钢的热处理(原理及四把火)
热处理四把火的定义
热处理四把火的定义
答:热处理四把火的定义是:
热处理的四把火是退火、正火、淬火和回火。
退火是将工件在炉内缓慢加热到临界点以上一定温度,保持一段时间,随炉缓慢冷却的一种热处理工艺,通常在炉内进行。
退火的目的是降低硬度,切削加工性;降低残余应力,稳定尺寸,减少变形和裂纹倾向;细化晶粒,调整结构,消除结构缺陷。
正火是将加热后的工件从炉中取出,放在空气中冷却。
正火时,钢的晶粒可以在稍快的冷却中得到细化。
不仅可以获得满意的强度,而且可以显著提高韧性,降低构件的开裂倾向。
淬火是将工件加热到淬火温度临界点以上30-50度,保温一段时间,然后放入淬火剂中冷却。
淬火的目的是大幅度提高钢的刚度、硬度、耐磨性、疲劳强度和韧性,以满足各种机械零件和工具的不同使用要求。
还可以通过淬火满足一些特殊钢材的铁磁性、耐腐蚀性等特殊物理化学性能。
回火是淬火后在较低温度下对零件进行加热和冷却。
回火通常用于降低或消除淬火零件中的内应力,或降低其硬度和强度以改善其延展性或韧性。
淬火后的工件应及时回火,通过淬火和回火的配合,获得所需的力学性能。
热处理工艺的四把火
退火、正火、淬火、回火
简述
1. 退火:是把工件放在炉中缓慢加热到临界点以 上的某一温度,保温一段时间,随炉缓慢冷却 下来的一种热处理工艺。(炉冷) 2. 正火:是将加热后的工件从炉中取出置于空气 中冷却(空冷) 3. 淬火:是将工件加热至淬火温度(临界点以上 30-50度),并保温一段时间,然后投入淬火 剂中冷却 4. 回火:是零件淬火后进行较低温度的加热与冷 却
回火
• 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间, 然后冷却到室温的热处理工艺称为回火。 • 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为 淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消 除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢 的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分 为低温回火、中温回火和高温回火三种。
淬火
• 将钢件加热到临界点以上某一温度(45号钢 淬火温度为840-860℃,碳素工具钢的淬火 温度为760~780℃),保持一定的时间,然 后以适当速度在水(油)中冷却以获得马氏 体或贝氏体组织的热处理工艺称为淬火。 • 淬火与退火、正火处理在工艺上的主要区别 是冷却速度快,目的是为了获得马氏体组织。 马氏体组织是钢经淬火后获得的不平衡组织, 它的硬度高,但塑性、韧性差。马氏体的硬 度随钢的含碳量提高而增高。
1. 2. 3. 低温回火:150~250,降低内应力,脆性,保持淬火后的高硬度和耐 磨性. 中温回火:350~500;提高弹性,强度. 高温回火:500~650;淬火钢件在高于500℃的回火称为高温回火。 淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、 硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采 用淬火后的高温回火处理。轴类零件应用最多。淬火+高温回火称为 调质处理。
热处理工艺的“四把火”
热处理工艺的“四把火”金属热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的热处理工艺。
按照其处理工艺可以分为退火、正火、淬火、回火四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
正火:将钢材或钢件加热到临界点AC3 或ACM 以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
退火:是将工件加热到适当温度(AC3以上20-40度),根据材料和工件尺寸采用不同的保温时间,然后随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。
目的和作用(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;(2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理做准备;(3)消除钢中的内应力,以防止变形或开裂。
淬火:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后将工件放入水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却以获得马氏体和(或)贝氏体组织的热处理工艺。
淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
目的和作用使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。
(注:淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1-2次或以上之回火加工,以调整其组织及应力等。
)回火:回火就是将经过碎火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
目的和作用(1)合理地调整力学性能,使工件满足使用要求;(2)稳定组织,使工件在使用过程中不发生组织转变,从而保证工件的尺寸、形状不变;(3)降低或消除淬火内应力,以减少工件的变形并防止开裂。
钢材表面处理四把火
机械知识-钢材表面处理四把火
第一‘火’——退火。
将钢加热到一定的温度然后让其自行冷却到常温,叫做退火。
钢的退火是将钢加热到发生相变或部分相变的温度,经过保温后缓慢冷却的热处理方法。
退火后可以带来以下好处:
1、改善组织使成分均匀化以及细化晶粒,消除了组织缺陷,提高了钢的力学性能,减少了残余应力;
2、可降低硬度,提高塑性和韧性,改善切削加工性能。
所以退火是为了后续工序作好准备,故退火是属于半成品热处理,又称预先热处理。
第二‘火’——淬火。
淬火是将钢加热到临界温度以上,使其温度骤然降低,以大于临界冷却速度的速度急速冷却,而获得以马氏体为主的不平衡组织的热处理方法。
淬火的好处是:能增加钢的强度和硬度,但要减少其塑性。
高速钢的淬火剂可以是“风”,所以高速钢又被称为“风钢”淬火中常用的淬火剂有:水、油、碱水和盐类溶液等。
第三‘火’——正火。
正火是将钢加热到临界温度以上,然后在空气中自然冷却的热处理方法。
这一点和退火很相似但具体的操作和要求不同。
这种工艺可以提高综合力学性能,对要求不高的零件可以用正火来代替退火,以此来降低生产成本提高效率。
第四‘火’——回火。
将已经淬火的钢重新加热到一定温度,再用一定方法冷却称为回火。
回火分高温回火、中温回火和低温回火三类。
这样做的好处是可以消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。
另外提到回火多与淬火、正火配合使用。
钢的热处理(原理及四把火)学习资料
钢的热处理(原理及四把火)钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。
在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。
2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。
(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。
(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
金属热处理通常的“四火”
金属热处理通常的“四把火”金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。
金属热处理是材料生产中的最重要的工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体化学成分,而是通过改变工件的内部的显微组织,或改变工件的表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能观察到的。
金属热处理中的“四把火”指退火、正火、淬火(固溶)和回火(时效)。
金属热处理大致有退火、正火、淬火和回火四种基本工艺,俗称金属热处理的“四把火”。
一、金属热处理的第一把火——退火:1、退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
2、退火的目的:①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。
②软化工件以便进行切削加工。
③细化晶粒,改善组织以提高工件的机械性能。
④为最终热处理(淬火、回火)作好组织准备。
二、金属热处理的第二把火——正火:1、正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
2、正火的目的:①可以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。
②可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。
③可以消除晶界的游离渗碳体,以改善其深冲性能。
三、金属热处理的第三把火——淬火:1、淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
2、淬火的目的:①、提高金属成材或零件的机械性能。
金属材料热处理四把火
金属材料热处理-四把火1 淬火1.1 定义钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
1.2 主要目的淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
1.3 淬火加热温度以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。
碳素钢的淬火加热温度范围如图1所示。
由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。
亚共析钢加热温度为Ac3温度以上30~50℃。
高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。
如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。
过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A+C)双相区。
因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。
这-组织状态具有高硬度和高耐磨性。
对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。
淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。
2 回火2.1 定义将经过淬火的工件重新加热到低于下临界温度Ac1(加热时珠光体向奥氏体转变的开始温度)的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
热处理四把火-正火、退火、淬火、回火
热处理四把火-正火、退火、淬火、回火热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。
这些过程互相衔接,不可间断。
加热是热处理的重要步骤之一。
金属热处理的加热方法很多,金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。
因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。
加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。
加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得需要的组织。
另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。
采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间或保温时间很短,而化学热处理的保温时间往往较长。
冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。
一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。
但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。
金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。
整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。
钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火→将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢一般随炉冷却),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
常用的退火工艺有:①完全退火。
用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。
将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。
一分钟让你学会金属热处理四把火:淬火、回火、正火和退火!
一分钟让你学会金属热处理四把火:淬火、回火、正火和退火!热处理是指材料在固态下,通过、和的手段,以获得预期组织和性能的一种金属热加工工艺。
一、淬火1、什么是淬火?淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
2、淬火的目的是什么?①、提高金属成材或零件的机械性能。
例如:提高工具、轴承等的硬度和耐磨性。
②、改善某些特殊钢的材料性能或化学性能。
如提高不锈钢的耐蚀性。
二、回火1、什么是回火?回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终处理。
2、回火的目的是什么:① 、提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。
② 、消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。
③ 、调整钢铁的力学性能以满足使用要求。
三、正火1、什么是正火?正火是—种改善钢材韧性的热处理方式。
将钢板加热到Ac3温度以上30〜50℃后,保温一段时间出炉空冷。
正火时可在稍快的冷却中使钢材的结晶晶粒细化,可得到满意的强度,而且可以明显提高韧性。
2、正火的目的是什么?①、去除材料的内应力②、调整材料的硬度(一般为提高),塑性略降低四、退火1、什么是退火?退火是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。
退火热处理分为完全退火,不完全退火和去应力退火。
退火材料的力学性能可以用拉伸试验来检测,也可以用硬度试验来检测。
许多钢材都是以退火热处理状态供货的,钢材硬度检测可以采用洛氏硬度计,测试HRB硬度,对于较薄的钢板、钢带以及薄壁钢管,可以采用表面洛氏硬度计,检测HRT硬度。
金属材料热处理-四把火
1 淬火1.1 定义钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
1.2 主要目的淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
1.3 淬火加热温度以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。
碳素钢的淬火加热温度范围如图1所示。
由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。
亚共析钢加热温度为Ac3温度以上30~50℃。
高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。
如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。
过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A+C)双相区。
因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。
这-组织状态具有高硬度和高耐磨性。
对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。
淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。
2 回火2.1 定义将经过淬火的工件重新加热到低于下临界温度Ac1(加热时珠光体向奥氏体转变的开始温度)的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
再谈钢铁热处理的“四把火”
再谈钢铁热处理的“四把火”钢的热处理工艺就是通过加热、保温和冷却的方法改变钢的组织结构以获得工件所要求性能的一种热加工工艺。
钢在加热和冷却过程中的组织转变规律为制定正确的热处理工艺提供了理论依据,其热处理工艺参数的确定必须使具体工件满足钢的组织转变规律,以获得所需性能。
根据加热、冷却方式及获得的组织和性能的不同,钢的热处理工艺可分为普通热处理(退火、正火、淬火、回火)、表面热处理(表面淬火和化学热处理)及形变热处理等。
按照热处理在零件整个生产工艺过程中位置和作用的不同,热处理工艺又分为预备热处理和最终热处理。
本文主要对普通热处理进行知识整理。
一、钢的加热1. 金属加热的物理过程3.加热的目的与要求热处理的第一道工序一般都是把钢加热到临界点以上,目的是为了得到奥氏体组织。
二、钢的退火与正火退火和正火是生产上应用很广泛的预备热处理工艺。
大部门机器零件及工、膜具的毛坯经退火或正火后,不仅可以消除铸件、锻件及焊接件的内应力及成分和组织的不均匀性,而且也能改善和调整钢的力学性能和工艺性能,为下道工序作好组织性能准备。
对于一些受力不大、性能要求不高的机器零件,退火和正火亦可作为最终热处理。
对于铸件,退火和正火通常就是最终热处理。
2.1 钢的退火退火是将钢加热至临界点Ac1以上或以下温度,保温以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
其主要目的是均匀钢的化学成分及组织,细化晶粒,调整硬度,消除内应力和加工硬化,改善钢的成形及切削加工性能,并为淬火作好组织准备。
退火的工艺种类很多,根据加热温度可分为在临界温度(AC1或AC3)以上或以下的退火。
前者包括完全退火、均匀化退火、不完全退火和球化退火;后者包括再结晶退火及去应力退火。
各种退火方法的加热温度范围如图1所示。
按照冷却方式,退火可分为等温退火和连续冷却退火。
•完全退火完全退火是将钢件或钢材加热至AC3以上20~30℃,保温足够长时间,使组织完全奥氏体化后缓慢冷却,以获得近于平衡组织的热处理工艺。
热处理四火——精选推荐
热处理四火1退火把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温.a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力.b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢.c,却应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力.2正火将钢加热到一定温度,保温一段时间,在空气中冷却.正火和退火目的基本相同,但正火的冷却速度较快,得到的组织结构较硬较细,强度较退火高.3淬火是将钢加热到一定温度,保温后快速在水(油)中冷却.4回火是将钢加热到一定温度保温,再冷却的方法.是淬火的继续.淬火的钢必须经过回火.a低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性.b中温回火350~500;提高弹性,强度.c高温回火500~650;淬火+高温回火叫调质处理.处理后的钢有较好的综合性能退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却回火淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。
热处理四把火
钢的退火退火是生产中常用的预备热处理工艺。
大部分机器零件及工、模具的毛坯经退火后,可消除铸、锻及焊件的内应力与成分的组织不均匀性;能改善和调整钢的力学性能,为下道工序作好组织准备。
对性能要求不高、不太重要的零件及一些普通铸件、焊件,退火可作为最终热处理。
钢的退火是把钢加热到适当温度,保温一定时间,然后缓慢冷却,以获得接近平衡组织的热处理工艺。
退火的目的在于均匀化学成分、改善机械性能及工艺性能、消除或减少内应力并为零件最终热处理作好组织准备。
钢的退火工艺种类颇多,按加热温度可分为两大类:一类是在临界温度(Ac3或Ac1)以上的退火,也称为相变重结晶退火。
包括完全退火、不完全退火、等温退火、球化退火和扩散退火等;另一类是在临界温度(Ac1)以下的退火,也称低温退火。
包括再结晶退火、去应力和去氢退火等。
按冷却方式可分为连续冷却退火及等温退火等。
钢的淬火与回火钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。
淬火能显著提高钢的强度和硬度。
如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。
所以,淬火和回火是密不可分的两道热处理工艺。
钢的淬火淬火是将钢加热到临界点以上,保温后以大于临界冷却速度(Vc)冷却,以得到马氏体或下贝氏体组织的热处理工艺。
钢的回火回火是将淬火钢加热至A1点以下某一温度保温一定时间后,以适当方式冷到室温的热处理工艺。
它是紧接淬火的下道热处理工序,同时决定了钢在使用状态下的组织和性能,关系着工件的使用寿命,故是关键工序。
回火的主要目的是减少或消除淬火应力;保证相应的组织转变,使工件尺寸和性能稳定;提高钢的热性和塑性,选择不同的回火温度,获得硬度、强度、塑性或韧性的适当配合,以满足不同工件的性能要求。
正火和退火区别正火和退火主要有四个区别:(1)正火的温度较高,退火的温度较低。
(2)正火的冷却速度比退火的冷却速度快。
(3)使用效果不同,在渗碳处理以后,正火能消除网状渗碳体,退火则不能.对含碳量在0.25%以下的,正火后可提高硬度,改善切削加工性能,退火却做不到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。
在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。
2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。
(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。
(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
影响 A晶粒粗大因素1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。
因此,合理选择加热和保温时间。
以保证获得细小均匀的奥氏体组织。
(930~950℃以下加热,晶粒长大的倾向小,便于热处理)2、A中C含量上升则晶粒长大的倾向大。
二、钢在冷却时的转变生产中采用的冷却方式有:等温冷却和连续冷却(一)过冷奥氏体的等温转变A在相变点A 1 以上是稳定相,冷却至A 1 以下就成了不稳定相,必然要发生转变。
1、奥氏体等温转变图:表示奥氏体过冷在不同温度下的等温过程中,转变温度、转变时间与转变产物量的关系曲线图。
曲线形状与“C”字相似,所以又称C曲线。
2、共析碳钢奥氏体等温转变产物的组织和性能1)高温珠光体型转变: A 1 ~550℃( 1)珠光体(P) A 1 ~650℃粗层状约0.3 μ m < 25HRC( 2)索氏体(S) 650~600℃细层状 0.1~0.3 μ m 25~35HRC( 3)托氏体(T) 600~550℃极细层状约0.1 μ m 35~40HRC2)中温贝氏体型转变: 550~Ms( 1)上贝氏体(B 上) 550~350 ℃羽毛状 40~45HRC 脆性大,无使用价值(2)下贝氏体(B 下) 350~M S 黑色针状 45~55HRC 韧性好,综合力学性能好3)低温马氏体型转变: M s ~M f 当 A被迅速过冷至M S 以下时,则发生马氏体(M)转变,主要形态是板条状和片状。
(当 W C < 0.2%时,呈板条状,当 W C > 1.0%呈针片状,当 W C = 0.2%~1.0%时,呈针片状和板条状的混合物)(二)过冷奥氏体的连续冷却转变1.奥氏体连续冷却转变图(共析钢的连续冷却转变如图)连冷却转变图是表示钢经A后,在不同冷却速度的连冷却条件下,过冷A转变开始及转变终了时间与转变温度之间的关系曲线图。
2.共析碳钢过冷奥氏体连续冷却转变产物的组织和性能(1)随炉冷 P 170~220HBS (700~650℃)(2)空冷 S 25~35HRC (650~600℃)(3)油冷 T+M 45~55HRC 550℃(4)水冷 M+A ′ 55~65HRC3.马氏体转变当冷速 > V K 时,奥氏体发生M转变,即碳溶于α— F e 中的过饱和固溶体,称为 M(马氏体)。
( V K ——马氏体临界冷却速度)1)转变特点: M 转变是在一定温度范围内进行(M s ~M f ) ,M 转变是在一个非扩散型转变(碳、铁原子不能扩散) ,M 转变速度极快(大于V k ) ,M 转变具有不完全性(少量的残A) ,M转变只有α- Fe、γ-Fe的晶格转变 .(2) M 的组织形态(3) M 的力学性能① M的强度与硬度 C的上升M的硬度、强度上升② M的塑性与韧性低碳板条状M良好板条状 M 具有较高的强度、硬度和较好塑性和韧性相配合的综合力学性能。
针片状 M 比板条 M具有更高硬度,但脆性较大,塑、韧性较差。
钢的退火与正火常用的热处理工艺分为两大类:预备热处理目的:消除坯料、半成品中的某些缺陷,为后续冷加工,最终热处理作组织准备。
最终热处理目的:使工件获得所要求的性能。
退火与正火的目的 : 消除钢材经热加工所引起的某些缺陷,或为以后的切削加工及最终热处理做好组织准备。
一、钢的退火1、概念:将钢件加热到适当温度 (Ac 1 以上或以下),保持一定时间,然后缓慢冷却以获得近于平衡状态组织的热处理工艺称为退火。
2、目的:( 1)降低硬度,提高塑性,( 2)细化晶粒,消除组织缺陷( 3)消除内应力( 4)为淬火作好组织准备3、类型:(根据加热温度可分为在临界温度(Ac 1 或Ac 3 )以上或以下的退火,前者又称相变重结晶退火,包括完全退火、扩散退火均匀化退火、不完全退火、球化退火;后者包括再结晶退火及去应力退火。
)(1)完全退火:1)概念:将亚共析钢( Wc=0.3%~0.6%)加热到AC 3 +(30~50)℃,完全奥氏体化后,保温缓冷(随炉、埋入砂、石灰中),以获得接近平衡状态的组织的热处理工艺称为完全退火。
2)目的:细化晶粒、均匀组织、消除内应力、降低硬度、改善切削加工性能。
3)工艺:完全退火采用随炉缓冷可以保证先共析铁素体的析出和过冷奥氏体在 Ar1以下较主温度范围内转变为珠光体。
工件在退火温度下的保温时间不仅要使工件烧透,即工件心部达到要求的加热温度,而且要保证全部看到均匀化的奥氏体,达到完全重结晶。
完全退火保温时间与钢材成分、工件厚度、装炉量和装炉方式等因素有关。
实际生产时,为了提高生产率,退火冷却至 600℃左右即可出炉空冷。
4)适用范围:中碳钢和中碳合金钢的铸,焊,锻,轧制件等。
注意事项:低碳钢和过共析钢不宜采用完全退火。
低碳钢完全退火后硬度偏低,不利于切削加工。
过共析钢加热至 Ac cm 以上奥氏体状态缓冷退火时,有网状二次渗碳体析出,使钢的强度、塑性和冲击韧性显著降低。
(2)球化退火1)概念:使钢中碳化物球状化而进行的退火工艺称为球化退火。
2)工艺:一般球化退火工艺A c 1 +(10~20)℃随炉冷至500~600 ℃空冷。
3)目的:降低硬度、改善组织、提高塑性和切削加工性能。
4)适用范围:主要用于共析钢、过共析钢的刃具、量具、模具等。
过共析钢中有网状二次渗碳体时,不仅硬度高,难以进行切削加工,而且增大钢的脆性,容易产生淬火变形及开裂。
为此,钢热加工后必须加一道球化退火,使网状二次渗碳体和珠光体中的片状渗体发生球化,得到粒状珠光体。
冷却速度和等温温度也会影响碳化物获得球化的效果,冷却速度快或等温温度低,珠光体在较低温度下形成,碳化物颗粒太细,聚集作用小,容易形成片状碳化物,从而使硬度偏高。
如果冷却速度过慢或等温温度过高,形成碳化物颗粒较粗大,聚集作用也很强烈,易形成粗细不等的粒状碳化物,使硬度偏低。
(3)均匀化退火(扩散退火)1)工艺:把合金钢铸锭或铸件加热到 Ac 3 以上150~00℃,保温10~15h 后缓慢冷却以消除化学成分不均匀现象的热处理工艺。
2)目的:消除结晶过程中的枝晶偏析,使成分均匀化。
由于加热温度高、时间长,会引起奥氏体晶粒严重粗化,因此一般还需要进行一次完全退火或正火,以细化晶粒、消除过热缺陷。
3)适用范围:主要用于质量要求高的合金钢铸锭、铸件、锻件。
4)注意:高温扩散退火生产周期长,消耗能量大,工件氧化、脱碳严重,成本很高。
只是一些优质合金钢及偏析较严重的合金钢铸件及钢锭才使用这种工艺。
对于一般尺寸不大的铸件或碳钢铸件,因其偏析程度较轻,可采用完全退火来细化晶粒,消除铸造应力。
(4)去应力退火1) 概念:为去除由于塑性变形加工 ,焊接等而造成的应力以及铸件内存在的残余应力而进行的退火称为去应力退火。
(去应力退火不发生扭变)2) 工艺:将工件缓慢加热到 Ac 1 以下100~200℃(500~600℃)保温一定时间(1~3h)后随炉缓冷至200℃,再出炉冷却。
钢的一般在 500~600℃铸铁一般在 500~550℃超过550扣容易造成珠光体的石墨化。
焊接件一般为 500~600℃。
3)适用范围:消除铸、锻、焊件,冷冲压件以及机加工工件中的残余应力,以稳定钢件的尺寸,减少变形,防止开裂。
二、钢的正火1、概念:将钢件加热到Ac 3 (或Ac cm )以上30~50℃,保温适当时间后;在静止空气中冷却的热处理工艺称为钢的正火。
2、目的:细化晶粒,均匀组织,调整硬度等。
3、组织:共析钢 S 、亚共析钢F+S、过共析钢Fe 3 CⅡ+S4、工艺:正火保温时间和完全退火相同,应以工件透烧,即心部达到要求的加热温度为准,还应考虑钢材、原始组织、装炉量和加热设备等因素。
正火冷却方式最常用的是将钢件从加热炉中取出在空气中自然冷却。
对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢件的冷却速度,达到要求的组织和性能。
5、应用范围:1)改善钢的切削加工性能。
碳的含量低于0.25%的碳素钢和低合金钢,退火后硬度较低,切削加工时易于“粘刀”,通过正火处理,可以减少自由铁素体,获得细片状珠光体,使硬度提高,可以改善钢的切削加工性,提高刀具的寿命和工件的表面光洁程度。
2)消除热加工缺陷。
中碳结构钢铸、锻、轧件以及焊接件在加热加工后易出现粗大晶粒等过热缺陷和带状组织。
通过正火处理可以消除这些缺陷组织,达到细化晶粒、均匀组织、消除内应力的目的。
3)消除过共析钢的网状碳化物,便于球化退火。
过共析钢在淬火之前要进行球化退火,以便于机械加工并为淬火作好组织准备。
但当过共析钢中存在严重网状碳化物时,将达不到良好的球化效果。
通过正火处理可以消除网状碳化物。