专题:天体运动的三大难点破解2 赤道物体、近地卫星、同步卫星参量比较(讲义)
专题强化天体运动中的三种问题
GM r 判断。
物 理
(2)同一航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越 大。 (3)航天器经过不同轨道相交的同一点时加速度相等,交点处外轨道的速度 大于内轨道的速度。
第四章 曲线运动 万有引力与航天
三、卫星的追及相遇问题 某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直 线上。由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过 位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置
人 教 版
GM r ,因此近地卫星的速度大。
物 理
3.近地卫星和赤道上物体:做圆周运动的半径相同,由1、2结论可知,近 地卫星的线速度最大。 4.特别注意:赤道上物体的向心力由万有引力和支持力的合力提供,所以 v2 Mm G 2 =m r 不适用。 r
第四章 曲线运动 万有引力与航天
(2017· 黑龙江大庆实验中学期中)(多选)已知地球赤道上的物体随 地球自转的线速度大小为v1、向心加速度大小为a1,近地卫星线速度大小为v2、 向心加速度大小为a2,地球同步卫星线速度大小为v3、向心加速度大小为a3。设 近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的 6倍。则以下结
人 教 版 物 理
在同一直线上,实际上内轨道所转过的圆心角与外轨道所转过的圆心角之差为 π 的整数倍时就是出现最近或最远的时刻。
第四章 曲线运动 万有引力与航天
(2017· 江西鹰潭一中期中)如图所 示,地球和某行星在同一轨道平面内同向绕太阳做 匀速圆周运动,地球的轨道半径为R,公转周期为 T,地球和太阳中心的连线与地球和行星的连线所 夹的角叫地球对该行星的观察视角(简称视角)。已
由圆变为内切椭圆,或由 椭圆变为内切圆
2019届二轮复习 天体运动中常考易错的“三个难点” 课件(40张)(全国通用)
例 2 (多选)作为一种新型的多功能航天飞行器, 航天飞机集火 箭、卫星和飞机的技术特点于一身.假设一航天飞机在完成某次维 修任务后,在 A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,如图所示,已知 A 点距地面的高度为 2R(R 为地球半径),B 点为轨道Ⅱ上的近地点, 地球表面重力加速度为 g,地球质量为 M.又知若物体在离星球无穷 远处时其引力势能为零,则当物体与星球球心距离为 r 时,其引力 Mm 势能 Ep=-G r (式中 m 为物体的质量,M 为星球 的质量,G 为引力常量),不计空气阻力,则下列说 法中正确的有( )
解析:A 项,地球的同步卫星绕地球做匀速圆周运动,万有引 a0r2 Mm 力提供向心力,则有 G r2 =ma0,解得地球质量 M= G ,故选 A Mm 项正确. B 项, 地球赤道上的物体随地球自转时有 G R2 -mg=ma, g+aR2 得 M= G ,故 B 项错误;C、D 项,地球同步卫星与物体的 a R 2 角速度相等,根据 a=rω ,得a = r ,故 C、D 项错误. 0 答案:A
解析:重力是由于地球对物体的吸引而产生,重力在数值上等 于物体对地面的压力.由于地球自转,C 受到的万有引力大于 C 的 重力,A 项错误.由于同步卫星 A 和地面上物体随地球自转的角速 度 ω 相等,由线速度公式 v=ωr,可知 vA>vC,B 项错误.由向心 加速度公式,a=ω2r,可知 aA>aC.考查地球同步卫星 A 和近地卫星 Mm B,由牛顿运动定律,G r2 =ma,可知 aB>aA,C 项正确.根据同 π 步卫星绕地球运动一周 24 h 可知,A 在 4 h 内转过的圆心角是3,D 项错误. 答案:C
考点二 卫星的变轨与对接问题 1.卫星的变轨 两类变轨 离心运动 近心运动 变轨起因 卫星速度突然增大 卫星速度突然减小 2 2 万有引力与 v v Mm Mm G r2 <m r G r2 >m r 向心力的关系 由圆变为外切椭圆,或由 由圆变为内切椭圆,或由 轨迹变化 椭圆变为外切圆 椭圆变为内切圆 速度和加 两个轨道切点的加速度相等,外轨道的速度大于内 速度变化 轨道的速度
高考物理复习:天体运动中的三类问题
C.线速度的大小关系为va<vc<vb
D.向心加速度的大小关系为aa<ac<ab
解析:质量未知,无法比较向心力大小,故 A 错误。静止卫星和赤道上静止的
物体周期相等,角速度相等,ωa=ωc,而 rb<rc,根据 ω=
'
可知,ωc<ωb,所以
3
ωa=ωc<ωb,根据角速度和周期的关系可知,Ta=Tc>Tb,故 B 错误。a、c 角速度
地
小。由
2
4π2
=m
2
公式可知,做圆周运动的半径越小,则运动周期越小。由于
需要三颗卫星使地球赤道上任意两点之间保持无线电通信,所以由几何关系
可知三颗静止卫星的连线构成等边三角形并且三边与地球相切,如图。
3
由几何关系可知地球静止卫星的轨道半径为 r'=2R。由开普勒第三定律 2 =k,
(+ℎ)
地
3
h=
Gm T2
地
42
-R=3.6×107 m=6R。
Gm
地
(5)速率一定:v= R+h =3.1×103 m/s。
m m
(6)向心加速度一定:由 G
地
(R+h)
2 =man 得 an=
Gm
地
2 =0.23
(R+h)
m/s2,即地球静止卫星
的向心加速度等于轨道处的重力加速度。
(7)绕行方向一定:运行方向与地球自转方向一致。
第二环节
关键能力形成
能力形成点1
赤道上物体、近地卫星与静止卫星的差异(师生共研)
整合构建
1.近地卫星、静止卫星及赤道上物体的比较
物理高考复习专题强化五-天体运动的“三类热点”问题
专题强化五天体运动的“三类热点”问题【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现。
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解。
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等。
热点一近地卫星、同步卫星和赤道上物体的区别1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。
(2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星。
(3)其他轨道:除以上两种轨道外的卫星轨道,所有卫星的轨道平面一定通过地球的球心。
2.同步卫星问题的“四点”注意(1)基本关系:G Mmr2=ma=mv2r=mrω2=m4π2T2r。
(2)重要手段:构建物理模型,绘制草图辅助分析。
(3)物理规律①不快不慢:具有特定的运行线速度、角速度和周期。
②不高不低:具有特定的位置高度和轨道半径。
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能在赤道上方特定的点运行。
(4)重要条件①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2。
②月球的公转周期约27.3天,在一般估算中常取27天。
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s。
3.两个向心加速度卫星绕地球运行的向心加速度物体随地球自转的向心加速度产生原因由万有引力产生由万有引力的一个分力(另一分力为重力)产生方向指向地心垂直且指向地轴大小a=GMr2(地面附近a近似等于g)a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点随卫星到地心的距离的增大而减小从赤道到两极逐渐减小4.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢。
2019-2020年高三物理一轮复习 天体运动中的“四大难点”教案
2019-2020年高三物理一轮复习天体运动中的“四大难点”教案突破二 卫星的变轨问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图3所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A 点点火加速,由于速度变大,进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.卫星变轨的实质(1)当卫星的速度突然增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时减小。
(2)当卫星的速率突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时增大。
卫星的发射和回收就是利用这一原理。
突破三 天体运动中的能量问题卫星的机械能动能G Mm r 2=m v 2r E k =GMm 2r ∝m rE k =12mv 2势能与总能量同一卫星在同一圆形轨道上运动,其机械能不变(守恒)相同质量的卫星,在r 越大的轨道上,动能越小,势能越大,总能量越大三、典型例题分析【例1】 (多选)如图1所示 ,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C 为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是( )图1A.v B >v A >v C B .ωA>ωB >ωC C .F A >F B >F CD .T A =T C >T B解析 A 为地球同步卫星,故ωA =ωC ,根据v =ωr 可知,v A >v C ,再根据G Mm r 2=m v 2r 得到v =GMr,可见v B >v A ,所以三者的线速度关系为v B >v A >v C ,故选项A 正确;由ω=2πT 可知T A =T C ,再由G Mm r 2=m (2πT)2r可知T A >T B ,因此它们的周期关系为T A =T C >T B ,它们的角速度关系为ωB >ωA =ωC ,所以选项D 正确,B 错误;由F =G Mmr2可知F A <F B <F C ,所以选项C 错误。
天体运动常考易错的三个难点
答案:C
考点三 天体的追及相遇问题
1.相距最近 两卫星的运转方向相同,且位于和中心连线的半径上同侧时,
两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t =2nπ(n=1,2,3,…).
2.相距最远 当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,
从运动关系上,两卫星运动关系应满足(ωA-ωB)t′=(2n-1)π(n= 1,2,3…).
答案:C
2.[2019·浙江模拟]已知地球半径为 R,静置于赤道上的物体随
地球自转的向心加速度为 a;地球同步卫星做匀速圆周运动的轨道
半径为 r,向心加速度大小为 a0,引力常量为 G,以下结论正确的 是( )
A.地球质量 M=aG0r2 B.地球质量 M=aGR2 C.向心加速度之比aa0=Rr22
机在轨道Ⅱ上运行时机械能守恒,有-GMrAm+12mv2A=-GMrBm+12 mvB2,由开普勒第二定律得 rAvA=rBvB,结合GRM2m=mg,rA=3R, rB=R,可求得 vA、vB,故 D 正确.
答案:ACD
【迁移拓展】 (多选)在【例 2】题干不变的情况下,下列说
法正确的是( )
A.航天飞机在轨道Ⅱ上运动的周期 T2 小于在轨道Ⅰ上运动的 周期 T1
角速度相等,根据 a=rω2,得aa0=Rr ,故 C、D 项错误. 答案:A
考点二 卫星的变轨与对接问题
1.卫星的变轨
两类变轨
离心运动
近心运动
变轨起因
卫星速度突然增大
卫星速度突然减小
万有引力与 向心力的关系
Mm v2 G r2 <m r
Mm v2 G r2 >m r
轨迹变化
由圆变为外切椭圆,或由 由圆变为内切椭圆,或由
曲线运动万有引力与航天专题突破五天体运动中的三大难点-高考物理一轮复习讲义
专题突破五 天体运动中的三大难点命题点一 近地卫星、同步卫星与赤道上的物体的比较分析1.解决同步卫星问题的“四点”注意(1)基本关系:G Mm r 2=ma n =m v 2r =mr ω2=m 4π2T2r .(2)重要手段:构建物理模型,绘制草图辅助分析. (3)物理规律:①不快不慢:具有特定的运行线速度、角速度和周期. ②不高不低:具有特定的位置高度和轨道半径.③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上. (4)重要条件:①地球的公转周期为1年,其自转周期为1天(24小时),地球表面半径约为6.4×103km ,表面重力加速度g 约为9.8m/s 2.②月球的公转周期约27.3天,在一般估算中常取27天.③人造地球卫星的运行半径最小为r =6.4×103km ,运行周期最小为T ≈84min,运行速度最大为v =7.9km/s. 2.两个向心加速度例1 (多选)同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2.第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )A.a 1a 2=r RB.a 1a 2=(R r)2C.v 1v 2=r RD.v 1v 2=R r答案 AD解析 万有引力提供向心力,有G Mm r 2=m v 2r ,故v 1v 2=Rr,故选项D 正确;对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,有a =ω2r ,故a 1a 2=r R,故选项A 正确. 变式1 (2018·前黄中学检测)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动,b 是近地轨道卫星,c 是地球同步卫星,d 是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图1所示,则( )图1A .a 的向心加速度等于重力加速度gB .在相同时间内b 转过的弧长最长C .c 在4小时内转过的圆心角是π6D .d 的运行周期有可能是20小时 答案 B解析 地球同步卫星的角速度与地球自转的角速度相同,则知a 与c 的角速度相同,根据a n =ω2r 知,c 的向心加速度大于a 的向心加速度.由G Mm r 2=ma ,得a =GM r2,可知卫星的轨道半径越大,向心加速度越小,则地球同步卫星c 的向心加速度小于b 的向心加速度,而b 的向心加速度等于重力加速度g ,故a 的向心加速度小于重力加速度g ,故A 错误;由G Mm r 2=m v 2r,得v =GMr,则知卫星的轨道半径越大,线速度越小,所以b 的线速度最大,在相同时间内转过的弧长最长,故B 正确;c 是地球同步卫星,周期是24h ,则c 在4h 内转过的圆心角是4h24h ×2π=π3,故C 错误;由开普勒第三定律R3T2=k 知,卫星的轨道半径越大,周期越大,所以d 的运行周期大于c 的周期24h ,故D 错误.变式2 (多选)(2018·高邮市期初)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.如图2所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )图2A .卫星a 的速度小于卫星c 的速度B .卫星a 的加速度大于卫星b 的加速度C .卫星b 的线速度大于赤道上的物体随地球自转的线速度D .卫星b 的周期小于卫星c 的周期 答案 AC解析 由万有引力提供向心力,得:G Mm r 2=mv 2r ,则:v =GMr,由题图知卫星a 的轨道半径大于卫星c 的轨道半径,所以卫星a 的速度小于卫星c 的速度,故A 正确;由万有引力提供向心力,得G Mm r 2=ma n ,则a n =GMr 2,由题图知卫星a 与卫星b 的轨道半径相等,所以向心加速度大小也相等,故B 错误;卫星a 的周期为24 h ,卫星b 与卫星a 的轨道半径相同,故周期相同,则卫星b 的周期为24 h ,所以卫星b 与赤道上随地球自转的物体的周期是相等的;根据v =2πr T可知,轨道半径大的卫星b 的线速度大于赤道上物体随地球自转的线速度,故C正确;由万有引力提供向心力得G Mm r 2=mr 4π2T 2,则:T =2πr 3GM,由题图知卫星b 的半径大于卫星c 的半径,所以卫星b 的周期大于卫星c 的周期,故D 错误.命题点二 卫星变轨问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图3所示.图3(1)在A 点点火加速,由于速度变大,G Mm r 2<m v 2r,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ.在B 点(远地点)再次点火加速进入圆形轨道Ⅲ.(2)当卫星的速率突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时增大,卫星的发射和回收就是利用这一原理. 2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B ,在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k ,可知T 1<T 2<T 3.3.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大.例2 (多选)(2018·南通等六市一调)我国“天宫一号”飞行器已完成了所有任务,已于2018年4月2日坠入大气层后烧毁.如图4所示,设“天宫一号”原来在圆轨道Ⅰ上飞行,到达P 点时转移到较低的椭圆轨道Ⅱ上(未进入大气层),则“天宫一号”( )图4A .在P 点减速进入轨道ⅡB .在轨道Ⅰ上运动的周期大于在轨道Ⅱ上运动的周期C .在轨道Ⅰ上的加速度大于在轨道Ⅱ上的加速度D .在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能 答案 ABD解析 在P 点减速,万有引力大于需要的向心力,“天宫一号”做近心运动进入轨道Ⅱ,故A 正确;根据开普勒第三定律:R 13T 12=R 23T 22,且轨道Ⅰ半径大于在轨道Ⅱ的半长轴,所以在轨道Ⅰ上运动的周期大于在轨道Ⅱ上运动的周期,故B 正确;根据万有引力提供向心力:G Mmr2=ma n ,解得:a n =G M r2,可知在轨道Ⅰ上的加速度小于在轨道Ⅱ上的加速度,故C 错误;在轨道Ⅰ上P 点的动能大于在轨道Ⅱ上P 点的动能,在P 点由轨道Ⅰ转移到轨道Ⅱ时,需对飞行器做负功,故在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能,故D 正确.变式3 (多选)2016年10月19日,“神舟十一号”与“天宫二号”成功实现交会对接.如图5所示,交会对接前“神舟十一号”飞船先在较低圆轨道1上运动,在适当位置经变轨与在圆轨道2上运动的“天宫二号”对接.M 、Q 两点在轨道1上,P 点在轨道2上,三点连线过地球球心,把飞船的加速过程简化为只做一次短时加速.下列关于“神舟十一号”变轨过程的描述正确的有( )图5A .“神舟十一号”在M 点加速,可以在P 点与“天宫二号”相遇B .“神舟十一号”在M 点经一次加速,即可变轨到轨道2C .“神舟十一号”经变轨后速度总大于变轨前的速度D .“神舟十一号”变轨后的运行周期大于变轨前的运行周期 答案 AD解析 “神舟十一号”与“天宫二号”对接,需要“神舟十一号”提升轨道,即“神舟十一号”开动发动机加速做离心运动,使轨道高度与“天宫二号”轨道高度相同实现对接,故“神舟十一号”在M 点加速,可以在P 点与“天宫二号”相遇,故选项A 正确;卫星绕地球做圆周运动,向心力由万有引力提供,故由G Mm r 2=m v 2r ,解得线速度v =GMr,所以卫星轨道高度越大,线速度越小,“神舟十一号”在轨道2的速度小于在轨道1的速度,所以在M 点经一次加速后,到P 点后再减速一次,才可变轨到轨道2,故选项B 、C 错误;根据G Mm r 2=m 4π2rT2,解得周期T =2πr 3GM,可知轨道高度越大,周期越大,所以“神舟十一号”变轨后的运行周期大于变轨前的运行周期,故选项D 正确.变式4 (多选)(2018·苏州市模拟)“信使号”探测器围绕水星运行了近4年,在“信使号”水星探测器陨落水星表面之前,工程师通过向后释放推进系统中的高压氦气来提升轨道,使其寿命再延长一个月,如图6所示,释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ,忽略探测器在椭圆轨道上所受阻力.则下列说法正确的是( )图6A .探测器在轨道Ⅱ的运行周期比在轨道Ⅰ的大B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率C .探测器在轨道Ⅰ和轨道Ⅱ上经过E 处时加速度相同D .探测器在轨道Ⅱ上远离水星过程中,势能和动能均增大 答案 ABC解析 根据开普勒第三定律知,r 3T2=k ,轨道Ⅱ的半长轴大于轨道Ⅰ的半径,则探测器在轨道Ⅱ的运行周期比在轨道Ⅰ的大,故A 正确.在轨道Ⅱ上E 点的速度大于在轨道Ⅰ上经过E 点时的速度,由于远离水星的过程中,速度减小,探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率,故B 正确.根据万有引力定律知,在不同轨道的E 点,所受的万有引力相等,根据牛顿第二定律知加速度相同,故C 正确.探测器在轨道Ⅱ上远离水星过程中,高度升高,势能增大,万有引力做负功,动能减小,故D 错误.命题点三 双星模型1.双星模拟定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图7所示.图72.双星模拟特点:(1)各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. (5)双星的运动周期T =2πL 3G (m 1+m 2)(6)双星的总质量 m 1+m 2=4π2L3T 2G例3 (多选)(2018·泰州中学月考)2016年2月11日,科学家宣布“激光干涉引力波天文台(LIGO)”探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图8所示,黑洞A 、B 可视为质点,它们围绕连线上O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响.下列说法正确的是( )图8A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越大 答案 BD解析 双星靠相互间的万有引力提供向心力,根据牛顿第三定律可知,黑洞A 对黑洞B 的作用力与黑洞B 对黑洞A 的作用力大小相等,方向相反,则黑洞A 的向心力等于B 的向心力,故A 错误;双星靠相互间的万有引力提供向心力,具有相同的角速度,由题图可知黑洞A 的半径比较大,根据v =ωr 可知,黑洞A 的线速度大于B 的线速度,故B 正确;在匀速转动时的向心力大小关系为:m A ω2r A =m B ω2r B ,由于A 的半径比较大,所以黑洞A 的质量小,故C 错误;双星系统的周期公式为:T =4π2L3G (m A +m B ),所以两黑洞之间的距离越大,A 的周期越大,故D 正确.变式5 2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预言,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.其实,孤立的恒星与一颗行星组成的系统就是一个双星系统.如图9所示,恒星a 、行星b 在万有引力作用下,绕连线上一点O 以相同的周期做匀速圆周运动.现测得行星b 做圆周运动的半径为r b ,运动的周期为T ,a 、b 的距离为l ,已知万有引力常量为G ,则( )图9A .恒星a 的质量为4π2r b3GT2B .恒星a 与行星b 的总质量为4π2l 3GT2C .恒星a 与行星b 的质量之比为l -r br bD .恒星a 的运动可以等效于绕静止在O 点、质量为4π2r b3GT2的天体做半径为l -r b 的圆周运动答案 B解析 由题意可知,a 和b 到O 点的距离分别为l -r b 和r b ,设两星质量分别为M 1和M 2,由万有引力定律和牛顿第二定律及几何条件可得: 对M 1:GM 1M 2l 2=M 1⎝ ⎛⎭⎪⎫2πT 2(l -r b ),即M 2=4π2l 2(l -r b )GT2; 对M 2:GM 1M 2l 2=M 2⎝ ⎛⎭⎪⎫2πT 2r b ,即M 1=4π2l 2r bGT2; 则恒星a 与行星b 的总质量为 M 1+M 2=4π2l 2GT 2(l -r b +r b )=4π2l 3GT2.恒星a 与行星b 的质量之比为M 1M 2=r bl -r b恒星a 的运动可以等效于绕静止在O 点、质量为M 的天体做半径为(l -r b )的圆周运动,由万有引力定律和牛顿第二定律得GMM 1(l -r b )2=M 1(2πT )2(l -r b ),即M =4π2(l -r b )3GT 2综上所述,选项B 正确,A 、C 、D 错误.1.(2018·南京市期中)2016年8月16日1时40分,我国在酒泉卫星发射中心用“长征二号”运载火箭成功将世界首颗量子科学实验卫星“墨子号”发射升空,在世界上首次实现卫星和地面之间的量子通信.量子科学实验卫星“墨子号”由火箭发射至高度为500km 的预定圆形轨道.2016年6月在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7.G7属于地球静止轨道卫星(高度为36000km),它使北斗系统的可靠性进一步提高.关于卫星,以下说法中正确的是( )A .这两颗卫星的运行速度可能大于7.9km/sB .量子科学实验卫星“墨子号”的向心加速度比北斗G7大C .量子科学实验卫星“墨子号”的周期比北斗G7大D .通过地面控制可以将北斗G7定点于南京市的正上方 答案 B2.(多选)(2018·盐城中学质检)如图10,我国“探月工程”在2018年12月8日成功发射“嫦娥四号”卫星,卫星由地面发射后,进入地月转移轨道,经多次变轨后进入圆形工作轨道Ⅲ,并将最终实现人类探测器在月球背面的首次软着陆,下列说法错误的是( )图10A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度大B .卫星在轨道Ⅲ上经过P 点时的加速度比在轨道Ⅰ上经过P 点时的加速度小C .卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短D .卫星在轨道Ⅳ上的机械能比在轨道Ⅱ上大 答案 ABD3.(多选)(2018·南京市、盐城市二模)某试验卫星在地球赤道平面内一圆形轨道上运行,每5天对某城市访问一次(即经过其正上方),下列关于该卫星的描述中正确的是( ) A .角速度可能大于地球自转角速度 B .线速度可能大于第一宇宙速度 C .高度一定小于同步卫星的高度 D .向心加速度一定小于地面的重力加速度 答案 AD解析 设卫星的运行周期为T ,地球自转的周期为T 0,则有2πT ×5T 0=2πT 0×5T 0+2π,或者2πT×5T 0+2π=2πT 0×5T 0,可得卫星的周期T =56T 0或者T =54T 0,卫星的角速度ω=2πT ,所以卫星的角速度可能大于地球自转角速度,也可能小于地球自转角速度,A 正确;由于第一宇宙速度是最大环绕速度,所以所有卫星的线速度小于等于第一宇宙速度,B 错误;由万有引力提供向心力可得,周期T =4π2r3GM,故卫星的高度越高,周期越大,由A 选项解析可知,卫星的周期可能大于也可能小于同步卫星的周期,所以卫星的高度可能大于也可能小于同步卫星的高度,C 错误;根据牛顿第二定律GMm r 2=ma ,向心加速度a =GMr2,卫星的高度高于地面,所以其向心加速度小于地面的重力加速度,D 正确.4.(多选)(2018·如东县调研)研究表明,地球自转周期在逐渐改变,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,且地球的质量、半径都不变,则经过若干亿年后( )A .近地卫星的向心加速度比现在大B .近地卫星的运行周期与现在相等C .同步卫星的向心加速度比现在小D .同步卫星的运行速度比现在大 答案 BC解析 对近地卫星,根据万有引力提供向心力G MmR 2=ma 近知,向心加速度a 近=GM R2,由于地球的质量和半径都不变,故近地卫星的向心加速度大小不变,故A 错误;根据万有引力提供向心力G Mm R 2=m 4π2RT2知,近地卫星的运行周期T =4π2R3GM,由于地球的质量、半径不变,故近地卫星的周期不变,故B 正确;万有引力提供同步卫星做圆周运动的向心力,有F =G Mm r 2=m 4π2r T 2=m v 2r =ma 同,则r =3GMT 24π2,v =GM r ,a 同=GMr2,由于地球自转周期变大,故同步卫星的轨道半径r 变大,则同步卫星的向心加速度和运行速度都变小,故C 正确,D 错误.5.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起.如图11所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图11A .质量之比m A ∶mB =2∶1 B .角速度之比ωA ∶ωB =1∶2C .线速度大小之比v A ∶v B =2∶1D.向心力大小之比F A∶F B=2∶1答案 A解析双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,F=m Aω2r A=m Bω2r B,因为轨道半径之比r A∶r B=1∶2,所以质量之比m A∶m B =2∶1,选项A正确,B、D错误;由线速度v=ωr可知,线速度大小之比为v A∶v B=1∶2,选项C错误.1.(2018·南京市三模)如图1,“天宫一号”目标飞行器运行在平均高度约362千米的圆轨道上.在北京航天飞控中心监控下,已于2018年4月2日8时15分左右再入大气层烧毁,完成使命.关于“天宫一号”,下列说法正确的是( )图1A.在轨运行的周期比月球绕地球的周期长B.在轨运行的加速度比地面处重力加速度大C.在轨运行的速度比第一宇宙速度小D.进入大气层后,速度增大,机械能增大答案 C2.(多选)(2018·常州市一模)2017年9月25日,微信启动页“变脸”:由此前美国卫星拍摄地球的静态图换成了我国“风云四号”卫星拍摄地球的动态图,如图2所示.“风云四号”是一颗静止轨道卫星,关于“风云四号”,下列说法正确的有( )图2A.能全天候监测同一地区B.运行速度大于第一宇宙速度C.在相同时间内该卫星与地心连线扫过的面积相等D.向心加速度大于地球表面的重力加速度答案AC解析 由于是同步卫星,故相对地面静止,能全天候监测同一地区,故A 正确;由万有引力提供向心力,得G Mm r 2=m v 2r ,解得:v =GM r,而第一宇宙速度是近地卫星的最大环绕速度,故同步卫星的速度小于第一宇宙速度,故B 错误;根据开普勒第二定律,在相同时间内该卫星与地心连线扫过的面积相等,故C 正确;向心加速度由万有引力产生,故a n =GM r 2,而地球表面的重力加速度g =GM R2,由于r >R ,故该卫星的向心加速度小于地球表面的重力加速度,故D 错误.3.(多选)(2018·江苏省一模)2017年12月26日03时44分,我国成功将“遥感三十号”03组卫星发射升空,并进入高度约为500km 的预定轨道.下列有关说法中正确的是( )A .该卫星的发射速度一定等于7.9km/sB .该卫星的周期一定小于24hC .该卫星的速率一定大于同步卫星的速率D .相同时间内该卫星与地球的连线扫过的面积一定等于同步卫星与地球的连线扫过的面积 答案 BC解析 7.9 km/s 是最小的发射速度,“遥感三十号”03组卫星的发射速度一定大于7.9 km/s ,故A 错误;“遥感三十号”03组卫星的高度约为500 km ,其轨道半径小于同步卫星的轨道半径,同步卫星的周期为24 h ,根据开普勒第三定律r 3T2=k 可知该卫星的周期一定小于24 h ,故B 正确;根据万有引力提供向心力可得v =GM r,所以该卫星的速率一定大于同步卫星的速率,故C 正确;面积定律指的是同一颗天体与中心天体连线在相同时间内扫过的面积相等,所以相同时间内该卫星与地球的连线扫过的面积不一定等于同步卫星与地球的连线扫过的面积,故D 错误.4.(多选)(2018·江苏百校12月大联考) 2017年6月15日11时00分,中国在酒泉卫星发射中心采用“长征四号”乙运载火箭,成功发射首颗X 射线空间天文卫星“慧眼”,并在GW170817引力波事件发生时成功监测了引力波源所在的天区.已知“慧眼”在距离地面 550km 的圆轨道上运动,则其( )A .线速度介于第一宇宙速度和第二宇宙速度之间B .运行周期小于同步卫星的运行周期C .角速度小于近地卫星的角速度D .向心加速度小于静止在地球赤道上某一物体的向心加速度答案 BC5.(多选)(2018·镇江市模拟)如图3所示是北斗导航系统中部分卫星的轨道示意图,已知P 、Q、M三颗卫星均做匀速圆周运动,其中P是地球同步卫星,则( )图3A.卫星P、M的角速度ωP<ωMB.卫星Q、M的加速度a Q>a MC.卫星P、Q的机械能一定相等D.卫星Q不可能相对地面静止答案AD6.(2018·盐城中学最后一卷)2017年9月,我国控制“天舟一号”飞船离轨,使它进入大气层烧毁,残骸坠入南太平洋一处号称“航天器坟场”的远离大陆的深海区,在受控坠落前,“天舟一号”在距离地面380km的圆轨道上飞行,则下列说法中正确的是( )A.在轨运行时,“天舟一号”的线速度大于第一宇宙速度B.在轨运行时,“天舟一号”的角速度小于同步卫星的角速度C.受控坠落时,应通过“反推”实现制动离轨D.“天舟一号”离轨后,在进入大气层前,运行速度不断减小答案 C解析第一宇宙速度是环绕地球运动的卫星的最大速度,则“天舟一号”在轨运行时的线速度小于第一宇宙速度,选项A错误;“天舟一号”在轨运行时的运转半径小于同步卫星的运转半径,根据角速度ω=GMr3可知,其角速度大于同步卫星的角速度,选项B错误;受控坠落时要先调头,让原本朝后的推进器向前点火,通过反推实现制动,故C正确;“天舟一号”离轨后,在进入大气层前,运行半径逐渐减小,地球的引力做正功,则运行速度不断增大,D错误.7.(多选)(2018·南京市学情调研)如图4所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )图4A.不论在轨道1还是轨道2运行,卫星在P点的机械能相同B.不论在轨道1还是轨道2运行,卫星在P点的向心加速度相同C.卫星在轨道1的任何位置都具有相同的加速度D.卫星经过P点时,在轨道2的速度大于在轨道1的速度答案BD8.(2018·泰州中学月考)2012年6月16日,刘旺、景海鹏、刘洋三名宇航员搭乘“神舟九号”飞船飞向太空,6月24日执行手动载人交会对接任务后,于29日10时03分乘返回舱安全返回.返回舱在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图5所示.关于返回舱的运动,下列说法中正确的有( )图5A.正常运行时,在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度B.在轨道Ⅱ上经过A的速率大于在轨道Ⅰ上经过A的速率C.在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.在同一轨道Ⅱ上经过A的速率小于经过B的速率答案 D9.(多选)(2018·如皋市调研)我国“神舟十一号”载人飞船于2016年10月17日7时30分发射成功.飞船先沿椭圆轨道飞行,在接近400km高空处与“天宫二号”对接,然后做圆周运动.两名宇航员在空间实验室生活、工作了30天.“神舟十一号”载人飞船于11月17日12时41分与“天宫二号”成功实施分离,如图6所示,11月18日顺利返回至着陆场.下列判断正确的是( )图6A.飞船变轨前后的机械能守恒B.对接后飞船在圆轨道上运动的速度小于第一宇宙速度C.宇航员在空间实验室内可以利用跑步机跑步来锻炼身体D.分离后飞船在原轨道上通过减速运动逐渐接近地球表面答案BD解析 每次变轨都需要发动机对飞船做功,故飞船机械能不守恒,故A 错误;根据万有引力提供向心力G Mm r 2=m v 2r ,得v =GM r,故轨道半径越大,线速度越小,第一宇宙速度是近地卫星的最大环绕速度,故对接后飞船在圆轨道上的线速度比第一宇宙速度小,故B 正确;利用跑步机跑步是由于重力作用,人与跑步机之间有压力,又由于有相对运动,人受到摩擦力作用运动起来,在空间实验室内,宇航员处于完全失重状态,无法跑步,故C 错误;当飞船要离开圆形轨道返回地球时,飞船做近心运动,万有引力要大于向心力,故要减小速度,故D 正确.10.(多选)(2018·锡山中学月考)“嫦娥一号”探月卫星沿地月转移轨道直奔月球,在距月球表面200km 的P 点进行第一次变轨后被月球捕获,先进入椭圆轨道Ⅰ绕月飞行,如图7所示.之后,卫星在P 点又经过两次变轨,最后在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.对此,下列说法正确的是( )图7A .卫星在轨道Ⅲ上运动到P 点的速度小于在轨道Ⅱ上运动到P 点的速度B .卫星在轨道Ⅰ上运动周期比在轨道Ⅲ上长C .Ⅰ、Ⅱ、Ⅲ三种轨道相比较,卫星在轨道Ⅲ上运行的机械能最小D .卫星在轨道Ⅲ上运动到P 点时的加速度大于沿轨道Ⅰ运动到P 点时的加速度 答案 ABC解析 卫星在轨道Ⅱ上的P 点进入轨道Ⅲ,需减速,可知卫星在轨道Ⅲ上运动到P 点的速度小于在轨道Ⅱ上运动到P 点的速度,故A 正确;根据开普勒第三定律知,a 3T2=k ,轨道Ⅰ的半长轴大于轨道Ⅲ的半径,则卫星在轨道Ⅰ上的周期大于在轨道Ⅲ上的周期,故B 正确;卫星在轨道Ⅰ上的P 点进入轨道Ⅱ,需减速,则机械能减小,在轨道Ⅱ上的P 点进入轨道Ⅲ,需减速,则机械能减小,可知卫星在轨道Ⅲ上的机械能最小,故C 正确;卫星在不同轨道上的P 点,所受的万有引力大小相等,根据牛顿第二定律知,加速度相等,故D 错误.11.(多选)(2018·兴化一中四模)我国的“天链一号”卫星是地球同步卫星,可为中低轨道卫星提供数据通讯,如图8所示为“天链一号”卫星a 、赤道平面内的低轨道卫星b 和地球的位置关系示意图,O 为地心,卫星a 的轨道半径是b 的4倍,已知卫星a 、b 绕地球同向运行,卫星a 的周期为T ,下列说法正确的是( )。
拓展课突破卫星运行问题中的“三个难点”
Rr ,选项 D 正确。
13
A.F1=F2>F3 C.v1=v2=v>v3
B.a1=a2=g>a3 D.ω1=ω3<ω2
14
解析 赤道上物体随地球自转的向心力为万有引力与支持力的合力,近地卫星的向 心力等于万有引力,同步卫星的向心力为同步卫星所在处的万有引力,故有 F1< F2,F2>F3,加速度 a1<a2,a2=g,a3<a2;线速度 v1=ω1R,v3=ω3(R+h),其 中 ω1=ω3,因此 v1<v3,而 v2>v3;角速度 ω=vr,故有 ω1=ω3<ω2,故选项 D 正确。 答案 D
方向
指向地心
垂直且指向地轴
大小
a=GrM2 (地面附近 a 近似等于 g)
a=rω2,r 为地面上某点到地轴 的距离,ω为地球自转的角速度
特点 随卫星到地心的距离的增大而减小
从赤道到两极逐渐减小
10
A.aa12=Rr C.vv12=Rr
B.aa12=Rr 2
D.vv12=
R r
11
【解题指导】
12
4
(4)不同轨道上运行周期 T 不相等。根据开普勒第三定律Tr32=k 知,内侧轨道的周期 小于外侧轨道的周期。图中 TⅠ<TⅡ<TⅢ。 (5)两个不同轨道的“切点”处加速度a相同,图中aⅢ=aⅡB,aⅡA=aⅠ。
5
A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的角速度小于在轨道1上的角速度 C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度 D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度
19
[针对训练3] 两颗卫星在同一轨道平面绕地球做匀速圆周运动, 如图所示,地球半径为R,a卫星离地面的高度等于R,b卫星 离地面高度为3R,则: (1)a、b两卫星周期之比Ta∶Tb是多少? (2)若某时刻两卫星正好同时通过地面同一点的正上方,则a至少经过多少个周期两 卫星相距最远? 解析 (1)设a卫星运行轨道的半径为Ra,b卫星运行轨道的半径为Rb,由题可知, Ra=2R,Rb=4R 由开普勒行星运动规律知RT2a3a=RT2b3b
高考物理总复习 专题 天体运动的三大难点破解2 赤道物体、近地卫星、同步卫星参量比较同步练习
赤道物体、近地卫星、同步卫星参量比较(答题时间:30分钟)1. 2010年1月17日,我国成功发射北斗COMPASS—G1地球同步卫星。
据了解,这已是北斗五星导航系统发射的第三颗地球同步卫星。
则对于这三颗已发射的同步卫星,下列说法中正确的是()A. 它们的运行速度大小相等,且都小于7.9 km/sB. 它们运行周期可能不同C. 它们离地心的距离可能不同D. 它们的向心加速度与静止在赤道上物体的向心加速度大小相等2. 研究表明,地球自转在逐渐改变,3亿年前地球自转的周期约为22小时。
假设这种趋势会持续下去,且地球的质量、半径都不变,若干年后()A. 近地卫星(以地球半径为轨道半径)的运行速度比现在大B. 近地卫星(以地球半径为轨道半径)的向心加速度比现在小C. 同步卫星的运行速度比现在小D. 同步卫星的向心加速度与现在相同3. 我国在轨运行的气象卫星有两类,一类是极地轨道卫星——风云1号,绕地球做匀速圆周运动的周期为12h,另一类是地球同步轨道卫星——风云2号,运行周期为24 h。
下列说法正确的是()A. 风云1号的线速度大于风云2号的线速度B. 风云1号的向心加速度大于风云2号的向心加速度C. 风云1号的发射速度大于风云2号的发射速度D. 风云1号、风云2号相对地面均静止4. 同步卫星是指相对于地面不动的人造卫星。
关于同步卫星,下列说法正确的是()A. 它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同的值B. 它只能在赤道的正上方,且离地心的距离是一定的C. 它的轨道根据需要可以是圆轨道,也可能是椭圆轨道D. 不同的同步卫星加速度大小也不相同5. 同步卫星离地球球心距离为r,加速度为a1,运行速率为v1;地球赤道上物体随地球自转的向心加速度为a2,运行速率为v2,地球半径为R.。
则()A. B. C. D.6. 同步卫星离地球球心的距离为r,运行速率为v1,加速度大小为a1,地球赤道上的物体随地球自转的向心加速度大小为a2,第一宇宙速度为v2,地球半径为R。
高中物理专题练习专题剖析卫星运动问题中的“两大难点1
专题四 剖析卫星运动问题中的“两大难点”难点一 近地卫星、赤道上物体及同步卫星的运行问题近地卫星、同步卫星和赤道上随地球自转的物体的三种匀速圆周运动的比较(1)轨道半径:近地卫星与赤道上物体的轨道半径相同,同步卫星的轨道半径较大,即r 同>r 近=r 物.(2)运行周期:同步卫星与赤道上物体的运行周期相同.由T =2πr 3GM 可知,近地卫星的周期要小于同步卫星的周期,即T 近<T 同=T 物.(3)向心加速度:由G Mm r 2=ma 知,同步卫星的加速度小于近地卫星的加速度.由a =rω2=r ⎝ ⎛⎭⎪⎫2πT 2知,同步卫星的加速度大于赤道上物体的加速度,即a 近>a 同>a 物.(4)动力学规律:近地卫星和同步卫星都只受万有引力作用,由万有引力充当向心力,满足万有引力充当向心力所决定的天体运行规律.赤道上的物体由万有引力和地面支持力的合力充当向心力(或者说由万有引力的分力充当向心力),它的运动规律不同于卫星的运动规律.【典例1】 地球赤道上有一物体随地球的自转,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略),所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球的同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3;地球表面的重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则( ).A .F 1=F 2>F 3B .a 1=a 2=g >a 3C .v 1=v 2=v >v 3D .ω1=ω3<ω2解析 地球同步卫星的运动周期与地球自转周期相同,角速度相同,即ω1=ω3,根据关系式v =ωr 和a =ω2r 可知,v 1<v 3,a 1<a 3;人造卫星和地球同步卫星都围绕地球转动,它们受到的地球的引力提供向心力,即G Mm r 2=mω2r =m v 2r =ma 可得v = GM r ,a =G M r 2,ω= GMr 3,可见,轨道半径大的线速度、向心加速度和角速度均小,即v 2>v 3,a 2>a 3,ω2>ω3;绕地球表面附近做圆周运动的人造卫星(高度忽略)的线速度就是第一宇宙速度,即v 2=v ,其向心加速度等于重力加速度,即a 2=g ;所以v =v 2>v 3>v 1,g =a 2>a 3>a 1,ω2>ω3=ω1,又因为F =ma ,所以F 2>F 3>F 1.由以上分析可见,选项A 、B 、C 错误,D 正确. 答案 D图1即学即练1 如图1所示,a 是地球赤道上的一点,t =0时刻在a 的正上空有b 、c 、d 三颗轨道均位于赤道平面的地球卫星,这些卫星绕地球做匀速圆周运动的运行方向均与地球自转方向(顺时针转动)相同,其中c 是地球同步卫星.设卫星b 绕地球运行的周期为T ,则在t =14T 时刻这些卫星相对a 的位置最接近实际的是( ).解析 a 是地球赤道上的一点,c 是地球同步卫星,则c 始终在a 的正上方;由G Mm r 2=m 4π2T 2r ,得T =4π2r 3GM ,故r 越大,T 越大,则b 比d 超前,选项C正确.答案 C难点二 卫星的变轨问题1.卫星变轨的原因(1)由于对接引起的变轨(2)由于空气阻力引起的变轨2.卫星变轨的实质(1)当卫星的速度突然增加时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr 可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GM r 可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.【典例2】 (2013·新课标全国卷Ⅰ,20)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( ).A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 解析 本题虽为天体运动问题,但题中特别指出存在稀薄大气,所以应从变轨角度入手.第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =m v 2r 减小,做向心运动,向心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.答案 BC图2即学即练2 如图2所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( ).A .该卫星在P 点的速度大于7.9 km/s ,小于11.2 km/sB .卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度D .卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ解析 由于P 点在椭圆轨道的近地点,故A 正确;环绕地球做圆周运动的人造卫星,最大的运行速度是7.9 km/s ,故B 错误;P 点比Q 点离地球近些,故在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度,C 正确;卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ,故D 正确.答案 ACD即学即练3 (2013·新课标全国卷Ⅱ,20)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ).A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小解析 卫星运转过程中,地球的引力提供向心力,G Mm r 2=m v 2r ,受稀薄气体阻力的作用时,轨道半径逐渐变小,地球的引力对卫星做正功,势能逐渐减小,动能逐渐变大,由于气体阻力做负功,卫星的机械能减小,选项B 、D 正确.答案 BD。
鉴睛市睡睬学校高考物理总复习 天体运动的三大难点破解1 深剖析卫星的变轨讲义
督龄州鉴睛市睡睬学校深度剖析卫星的变轨一、考点突破:重点:1. 卫星变轨原理;2. 不同轨道上速度和加速度的大小关系。
难点:理解变轨前后的能量变化。
一、变轨原理卫星在运动过程中,受到的合外力为万有引力,F 引=2R Mm G 。
卫星在运动过程中所需要的向心力为:F 向=R mv 2。
当:(1)F 引= F 向时,卫星做圆周运动;(2)F 引> F 向时,卫星做近心运动;(3)F 引<F 向时,卫星做离心运动。
二、变轨过程1. 反射变轨在1轨道上A 点向前喷气(瞬间),速度增大,所需向心力增大,万有引力不足,离心运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B 点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B 点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。
2. 回收变轨在B 点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A 点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。
三、卫星变轨中的能量问题1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。
2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。
注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。
变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。
3. 卫星变轨中的切点问题【误区点拨】近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。
例题1 如图所示,发射同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次点火将其送入同步圆轨道3。
轨道1、2相切于P 点,2、3相切于Q 点。
当卫星分别在1、2、3上正常运行时,以下说法正确的是( )A. 在轨道3上的速率大于1上的速率B. 在轨道3上的角速度小于1上的角速度C. 在轨道2上经过Q 点时的速率等于在轨道3上经过Q 点时的速率D. 在轨道1上经过P 点时的加速度等于在轨道2上经过P 点时的加速度思路分析:对卫星来说,万有引力提供向心力,222GMm v m mr ma r r ω===,得v =3r GM =ω,2r GMa =,而13r r >,即31v v <,31ωω<,A 不对,B 对。
必修2 第四章 专题突破 天体运动中的“三大难点”
考向 变轨前、后各物理量的比较
1.航天器变轨问题的三点注意事项
(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v= 判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
C.该卫星与同步卫星的运行半径之比为1∶4
D.该卫星的机械能一定大于同步卫星的机械能
解析极地卫星从北纬60°转到南纬60°用时1小时,旋转一个周期用时为3小时,根据开普勒第三定律可知 = ,可得 = ,选项C正确;7.9 km/s是地面近地卫星绕地球做匀速圆周运动的速度,由v= 可知,极地卫星的运行速度一定小于7.9 km/s,选项A错误;由ω= ,得 = ,选项B错误;由于极地轨道卫星质量未知,无法比较机械能的大小,选项D错误。
答案C
2.(多选)(2018·河北衡水中学调研)如图4所示,卫星1为地球同步卫星,卫星2是周期为3 h的极地卫星,只考虑地球引力,不考虑其他作用的影响,卫星1和卫星2均绕地球做匀速圆周运动,两轨道平面相互垂直,运动过程中卫星1和卫星2有时可处于地球赤道上某一点的正上方。下列说法中正确的是()
图4
A.卫星1和卫星2的向心加速度之比为1∶16
a1>a2>a3
【例1】(2018·青海西宁三校联考)如图2所示,a为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c为地球的同步卫星。下列关于a、b、c的说法中正确的是()
图2
A.b卫星转动线速度大于7.9 km/s
B.a、b、c做匀速圆周运动的向心加速度大小关系为aa>ab>ac
新课程改革物理专题复习高考高分必备物理天体运动中的三种问题专题研究
物理天体运动中的三种问题专题研究一、近地卫星、同步卫星及赤道上物体的运行问题1.同步卫星和赤道上物体:角速度相同,同步卫星轨道半径大,则线速度大。
2.同步卫星和近地卫星:向心力都是由万有引力提供,是轨道半径不同的两个地球卫星,都满足v =GMr,因此近地卫星的速度大。
3.近地卫星和赤道上物体:做圆周运动的半径相同,由1、2结论可知,近地卫星的线速度最大。
4.特别注意:赤道上物体的向心力由万有引力和支持力的合力提供,所以G Mmr 2=m v 2r 不适用。
例1 (多选)已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。
设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。
则以下结论正确的是( BCD ) A .v 2v 3=6B .v 1v 3=17C .a 2a 3=49D .a 1a 3=17[解析] 近地卫星和同步卫星都绕地球做匀速圆周运动,根据万有引力提供向心力有G Mmr 2=m v 2r,解得v =GM r ,两卫星的轨道半径之比为1︰7,所以v 2v 3=71,故A 错误;地球赤道上的物体和同步卫星具有相同的周期和角速度,根据v =ωr ,地球的半径与同步卫星的轨道半径之比为1︰7,所以v 1v 3=17,故B 正确;根据万有引力提供向心力得G Mm r 2=ma ,a =GMr 2,两卫星的轨道半径之比为1︰7,则a 2a 3=49,C 正确;同步卫星与随地球自转的物体具有相同的角速度,根据a =rω2,地球的半径与同步卫星的轨道半径之比为1︰7,所以a 1a 3=17,故D正确。
方法总结:卫星与赤道上物体运行问题解题技巧同步卫星是近地卫星与赤道上物体的联系桥梁,同步卫星与近地卫星符合相同规律,轨道半径越大,周期T 越大,线速度v ,角速度ω,向心加速度a n 越小;同步卫星与赤道上物体有相同的角速度ω和周期T 。
高考物理一轮复习讲义天体运动专题(二)卫星运行参量的分析近地卫星与赤道上物体的比较
卫星运行参量的分析、近地、同步卫星与赤道上物体的比较一、卫星运行参量与轨道半径的关系1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2= ⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢)3.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .4.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关. 5.所有轨道平面一定通过地球的球心。
如右上图 6.同步卫星的六个“一定”二、宇宙速度1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R ,得v 1=GMR=错误!m/s≈7.9×103 m/s. 方法二:由mg =m v 12R 得v 1=gR =9.8×6.4×106m/s≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s≈5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.三、近地卫星、同步卫星及赤道上物体的运行问题1.如图所示,a 为近地卫星,半径为r 1;b 为地球同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。
专题:天体运动的三大难点破解2 赤道物体、近地卫星、同步卫星参量比较(讲义)
专题:天体运动的三大难点破解2 赤道物体、近地卫星、同步卫星参量比较(讲义)近地卫星与赤道物体的轨道半径近似相同,都是R 0,半径大小关系为:赤近同r r r =>; 2. 向心力不同同步卫星和近地卫星绕地球运行的向心力完全由地球对它们的万有引力来提供,赤道物体的向心力由万有引力的一个分力来提供,万有引力的另一个分力提供赤道物体的重力; 3. 向心加速度不同由ma r Mm G =2得:2rGMa =,又近同r r >,所以:近同a a <;由maT mr =224π得:r Ta 224π=,又赤同r r >,所以:赤同a a >;向心加速度的大小关系为:赤同近a a a >>;4. 周期不同近地卫星的周期由2204Tm R m g π=得:==gR T 02πmin 84;同步卫星和赤道物体的周期都为24h ,周期的大小关系为:近赤同T T T >=; 5. 线速度不同由r m r Mm G 22υ=得:rGM =υ,又近同r r >,所以:近同υυ<;由Trπυ2=和赤同r r >得:赤同υυ>,故线速度的大小关系为:赤同近υυυ>>; 6. 角速度不同由22ωmr r Mm G =得:3rGM =ω,又近同r r >,所以:近同ωω<;由赤同T T =得:赤同ωω=,从而角速度的大小关系为:近赤同ωωω<=。
例题1 地球赤道地面上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略)所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3;地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则下列结论正确的是( )A. F 1=F 2>F 3B. a 1=a 2=g >a 3C. v 1=v 2=v >v 3D. ω1=ω3<ω2 思路分析:在赤道上随地球自转的物体所受的向心力由万有引力和支持力的合力提供,即F 1=G 21RMm -F N ,绕地球表面附近做圆周运动的卫星向心力由万有引力提供,F 2=22RGMm ,同步卫星的向心力F 3=23)(h R GMm ,所以F 2>F 1,F 2>F 3,A 错误;地面附近mg =G 2RMm ,F 1<mg ,所以a 1<g ,F 2=mg ,所以a 2=g ,F 3<mg ,所以a 3<g ,即a 1<a 2=g >a 3,B 错误;2R GMm =m Rv2,F 1<2R GMm ,所以v 1<v ,F 2=2R GMm ,所以v 2=v ,F 3<2RGMm ,所以v 3<v ,v 1<v 2=v >v 3,C 错误;地球自转角速度ω=Rv 1,赤道上随地球自转的物体和同步卫星的角速度与地球相同,所以ω1=ω3=ω,ω2=R v,v >v 1,所以ω2>ω,ω1=ω3<ω2,D 正确。
2020高考物理大一轮复习教案设计:教师用书 专题五 天体运动中的“三大难点”
专题五 天体运动中的“三大难点”考点一 近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星和赤道上随地球自转的物体的比较如图所示,a 为近地卫星,半径为r 1;b 为同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。
近地卫星 同步卫星 赤道上随地球自转的物体 向心力 万有引力万有引力万有引力的一个分力轨道半径r 1<r 2r 2>r 3=r 1角速度由GMmr2=mrω2得ω=GMr 3,故ω1>ω2 同步卫星的角速度与地球自转角速度相同,故ω2=ω3ω1>ω2=ω3线速度由GMm r 2=m v 2r得v =GMr,故v 1>v 2 由v =rω得v 2>v 3v 1>v 2>v 3向心加速度 由GMm r 2=ma 得a =GMr2,故a 1>a 2由a =rω2得a 2>a 3 a 1>a 2>a 3GMmr 2=m v 2r对赤道上的物体不适用。
(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”。
1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上。
设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3解析: 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以 v3<v,v1<v2=v>v3,C 错误;地球自转角速度ω= 星的角速度与地球相同,所以ω1=ω3=ω,ω2= 答案:D 例题 2
v ,v>v1,所以ω2>ω,ω1=ω3<ω2,D 正确。 R
v1 ,赤道上随地球自转的物体和同步卫 R
已知地球质量为 M,半径为 R,自转周期为 T,地球同步卫星质量为 m,引力 )
高中物理
赤道物体、近地卫星、同Βιβλιοθήκη 卫星参量比较一、考点突破:
考点 赤道物体、近地 卫星、同步卫星 参量比较 考纲要求 1. 理解赤道物体、近地卫 星、 同步卫星向心力来源; 2. 掌握赤道物体、近地卫 星、 同步卫星参数的比较。 备注 本知识点是难点, 但在高考中属于高频 考点,主要考查赤道物体、近地卫星、 同步卫星参量的大小比较, 同时加强了 三种情况的区别和联系的考查,题型: 选择题。
思路分析:同步卫星的运行速率为 v1= 比为 v1:v2=
GM ,第一宇宙速度为 v2= r1
GM ,两者之 r2
r2 ,所以 A、D 选项错误;由于同步卫星的角速度与地球的自传角速度相 r1
等,所以有:a1:a2=r1w2:r2w2=r/R,所以 B 选项正确。 答案:B
GM GM 、 、 2 r r
GM r3
比较赤道
物体的向心加速度、线速度、角速度的大小。 满分训练:设同步卫星离地心的距离为 r,运行速率为 v1,加速度为 a1;地球赤道上的 物体随地球自转的向心加速度为 a2,第一宇宙速度为 v2,地球的半径为 R,则下列比值正确 的是( A. ) = B. = C. = D. =
二、同步卫星、近地卫星与赤道物体的不同点
1. 轨道半径不同 如图所示,同步卫星的轨道半径 r同 =R0+h,h 为同步卫星离地面的高度,大约为 36000 千 米 , 近 地 卫 星 与 赤 道 物 体 的 轨 道 半 径 近 似 相 同 , 都 是 R0 , 半 径 大 小 关 系 为 :
r同 r近 r赤 ;
r同 r近
, 所以 :
a同 a近
; 由
r赤 ,所以: a同 a 赤 ;向心加速度的大
a同 a 赤 ;
4 2 近地卫星的周期由 mg mR0 T2
5. 线速度不同
得: T
2
R0 84 min ;同步卫星和赤 g
道物体的周期都为 24h,周期的大小关系为: T同
T赤 T近 ;
6. 角速度不同 由G 得: 同
r近 ,所以:同 近 ;由 T同 T赤
赤 ,从而角速度的大小关系为: 同 赤 近 。
例题 1
地球赤道地面上有一物体随地球的自转而做圆周运动,所受的向心力为 F1,向
心加速度为 a1,线速度为 v1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度 忽略)所受的向心力为 F2,向心加速度为 a2,线速度为 v2,角速度为ω2;地球同步卫星所 受的向心力为 F3,向心加速度为 a3,线速度为 v3,角速度为ω3;地球表面重力加速度为 g, 第一宇宙速度为 v,假设三者质量相等,则下列结论正确的是( A. F1=F2>F3 C. v1=v2=v>v3 即 F1 = G B. a1=a2=g>a3 D. ω1=ω3<ω2 )
3
GM GM , B 正 确 。 由 Rh R
3
GMm 4 2 m( R h) ,得 R+h= ( R h) 2 T2
答案:BD
GMT 2 ,即 h= 4 2
GMT 2 -R,A 错误。 4 2
【易错警示】 比较三者的向心加速度、线速度、角速度的大小时一定要区分清楚赤道物体,因为它的 向心力不是万有引力的全部,所以不能由 a
思路分析:在赤道上随地球自转的物体所受的向心力由万有引力和支持力的合力提供,
Mm1 - FN ,绕地球表面附近做圆周运动的卫星向心力由万有引力提供, F2 = R2 GMm3 GMm 2 ,同步卫星的向心力 F3= ,所以 F2>F1,F2>F3,A 错误;地面附近 mg= 2 ( R h) 2 R Mm G 2 ,F1<mg,所以 a1<g,F2=mg,所以 a2=g,F3<mg,所以 a3<g,即 a1<a2=g>a3,B R v2 GMm GMm GMm GMm 错误; = m ,F1< ,所以 v1<v,F2= ,所以 v2=v,F3< ,所 2 2 2 R R R R R2
2 r T
和 r同
Mm 2 GM 由G 2 m 得: , 又 r同 r r r
r近 , 同 近 ; 所以: 由
r赤 得: 同 赤 ,故线速度的大小关系为: 近 同 赤 ;
Mm mr 2 得: 2 r
GM , 又 r同 r3
二、重难点提示:
重点:赤道物体、近地卫星、同步卫星区别和联系。 难点:赤道物体、近地卫星、同步卫星向心力来源。
一、同步卫星、近地卫星与赤道物体的相同点
1. 三者都在绕地轴做匀速圆周运动,向心力都与地球的万有引力有关; 2. 同步卫星与赤道上物体的运行周期相同:T=24h; 3. 近地卫星与赤道上物体的运行轨道半径相同:r=R0(R0 为地球半径) 。
GMm v 2 4 2 mr 。当卫星在地表运行时,F 万= =mg(R 2 R2 r T GMm 为地球半径) ,设同步卫星离地面高度为 h,则 F 万= =F 向=ma 向<mg,所以 C 错 ( R h) 2
速圆周运动,即 F 万=F 向=m 误 , D 正 确 。 由
GMm mv 2 得 , v = ( R h) 2 R h
常量为 G。有关同步卫星,下列表述正确的是( A. 卫星距地面的高度为
3
GMT 2 4 2 Mm R2
B. 卫星的运行速度小于第一宇宙速度 C. 卫星运行时受到的向心力大小为 G
D. 卫星运行的向心加速度小于地球表面的重力加速度 思路分析: 天体运动的基本原理为万有引力提供向心力, 地球的引力使卫星绕地球做匀
2. 向心力不同
同步卫星和近地卫星绕地球运行的向心力完全由地球对它们的万有引力来提供, 赤道物 体的向心力由万有引力的一个分力来提供,万有引力的另一个分力提供赤道物体的重力; 3. 向心加速度不同 由
G
小关系为: a 近 4. 周期不同
4 2 mr ma T2
Mm GM ma 得 : a 2 , 又 2 r r 4 2 r ,又 r同 得: a T2