 8090x ≤< m0.35 90100x ≤≤500.25根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M e 的直径,NB x ∥轴,AB 交M e 于点C . (1)若点(0,6),(0,2),30A N ABN =o ∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M e 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。
2017年甘肃省中考数学试卷-答案
【考点】函数的图象和性质 二、填空题
11.【答案】 x 12
【解析】因式分解: x2 2x 1 (x 1)2 。
【考点】因式分解
12.【答案】>
【 解 析 】 实数 大 小 的比较 ; 5 1 0.5 5 1 1 5 2 , 因 为 5 2 , 所 以 5 2 0 , 所 以
| a b c | | c a b | a b c c a b 0 ,故选 D。
【提示】去绝对值符号的法则为
|
a
|
a,a a,
0 a
0
。
【考点】三角形的三边关系,去绝对值法则 9.【答案】A
【解析】将图中的道路平移,则易得剩余的空地可以看作是一个长为 32 2xm ,宽为 20 xm 的矩形,
则由函数图象经过点(2, 4
2
),( 4 , 0) 得
4 2 2k b 0 4k b
解得
k 2
2, ,所以函数解析式为
b 8 2 ,
y 2 2x 8 2 ,所以当 x 2.5 时, y 2 2 2.5 8 2 3 2 ,故选 B。
为 60 Байду номын сангаас1 = 。 180 3
【考点】直角三角形,弧长公式
18.【答案】8
6053 【解析】观察题中的图形易得第 n 个图形中有 n 个梯形,则其周长为 5n 2(n 1) 3n 2 ,所以第 2 个图形
的周长为 3 2 2 8 ,第 2017 个图形的周长为 3 2017 2 6053 。
1 / 10
【考点】平行线的性质
7.【答案】A
【解析】因为一次函数的图象经过第一、三象限,所以 k 0 ,又因为其图象过第一、二象限,所以 b 0 ,
2017年甘肃省天水市中考数学真题试卷
2017年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.(4分)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.(4分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg6.(4分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.(4分)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.(4分)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是9.(4分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.(4分)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)若式子有意义,则x的取值范围是.12.(4分)分解因式:x3﹣x=.13.(4分)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=.14.(4分)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.(4分)观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.(4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.(4分)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.(4分)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(10分)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.(8分)一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O 外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.(12分)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•天水)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.【点评】本题考查的是绝对值,熟知0的绝对值是0是解答此题的关键.2.(4分)(2017•天水)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2017•天水)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.【点评】此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.(4分)(2017•天水)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.【点评】本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2017•天水)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•天水)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.【点评】本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B有关的直角三角形.7.(4分)(2017•天水)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选C.【点评】本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.8.(4分)(2017•天水)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.故选C【点评】本题考查正比例函数、反比例函数、二次函数的性质、中心对称图形的定义等知识,解题的关键是理解中心对称图形的定义,属于基础题.9.(4分)(2017•天水)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S=()阴影A .2πB .πC .πD .π 【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S扇形ODB﹣S △DOE +S △BEC .【解答】解:如图,假设线段CD 、AB 交于点E , ∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°, ∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE +BE•CE=﹣2+2=.故选B .【点评】考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.10.(4分)(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B 点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017•天水)若式子有意义,则x的取值范围是x≥﹣2且x ≠0.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.【点评】本题考查了分式有意义的条件、二次根式有意义的条件.解题时需注意:分母x不为零.12.(4分)(2017•天水)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.(4分)(2017•天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14.(4分)(2017•天水)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD 上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.【点评】本题考查的是翻折变换,正方形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.15.(4分)(2017•天水)观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1【点评】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.16.(4分)(2017•天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.17.(4分)(2017•天水)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE 周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,【点评】本题考查轴对称﹣最短路线问题、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.(4分)(2017•天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n (m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,【点评】本题考查二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用函数图象解决问题,所以中考常考题型.三、解答题(本大题共3小题,共28分)19.(10分)(2017•天水)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.【点评】此题考查了实数的运算,分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2017•天水)一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴PC=BC=x海里,在Rt△APC中,∵tan∠APC=,∴AC=PC•tan60°=x,∴x=20+x,解得x=10+10,则PC=(10+10)海里.答:轮船航行途中与灯塔P的最短距离是(10+10)海里.【点评】本题考查了解直角三角形的应用﹣方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.21.(10分)(2017•天水)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(共50分)22.(8分)(2017•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.【点评】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.23.(10分)(2017•天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.24.(10分)(2017•天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.25.(10分)(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.【点评】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.26.(12分)(2017•天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D 的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,。
2017年中考数学试题(含答案解析) (36)
2017年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.关于的叙述不正确的是()A.=2B .面积是8的正方形的边长是C .是有理数D .在数轴上可以找到表示的点8.下列给出的函数中,其图象是中心对称图形的是( )①函数y=x ;②函数y=x 2;③函数y=. A .①②B .②③C .①③D .都不是9.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=( )A .2πB .πC .πD .π10.如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x 的取值范围是 .12.分解因式:x 3﹣x= .13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= .14.如图所示,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C′处,则∠AFC′= .15.观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A 型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B 两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【考点】15:绝对值;14:相反数.【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【考点】4H:整式的除法;35:合并同类项;49:单项式乘单项式.【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【考点】X3:概率的意义.【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD 的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【考点】27:实数.【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的, 故选C .8.下列给出的函数中,其图象是中心对称图形的是( )①函数y=x ;②函数y=x 2;③函数y=. A .①②B .②③C .①③D .都不是【考点】G2:反比例函数的图象;F4:正比例函数的图象;H2:二次函数的图象;R5:中心对称图形.【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形. 故选C9.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=( )A .2πB .πC .πD .π【考点】M5:圆周角定理;M2:垂径定理;MO :扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形ODB ﹣S △DOE +S △BEC . 【解答】解:如图,假设线段CD 、AB 交于点E , ∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE +BE•CE=﹣2+2=.故选B.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC 方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是x≥﹣2且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【考点】38:规律型:图形的变化类.【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【考点】SA:相似三角形的应用.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A 型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;R2:旋转的性质.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B 两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a ∴S△ACE(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).2017年7月2日。
2017年甘肃省天水市中考数学试卷 (2)
2017年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.(4分)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.(4分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg6.(4分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.(4分)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.(4分)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是9.(4分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.(4分)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)若式子有意义,则x的取值范围是.12.(4分)分解因式:x3﹣x=.13.(4分)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=.14.(4分)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.(4分)观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.(4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.(4分)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.(4分)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(10分)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.(8分)一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O 外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.(12分)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•天水)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.2.(4分)(2017•天水)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【解答】解:从上面看易得横着的“”字,故选C.3.(4分)(2017•天水)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.(4分)(2017•天水)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.(4分)(2017•天水)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【解答】解:130 000 000kg=1.3×108kg.故选:D.6.(4分)(2017•天水)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.(4分)(2017•天水)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选C.8.(4分)(2017•天水)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.故选C9.(4分)(2017•天水)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S=()阴影A .2πB .πC .πD .π【解答】解:如图,假设线段CD 、AB 交于点E , ∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°, ∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE +BE•CE=﹣2+2=.故选B .10.(4分)(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A.B.C.D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017•天水)若式子有意义,则x的取值范围是x≥﹣2且x ≠0.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.(4分)(2017•天水)分解因式:x3﹣x=x(x+1)(x﹣1).【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.(4分)(2017•天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.(4分)(2017•天水)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD 上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.(4分)(2017•天水)观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.(4分)(2017•天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.(4分)(2017•天水)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE 周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.(4分)(2017•天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n (m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三、解答题(本大题共3小题,共28分)19.(10分)(2017•天水)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.20.(8分)(2017•天水)一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.(10分)(2017•天水)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.(8分)(2017•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.(10分)(2017•天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.(10分)(2017•天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.(10分)(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.(12分)(2017•天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣△ACE3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).参与本试卷答题和审题的老师有:ZJX;zjx111;gbl210;tcm123;sd2011;caicl;弯弯的小河;CJX;gsls;dbz1018;HLing;wdxwwzy;sks;神龙杉;智波;zgm666;王学峰;三界无我;家有儿女(排名不分先后)菁优网2017年7月2日。
2017年天水市中考数学试题含答案
.(用含有 n 的代数式表示)
16.如图所示,路灯距离地面 8 米,身高 1.6 米的小明站在距离路灯的底部(点 O )20 米的 A 处,则小明的影
子 AM 的长为
米.
17.如图所示,正方形 ABCD 的边长为 4, E 是边 BC 上的一点,且 BE = 1 , P 是对角线 AC 上的一动点,连
A. 1
B. 2
2
2
7.关于 8 的叙述不正确的是( )
A. 8 = 2 2
C. 8 是有理数
C. 3 2
D. 3 3
B.面积是 8 的正方形的边长是 8 D.在数轴上可以找到表示 8 的点
8.下列给出的函数中,其图象是中心对称图形的是(
①函数 y = x ;②函数 y = x2 ;③函数 y = 1 x
3.下列运算正确的是( )
A. 2x + y = 2xy
B. x×2 y2 = 2xy2
C. 2x×x2 = 2x
D. 4x - 5x = -1
4.下列说法正确的是( )
A.不可能事件发生的概率为 0
B.随机事件发生的概率为 1 2
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币 1000 次,正面朝上的次数一定是 500 次
2017 年天水市初中毕业与升学学业考试(中考)试卷
数学
A 卷(共 100 分)
一、选择题:本大题共 10 个小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一
项3 等于( )
A.0
B.1
C.2
D.3
2.如图所示的几何体是由 5 个大小相同的小立方块搭成,它的俯视图是( )
x (1)分别求出一次函数与反比例函数的表达式; (2)过点 B 作 BC ^ x 轴,垂足为点 C ,连接 AC ,求 △ACB 的面积.
(完整版)2017年甘肃省中考数学试卷含答案
数学试卷 第1页(共18页)数学试卷 第2页(共18页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .2C .2±D .2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是 ( )A .22cmB .32cmC .42cmD .52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共18页)11.分解因式:221x x-+=.12.估计512-与0.5的大小关系:512-0.5(填“>”或“=”或“<”).13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式201520172016m n c++的值为.14.如图,ABC△内接于O,若32OAB=∠,则C=∠.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC△,请用圆规和直尺作出ABC△的一条中位线EF(不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得4565DAC DBC==∠,∠.若132AB=米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷第3页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表 成绩x (分)频数(人) 频率5060x ≤<10 0.056070x ≤< 30 0.15 7080x ≤< 40n 8090x ≤< m0.35 90100x ≤≤500.25根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B。
【数学】2017年甘肃省天水市数学中考真题(解析版)
2017年甘肃省天水市中考真题一、选择题(本大题共10小题,每小题4分,共40分)1.若与3互为相反数,则|+3|等于()A.0 B.1 C.2 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.2+y=2y B.•2y2=2y2C.2÷2=2 D.4﹣5=﹣14.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000g的煤所产生的能量.把130 000 000g用科学记数法可表示为()A.13×107g B.0.13×108g C.1.3×107g D.1.3×108g6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.下列给出的函数中,其图象是中心对称图形的是()①函数y=;②函数y=2;③函数y=.A.①② B.②③ C.①③ D.都不是9.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为(s),则下列最能反映y与之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则的取值范围是.12.分解因式:3﹣=.13.定义一种新的运算:*y=,如:3*1==,则(2*3)*2=.14.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC 上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.如图是抛物线y1=a2+b+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与轴的一个交点是B(4,0),直线y2=m+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程a2+b+c=3有两个相等的实数根;③抛物线与轴的另一个交点是(﹣1,0);④当1<<4时,有y2>y1;⑤(a+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中=﹣1.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.如图所示,一次函数y=+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥轴,垂足为点C,连接AC,求△ACB的面积.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E 与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB 相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.如图所示,在平面直角坐标系中Oy中,抛物线y=a2﹣2a﹣3a(a<0)与轴交于A,B 两点(点A在点B的左侧),经过点A的直线l:y=+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.【考点】绝对值;相反数.【分析】先求出的值,进而可得出结论.【解答】解:∵与3互为相反数,∴=﹣3,∴|+3|=|﹣3+3|=0.故选A.2.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.【考点】整式的除法;合并同类项;单项式乘单项式.【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2+y无法计算,故此选项错误;B、•2y2=2y2,正确;C、2÷2=,故此选项错误;D、4﹣5=﹣,故此选项错误;故选:B.4.【考点】概率的意义.【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000g=1.3×108g.故选:D.6.【考点】勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.【考点】实数.【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选C.8.【考点】反比例函数的图象;正比例函数的图象;二次函数的图象;中心对称图形.【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.故选C9.【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.10.【考点】动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH= AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C 需4s,Q点运动到C需8s,然后分类讨论:当0≤≤4时,作QD⊥BC于D,如图1,BQ=,BP=,DQ=BQ=,利用三角形面积公式得到y=2;当4<≤8时,作QD⊥BC于D,如图2,CQ=8﹣,BP=4,DQ=CQ=(8﹣),利用三角形面积公式得y=﹣+8,于是可得0≤≤4时,函数图象为抛物线的一部分,当4<≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤≤4时,作QD⊥BC于D,如图1,BQ=,BP=,在Rt△BDQ中,DQ=BQ=,∴y=••=2,当4<≤8时,作QD⊥BC于D,如图2,CQ=8﹣,BP=4在Rt△BDQ中,DQ=CQ=(8﹣),∴y=•(8﹣)•4=﹣+8,综上所述,y=.故选D.二、填空题(本大题共8小题,每小题4分,共32分)11.≥﹣2且≠0.【考点】二次根式有意义的条件;62:分式有意义的条件.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得+2≥0,且≠0,解得≥﹣2且≠0.故答案是:≥﹣2且≠0.12.(+1)(﹣1).【考点】提公因式法与公式法的综合运用.【分析】本题可先提公因式,分解成(2﹣1),而2﹣1可利用平方差公式分解.【解答】解:3﹣,=(2﹣1),=(+1)(﹣1).故答案为:(+1)(﹣1).13.2.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.40°.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.3n+1.【考点】规律型:图形的变化类.【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.5.【考点】相似三角形的应用.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.6.【考点】轴对称﹣最短路线问题;正方形的性质.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.②⑤.【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程a2+b+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<<4时,有y2<y1,故④错误,因为=1时,y1有最大值,所以a2+b+c≤a+b+c,即(a+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三、解答题(本大题共3小题,共28分)19.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当=﹣1时,原式=.20.【考点】解直角三角形的应用﹣方向角问题;勾股定理的应用.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=+b,得:,解得:,则一次函数解析式为y=+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.【考点】切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E 是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.【考点】二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=+b过A(﹣1,0),得到直线l:y=+,解方程得到点D的横坐标为4,求得=a,得到直线l的函数表达式为y=a+a;(3)过E作EF∥y轴交直线l于F,设E(,a2﹣2a﹣3a),得到F(,a+a),求出EF=a2﹣3a﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令a2﹣2a﹣3a=a+a,即a2﹣3a﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,a2﹣2a﹣3a=0,解得:1=﹣1,2=3,∴A(﹣1,0),B(3,0),对称轴为直线==1;(2)∵直线l:y=+b过A(﹣1,0),∴0=﹣+b,即=b,∴直线l:y=+,∵抛物线与直线l交于点A,D,∴a2﹣2a﹣3a=+,即a2﹣(2a+)﹣3a﹣=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴=a,∴直线l的函数表达式为y=a+a;(3)过E作EF∥y轴交直线l于F,设E(,a2﹣2a﹣3a),则F(,a+a),EF=a2﹣2a﹣3a﹣a﹣a=a2﹣3a﹣4a,∴S△ACE=S△AFE﹣S△CEF=(a2﹣3a﹣4a)(+1)﹣(a2﹣3a﹣4a)=(a2﹣3a﹣4a)=a (﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令a2﹣2a﹣3a=a+a,即a2﹣3a﹣4a=0,解得:1=1,2=4,∴D(4,5a),∵抛物线的对称轴为直线=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).。
2017年甘肃省中考数学试卷(含详细答案)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .C .2±D .4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是()A .B .C .D .cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)11.分解因式:221x x -+= . 12.0.50.5(填“>”或“=”或“<”). 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC △内接于O ,若32OAB =∠,则C =∠.15.若关于x 的一元二次方程2(1)410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,90C =∠,8cm AC =,6cm BC =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC △中,90,1,2ACB AC AB ===∠,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于 (结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分4分)113tan30(π4)2-⎛⎫+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212x x ⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得4565DAC DBC ==∠,∠.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。
2017年甘肃省天水市中考数学试卷
2017年甘肃省天水市中考数学试卷一、选择题1.(2017?天水)若x与3互为相反数,则|x+3|等于()A、0B、1C、2D、3+2.(2017?天水)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是(??)A、B、C、D、+3.(2017?天水)下列运算正确的是()A、2x+y=2xyB、x?2y2=2xy2C、2x÷x2=2xD、4x﹣5x=﹣1+4. 2017?天水)下列说法正确的是(??)A、不可能事件发生的概率为0B、随机事件发生的概率为C、概率很小的事件不可能发生D、投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次+5.(2017?天水)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000000kg用科学记数法可表示为()A、13×107kgB、0.13×108kgC、1.3×107kgD、1.3×108kg+6.(2017?天水)在正方形网格中,△ABC的位置如图所示,则cosB的值为(??)A、B、C、D、+7.(2017?天水)关于的叙述不正确的是(??)C、A、=2B、面积是8的正方形的边长是是有理数D、在数轴上可以找到表示的点+8.(2017?天水)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A、①②B、②③C、①③D、都不是+9.(2017?天水)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=(??)A、2πB、πC、πD、π+10.(2017?天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A、B、C、D、+二、填空题11.(2017?天水)若式子有意义,则x的取值范围是.+12.(2017?天水)分解因式:x 3﹣x= . + 13.(2017?天水)定义一种新的运算:x*y= ,则(2*3)*2=,如:3*1==. + 14.(2017?天水)如图所示,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交 AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C′处,则∠AFC′= . +15.(2017?天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是 .(用含有n 的代数式表示) + 16.(2017?天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部( 点O )20米的A 处,则小明的影子AM 长为 米.17.(2017?天水)如图所示,正方形ABCD 的边长为4,E 是边BC 上的一点,且BE= 1,P 是对角线AC 上的一动点,连接PB 、PE ,当点P 在AC 上运动时,△PBE 周长 的最小值是 .+18.(2017?天水)如图是抛物线y 1=ax 2+bx+c (a≠0)的图象的一部分,抛物线的顶点 坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx+n (m≠0)与抛物线 交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx+c=3有两个相等的实数根;③抛物线与x 轴的另一个 交点是(﹣1,0);④当1<x <4时,有y 2>y 1;⑤x (ax+b )≤a+b ,其中正确的结论 是 .(只填写序号)+三、解答题19.(2017?天水)计算题(1)、计算:﹣14+ sin60°+()﹣2﹣(π﹣ )0 (2)、先化简,再求值:(1﹣)÷ ,其中x= ﹣1.20.(2017?天水)一艘轮船位于灯塔P 南偏西60°方向的A 处,它向东航行20海里到 达灯塔P 南偏西45°方向上的B 处,若轮船继续沿正东方向航行,求轮船航行途 中与灯塔P 的最短距离.(结果保留根号) +21.(2017?天水)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍 的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每 位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.?类别?小说?戏剧 ?频数(人数) ?频率 ?0.5 ? ? ?4?10?6? ?散文 ?其他 ?合计 ?0.25 ? ?1根据图表提供的信息,解答下列问题:(1)、八年级一班有多少名学生?(2)、请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)、在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.+22.(2017?天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)、分别求出一次函数与反比例函数的表达式;(2)、过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.+23.(2017?天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O 外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)、求证:BC是⊙O的切线;(2)、若⊙O的半径为6,BC=8,求弦BD的长.+24.(2017?天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)、求购买A型和B型公交车每辆各需多少万元?(2)、预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和1 00万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?+25.(2017?天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90 °,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)、如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)、如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.+26.(2017?天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)、求A、B两点的坐标及抛物线的对称轴;(2)、求直线l的函数表达式(其中k、b用含a的式子表示);(3)、点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)、设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.+。
甘肃省天水市中考数学试卷(2)
从此刻开始,不留余力地努力吧,最差的结果,也可是是大器晚成2017 年甘肃省天水市中考数学试卷一、选择题(本大题共10 小题,每题 4 分,共 40 分)1.(4 分)若 x 与 3 互为相反数,则 | x+3| 等于()A.0B.1C.2D.32.(4 分)如下图的几何体是由 5 个大小同样的小立方块搭成,它的俯视图是()A.B.C.D.3.(4 分)以下运算正确的选项是()A.2x+y=2xy B.x?2y2=2xy2C. 2x÷x2=2x D.4x﹣ 5x=﹣ 14.(4 分)以下说法正确的选项是()A.不行能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不行能发生D.扔掷一枚质地均匀的硬币1000 次,正面向上的次数必定是500 次5.(4 分)我国均匀每平方千米的土地一年从太阳获得的能量,相当于焚烧130 000 000kg 的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.×108kg C.× 107kg D.×108kg6.(4 分)在正方形网格中,△ ABC的地点如下图,则cosB的值为()A.B.C.D.7.(4 分)对于的表达不正确的选项是()A.=2B.面积是 8 的正方形的边长是C.是有理数D.在数轴上能够找到表示的点8.(4 分)以下给出的函数中,其图象是中心对称图形的是()①函数 y=x;②函数 y=x2;③函数 y=.A.①②B.②③C.①③D.都不是9.(4 分)如图, AB 是圆 O 的直径,弦 CD⊥AB,∠ BCD=30°,CD=4,则S暗影=()A.2π B.π C.π D.π10.( 4 分)如图,在等腰△ ABC中, AB=AC=4cm,∠ B=30°,点 P 从点 B 出发,以 cm/s 的速度沿 BC 方向运动到点 C 停止,同时点 Q 从点 B 出发,以 1cm/s的速度沿 BA﹣ AC方向运动到点 C 停止,若△ BPQ的面积为 y(cm2),运动时间为 x(s),则以下最能反应 y 与 x 之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8 小题,每题 4 分,共 32 分)11.( 4 分)若式子存心义,则 x 的取值范围是.12.( 4 分)分解因式: x3﹣x= .13.( 4 分)定义一种新的运算:x*y= ,如: 3*1= = ,则( 2*3 )*2= .14.( 4 分)如下图,在矩形 ABCD中,∠ DAC=65°,点 E 是 CD上一点, BE交AC于点 F,将△ BCE沿 BE折叠,点 C恰巧落在 AB边上的点 C′处,则∠ AFC′=.15.( 4 分)察看以下的“蜂窝图”则第 n 个图案中的“”的个数是.(用含有n的代数式表示)16.(4 分)如图,路灯距离地面 8 米,身高 1.6 米的小明站在距离灯的底部(点O)20 米的 A 处,则小明的影子AM 长为米.17.( 4 分)如下图,正方形 ABCD的边长为 4,E 是边 BC上的一点,且 BE=1,P 是对角线 AC上的一动点,连结 PB、PE,当点 P 在 AC上运动时,△ PBE周长的最小值是.18.( 4 分)如图是抛物线 y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的极点坐标是 A( 1, 3),与 x 轴的一个交点是 B(4,0),直线 y2=mx+n( m≠0)与抛物线交于 A,B 两点,以下结论:①abc>0;②方程ax2+bx+c=3 有两个相等的实数根;③抛物线与x 轴的另一个交点是(﹣ 1, 0);④当 1<x<4 时,有 y2>y1;⑤ x( ax+b)≤ a+b,此中正确的结论是.(只填写序号)三、解答题(本大题共 3 小题,共 28 分)19.( 10 分)( 1)计算:﹣ 14+ sin60 +°()﹣2﹣(π﹣)0( 2)先化简,再求值:( 1﹣)÷,此中 x= ﹣1.20.( 8 分)一艘轮船位于灯塔P 南偏西 60°方向的 A 处,它向东航行20 海里到达灯塔 P 南偏西 45°方向上的 B 处,若轮船连续沿正东方向航行,求轮船航行途中与灯塔 P 的最短距离.(结果保存根号)21.( 10 分)八年级一班展开了“读一本好书”的活动,班委会对学生阅念书本的状况进行了问卷检查,问卷设置了“小说”“戏剧”“散文”“其余”四个种类,每位同学仅选一项,依据检查结果绘制了不完好的频数散布表和扇形统计图.类型频数(人数)频次小说戏剧 4散文10其余 6共计 1依据图表供给的信息,解答以下问题:(1)八年级一班有多少名学生?(2)请补全频数散布表,并求出扇形统计图中“其余”类所占的百分比;(3)在检盘问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中随意选出2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选用的 2 人恰巧是乙和丙的概率.四、解答题(共50 分)22.(8 分)如下图,一次函数 y=kx+b 与反比率函数 y=的图象交于A(2,4),B(﹣ 4, n)两点.(1)分别求出一次函数与反比率函数的表达式;(2)过点 B 作 BC⊥x 轴,垂足为点 C,连结 AC,求△ ACB的面积.23.( 10 分)如图,△ ABD 是⊙ O 的内接三角形, E 是弦 BD 的中点,点 C 是⊙O 外一点且∠ DBC=∠A,连结 OE延伸与圆订交于点 F,与 BC订交于点 C.(1)求证: BC是⊙ O 的切线;(2)若⊙ O 的半径为 6,BC=8,求弦 BD 的长.24.( 10 分)天水某公交企业将裁减某一条线路上“冒黑烟”较严重的公交车,计划购置 A 型和 B 型两行环保节能公交车共 10 辆,若购置 A 型公交车 1 辆, B 型公交车 2 辆,共需 400 万元;若购置 A 型公交车 2 辆, B 型公交车 1 辆,共需350万元,( 1)求购置 A 型和 B 型公交车每辆各需多少万元?( 2)估计在该条线路上 A 型和 B 型公交车每辆年均载客量分别为 60 万人次和100 万人次.若该企业购置 A 型和 B 型公交车的总花费不超出 1220 万元,且确保这 10 辆公交车在该线路的年均载客量总和许多于650 万人次,则该企业有哪几种购车方案?哪一种购车方案总花费最少?最少总花费是多少?25.( 10 分)△ ABC和△ DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的极点 E 与△ ABC的斜边 BC的中点重合,将△ DEF绕点 E 旋转,旋转过程中,线段 DE 与线段 AB 订交于点 P,线段 EF与射线 CA 订交于点 Q.( 1)如图①,当点 Q 在线段 AC 上,且 AP=AQ时,求证:△ BPE≌△ CQE;( 2)如图②,当点 Q 在线段 CA 的延伸线上时,求证:△ BPE∽△ CEQ;并求当BP=2,CQ=9时 BC的长.26.(12 分)如下图,在平面直角坐标系中 xOy中,抛物线 y=ax2﹣2ax﹣ 3a(a<0)与 x 轴交于 A, B 两点(点 A 在点 B 的左边),经过点 A 的直线 l:y=kx+b与 y 轴负半轴交于点 C,与抛物线的另一个交点为 D,且CD=4AC.( 1)求 A、B 两点的坐标及抛物线的对称轴;( 2)求直线 l 的函数表达式(此中 k、b 用含 a 的式子表示);( 3)点 E 是直线 l 上方的抛物线上的动点,若△ ACE的面积的最大值为,求 a 的值;(4)设 P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点 A、 D、 P、Q 为极点的四边形可否成为矩形?若能,求出点 P 的坐标;若不可以,请说明原因.2017 年甘肃省天水市中考数学试卷参照答案与试题分析一、选择题(本大题共10 小题,每题 4 分,共 40 分)1.(4 分)(2017?天水)若 x 与 3 互为相反数,则 | x+3| 等于()A.0B.1C.2D.3【解答】解:∵ x 与 3 互为相反数,∴x=﹣3,∴| x+3| =| ﹣3+3| =0.应选 A.2.(4 分)(2017?天水)如下图的几何体是由 5 个大小同样的小立方块搭成,它的俯视图是()A.B.C.D.【解答】解:从上边看易得横着的“”字,应选 C.3.(4 分)(2017?天水)以下运算正确的选项是()A.2x+y=2xy B.x?2y2=2xy2C. 2x÷x2=2x D.4x﹣ 5x=﹣ 1【解答】解: A、2x+y 没法计算,故此选项错误;B、x?2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;应选: B.4.(4 分)(2017?天水)以下说法正确的选项是()A.不行能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不行能发生D.扔掷一枚质地均匀的硬币1000 次,正面向上的次数必定是500 次【解答】解: A、不行能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P 为 0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的时机少,故本选项错误;D、扔掷一枚质地均匀的硬币1000 次,是随机事件,正面向上的次数不确立是多少次,故本选项错误;应选 A.5.(4 分)(2017?天水)我国均匀每平方千米的土地一年从太阳获得的能量,相当于焚烧 130 000 000kg的煤所产生的能量.把 130 000 000kg用科学记数法可表示为()A.13×107kg B.×108kg C.× 107kg D.×108kg【解答】解:× 108kg.应选: D.6.( 4 分)(2017?天水)在正方形网格中,△ ABC的地点如下图,则cosB 的值为()A.B.C.D.【解答】解:设小正方形的边长为1,则 AB=4,BD=4,∴ cos∠ B==.应选 B.7.(4 分)(2017?天水)对于的表达不正确的选项是()A.=2B.面积是 8 的正方形的边长是C.是有理数D.在数轴上能够找到表示的点【解答】解: A、=2,因此此选项表达正确;B、面积是 8 的正方形的边长是,因此此选项表达正确;C、=2,它是无理数,因此此选项表达不正确;D、数轴既能够表示有理数,也能够表示无理数,因此在数轴上能够找到表示的点;因此此选项表达正确;此题选择表达不正确的,应选 C.8.( 4 分)(2017?天水)以下给出的函数中,其图象是中心对称图形的是()①函数 y=x;②函数 y=x2;③函数 y=.A.①②B.②③C.①③D.都不是【解答】解:依据中心对称图形的定义可知函数①③是中心对称图形.应选 C9.(4 分)(2017?天水)如图,AB 是圆 O 的直径,弦 CD⊥AB,∠BCD=30°,CD=4,则 S暗影=()A.2π B.π C.π D.π【解答】解:如图,假定线段CD、AB 交于点 E,∵AB是⊙ O 的直径,弦 CD⊥AB,∴ CE=ED=2 ,又∵∠ BCD=30°,∴∠ DOE=2∠BCD=60°,∠ ODE=30°,∴ OE=DE?cot60°=2 × =2,OD=2OE=4,∴ S 阴影 =S 扇形ODB﹣ S△DOE+S△BEC ﹣×DE+ BE?CE= ﹣= OE2 +2 =.应选 B.10.( 4 分)(2017?天水)如图,在等腰△ ABC 中, AB=AC=4cm,∠ B=30°,点 P 从点 B 出发,以 cm/s 的速度沿 BC方向运动到点 C 停止,同时点 Q 从点 B 出发,以1cm/s 的速度沿 BA﹣AC方向运动到点 C 停止,若△ BPQ的面积为(ycm2),运动时间为 x(s),则以下最能反应y 与 x 之间函数关系的图象是()A.B.C.D.【解答】解:作 AH⊥ BC于 H,∵AB=AC=4cm,∴ BH=CH,∵∠ B=30°,∴ AH= AB=2,BH= AH=2 ,∴ BC=2BH=4,∵点 P 运动的速度为cm/s, Q 点运动的速度为 1cm/s,∴点 P 从 B 点运动到 C 需 4s, Q 点运动到 C 需 8s,当 0≤x≤ 4 时,作 QD⊥BC于 D,如图 1,BQ=x, BP=x,在 Rt△BDQ中, DQ= BQ= x,∴ y= ? x? x= x2,当 4<x≤ 8 时,作 QD⊥BC于 D,如图 2,CQ=8﹣ x, BP=4 在Rt△BDQ中,DQ= CQ= (8﹣x),∴ y= ? (8﹣x)?4 =﹣ x+8 ,综上所述, y=.应选 D.二、填空题(本大题共8 小题,每题 4 分,共 32 分)11.( 4 分)(2017?天水)若式子存心义,则x的取值范围是x≥﹣ 2 且 x≠0 .【解答】解:依据题意,得x+2≥0,且 x≠0,解得 x≥﹣ 2 且 x≠0.故答案是: x≥﹣ 2 且 x≠ 0.12.( 4 分)(2017?天水)分解因式: x3﹣x= x(x+1)(x﹣1).【解答】解: x3﹣x,=x( x2﹣1),=x( x+1)( x﹣ 1).故答案为: x( x+1)( x﹣1).13.( 4 分)(2017?天水)定义一种新的运算:x*y=,如:3*1==,则( 2*3)*2= 2.【解答】解:依据题中的新定义得:(2*3 )*2=()*2=4*2==2,故答案为: 214.( 4 分)(2017?天水)如下图,在矩形 ABCD中,∠ DAC=65°,点 E 是 CD上一点,BE 交 AC于点 F,将△ BCE沿 BE折叠,点 C 恰巧落在 AB 边上的点 C′处,则∠ AFC′=40° .【解答】解:∵矩形 ABCD,∠ DAC=65°,∴∠ ACD=90°﹣∠ DAC=90°﹣65°=25°,∵△ BCE沿 BE折叠,点 C 恰巧落在 AB 边上的点 C′处,∴四边形 BCEC′是正方形,∴∠ BEC=45°,由三角形的外角性质,∠ BFC=∠ BEC+∠ ACD=45°+25°=70°,由翻折的性质得,∠ BFC′=∠BFC=70°,∴∠ AFC′=180﹣°∠ BFC﹣∠ BFC′=180﹣°70°﹣70°=40°.故答案为: 40°.15.( 4 分)(2017?天水)察看以下的“蜂窝图”则第 n 个图案中的“”的个数是3n+1.(用含有n的代数式表示)【解答】解:由题意可知:每 1 个都比前一个多出了 3 个“”,∴第 n 个图案中共有“”为:4+3(n﹣1)=3n+1故答案为: 3n+116.(4 分)( 2017?天水)如图,路灯距离地面 8 米,身高 1.6 米的小明站在距离灯的底部(点 O) 20 米的 A 处,则小明的影子 AM 长为 5 米.【解答】解:依据题意,易得△ MBA∽△ MCO,依据相像三角形的性质可知=,即=,解得 AM=5m.则小明的影长为 5 米.17.( 4 分)(2017?天水)如下图,正方形ABCD的边长为 4,E 是边 BC 上的一点,且 BE=1,P 是对角线 AC上的一动点,连结 PB、 PE,当点 P 在 AC 上运动时,△ PBE周长的最小值是 6 .【解答】解:连结 DE于 AC交于点 P′,连结 BP′,则此时△ BP′E的周长就是△ PBE 周长的最小值,∵BE=1, BC=CD=4,∴ CE=3, DE=5,∴BP′+P′E=DE=5,∴△ PBE周长的最小值是5+1=6,故答案为: 6.18.( 4 分)(2017?天水)如图是抛物线 y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的极点坐标是 A( 1, 3),与 x 轴的一个交点是 B(4,0),直线y2=mx+n ( m≠0)与抛物线交于 A,B 两点,以下结论:① abc > 0;②方程 ax 2+bx+c=3 有两个相等的实数根; ③抛物线与 x 轴的另一个交点是(﹣ 1, 0);④当 1<x <4 时,有 y 2>y 1;⑤ x ( ax+b )≤ a+b ,此中正确的结论是 ②⑤ .(只填写序号)【解答】 解:由图象可知: a <0,b >0,c > 0,故 abc < 0,故①错误.察看图象可知,抛物线与直线 y=3 只有一个交点, 故方程 ax 2+bx+c=3 有两个相等的实数根,故②正确.依据对称性可知抛物线与 x 轴的另一个交点是(﹣ 2,0),故③错误,察看图象可知,当 1<x <4 时,有 y 2< y 1 ,故④错误,由于 x=1 时, y 1 有最大值,因此 ax 2+bx+c ≤a+b+c ,即 x (ax+b )≤ a+b ,故⑤正确,因此②⑤正确,故答案为②⑤.三、解答题(本大题共 3 小题,共 28 分).( 10 分)( 天水)( )计算:﹣ 4+sin60 +°( )﹣2﹣( π﹣ )019 2017? 1 1( 2)先化简,再求值:( 1﹣)÷,此中 x= ﹣1.【解答】解:(1)﹣ 14+ sin60 +°( )﹣2﹣(π﹣ )0 =﹣1+2 × +4 ﹣ ;1=5 (2)(1﹣)÷ = × =,当 x= ﹣1 时,原式= .20.(8 分)( 2017?天水)一艘轮船位于灯塔 P 南偏西 60°方向的 A 处,它向东航行 20 海里抵达灯塔 P 南偏西 45°方向上的 B 处,若轮船连续沿正东方向航行,求轮船航行途中与灯塔 P 的最短距离.(结果保存根号)【解答】解:如图, AC⊥PC,∠ APC=60°,∠ BPC=45°,AP=200,在 Rt△APC中,∵ cos∠APC= ,∴PC=20?cos60°=10,∴ AC= =10 ,在△ PBC中,∵∠ BPC=45°,∴△ PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10 ﹣10(海里).答:轮船航行途中与灯塔P 的最短距离是( 10﹣10)海里.21.( 10 分)(2017?天水)八年级一班展开了“读一本好书”的活动,班委会对学生阅念书本的状况进行了问卷检查,问卷设置了“小说”“戏剧”“散文”“其余”四个种类,每位同学仅选一项,依据检查结果绘制了不完好的频数散布表和扇形统计图.类型频数(人数)频次小说戏剧 4散文10其余 6共计 1依据图表供给的信息,解答以下问题:(1)八年级一班有多少名学生?(2)请补全频数散布表,并求出扇形统计图中“其余”类所占的百分比;(3)在检盘问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中随意选出2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选用的 2 人恰巧是乙和丙的概率.【解答】解:(1)∵喜爱散文的有10 人,频次为,∴总人数 =10÷0.25=40(人);(2)在扇形统计图中,“其余”类所占的百分比为×100%=15%,故答案为: 15%;(3)画树状图,如下图:全部等可能的状况有12 种,此中恰巧是丙与乙的状况有 2 种,∴P(丙和乙) = = .四、解答题(共 50 分)22.( 8 分)(2017?天水)如下图,一次函数y=kx+b 与反比率函数 y=的图象交于 A(2,4),B(﹣ 4,n)两点.(1)分别求出一次函数与反比率函数的表达式;(2)过点 B 作 BC⊥x 轴,垂足为点 C,连结 AC,求△ ACB的面积.【解答】解:(1)将点 A(2, 4)代入 y= ,得: m=8,则反比率函数分析式为y=,当x=﹣4 时,y=﹣2,则点 B(﹣ 4,﹣ 2),将点 A(2,4)、B(﹣ 4,﹣ 2)代入 y=kx+b,得:,解得:,则一次函数分析式为y=x+2;( 2)由题意知 BC=2,则△ ACB的面积 =×2×6=6.23.(10 分)(2017?天水)如图,△ABD是⊙ O 的内接三角形, E 是弦 BD 的中点,点 C 是⊙ O 外一点且∠ DBC=∠ A,连结 OE延伸与圆订交于点 F,与 BC订交于点C.(1)求证: BC是⊙ O 的切线;(2)若⊙ O 的半径为 6,BC=8,求弦 BD 的长.当你的才干还撑不起你的野心时,那你就应当静下心来学习。