变压器如何防雷
变压器防雷保护的原理
变压器防雷保护的原理变压器防雷保护的原理主要包括以下几个方面:1. 雷电的形成和特点:雷电是一种高能量、高电压、高电流的自然现象,诱发雷电的主要因素有电荷分离、电场强度、空间倾斜等。
雷电具有爆发性、瞬态性和高频性的特点,可能导致设备损坏、火灾和人员伤亡。
2. 变压器的特点:变压器是电能传输和变换的重要设备,主要由高压线圈、低压线圈和铁芯组成。
当雷电击中变压器时,可能导致线圈绝缘破坏、瞬态电压过高、电涌等问题,从而对设备造成严重损坏。
3. 防雷保护的原则:变压器的防雷保护主要遵循两个原则,一是尽量减小雷电对变压器的直接冲击,二是将雷电产生的过电压和过电流引导到接地或绝缘地。
4. 防雷保护装置:为了实现变压器的防雷保护,通常会采用以下装置:(1)避雷针:避雷针是用于引导雷电放电的导体杆状物,通常安装在变压器上方的高处。
避雷针通过尖端放电,将雷电引导到地面,从而减小雷电直接击中变压器的可能性。
(2)避雷器:避雷器是一种用于限制过电压的装置,主要由外壳、电极和电阻组成。
当过电压到达设定值时,避雷器会自动分流,将过电压引入地线,从而保护变压器不受损。
(3)避雷接地:避雷接地是将过电压引入地线的过程,通常通过铜棒或铜带将避雷器接地。
合理的接地系统可以提供低阻抗路径,将过电压平稳地导入地下,从而降低雷电对变压器的伤害。
(4)电涌保护装置:电涌保护装置主要用于限制过电流,通常通过金属氧化物压敏电阻等元件实现。
当电涌产生时,电涌保护装置会迅速导通,将电涌分流到地线,保护变压器免受电涌损害。
5. 防雷保护系统的建立:为了实现变压器的全面防雷保护,需要建立完整的防雷保护系统。
这个系统包括避雷针、避雷器、避雷接地系统、电涌保护装置等组成,通过合理的布局和接地设计,将雷电产生的过电压和过电流有效地引导到地下。
总结起来,变压器防雷保护的原理是通过引导和限制雷电产生的过电压和过电流,以减小雷电对变压器的直接冲击。
通过合理的布局和接地系统的建立,可以提供低阻抗路径,将雷电平稳地导入地下,从而保护变压器免受雷电的损害。
雷击配电变压器事故分析及防雷措施
雷击配电变压器事故分析及防雷措施变压器是电力系统中很重要的一部分,但是受到一些天气影响变压器也会遭到不同程度的损坏,如何预防变压器雷击问题成了一个难题,本文主要论述了雷击配电变压器事故分析及防雷措施研究。
《变压器》杂志创刊于1964年,是中国电工技术类核心期刊之一,是中国变压器专业唯一国内外公开发行的期刊,是中国机械行业优秀科技期刊和中国科技文章统计源期刊。
1996年起本刊还以光盘版形式出版,2000年起本刊加入国家科技部的Chinainfo数字化期刊群网。
2001年,《变压器》杂志荣获中华人民共和国新闻出版总署颁发的国家级荣誉——“中国期刊方阵双效期刊”标识。
变压器在电力设备中发挥着重要的作用,变压器的安全性关系着电力设备正常运行以及用户的可靠用电。
在实际工作中,变压器极易受到雷击,这就给变压器的正常运行带来较大的影响,只有保证变压器在工作中不受到雷击,或者较少的收到雷击,才能保证变压器的安全运行,以及客户的正常用电。
这是本文关注的重点,同时结合变压器中实际情况,为进一步防止变压器防雷进行阐述。
在夏季,容易出现强对流天气,同时雷电就会常常发生,这就容易导致变压器容易被雷击现象的发生。
一旦受到雷击事故,变压器就容易出现各种问题,这就会对变压器带来很大程度的损坏,严重情况就会导致变压器完全瘫痪,只有重新更换变压器,才能恢复正常工作,这种状况会导致严重的经济损失,影响用户的正常用电。
只有保证配电器变压器的防雷和接地保护,才能确保变压器的安全性,才能进行正常供电。
1 配电变压器防雷保护能力提高的必然性在我国的各个地区都分布着许多的配电变压器,而且配电变压器的种类众多、分布广泛,在管理方面十分不便,因此,在配电器的防雷保护能力方面会存在缺陷,不利于配电器的安全。
另外,有些配电器安置在雷暴发生高频区,极易受到雷电的攻击,不仅使配电器受到安全损坏,而且给配电企业带来了一定的经济损失,对用户的用电安全产生了威胁,对电业发展十分不利。
变压器防雷安全措施
变压器防雷安全措施变压器是电力系统中重要的电气设备,用于变换电能的电压,为各类设备提供稳定的电能。
然而,在雷电活动频繁的地区或季节,变压器容易受到雷电的攻击,造成设备损坏和人员伤害。
因此,为了确保变压器的安全运转,必须采取一系列的防雷措施。
本文将就变压器防雷安全措施展开讨论,以期为用户提供参考。
一、变压器防雷安全现状众所周知,雷电对建筑物和设备造成的破坏是不可低估的。
在变压器防雷危害方面,主要表现为以下几方面:1. 直击破坏:当雷电直接击中变压器,电荷通过设备内部电线电缆等媒介导致设备内部元器件损坏,从而影响设备的使用寿命和性能。
2. 感应破坏:当雷电附近放电时,会在电路中产生一定的感应电流和感应电压,从而影响变压器的性能。
3. 绝缘破坏:在雷电活动过程中,电荷会产生静电场,电场强度高于设备的绝缘强度,从而形成绝缘损坏,影响设备的使用寿命和性能。
二、变压器防雷安全措施1. 绝缘防护绝缘防护是变压器防雷的重要措施。
变压器应选用具有良好绝缘性能的材料,如由石英砂和树脂等材料制作的绝缘支撑。
另外,变压器的绝缘导体应严格符合规范标准,且必须与大地电位隔离。
2. 接地保护接地保护是遏制雷击干扰和低频干扰的有效技术措施。
变压器的导体必须接地保护,以保证设备处于电场均衡状态。
接地保护可以使用“屏蔽接地”或“直接接地”方法。
屏蔽接地是将变压器导体接入屏蔽装置,从而防止电磁波的干扰;而直接接地是将变压器导体直接接入大地,从而达到放电保护的目的。
3. 避雷针保护避雷针是一种用于防止雷击损害的重要设备。
避雷针通常安装在变压器上方,当雷电击中避雷针时,会在避雷针与大地间形成针间电位差,进而将雷电引至大地。
这样就可以防止雷电直接攻击变压器,减少设备的损坏率。
4. 闪络器保护闪络器也是变压器保护的一种重要技术措施。
当雷电产生时,闪络器能够迅速放电,将问题区域的电荷导向大地,从而遏制雷击干扰。
闪络器的选择应符合设备要求,并定期进行检查和维护。
变压器防雷安全措施
02
03
04
定期检查:定 期对变压器进 行防雷检测, 确保防雷设施 完好有效
实时监测:建 立实时监测系 统,及时发现 并处理防雷隐 患
维护保养:定 期对变压器进 行维护保养, 确保防雷设施 正常运行
培训教育:加 强防雷知识培 训,提高员工 防雷意识和技 能
变压器防雷的效果和评估科学化
A
B
C
D
防雷效果:通过安装防 雷装置,降低变压器遭
受雷击的风险
评估科学化:采用科学 的评估方法,如雷电监 测系统、防雷性能测试 等,确保防雷措施的有
效性
建议:定期检查和维护 防雷装置,确保其性能
稳定
提高防雷意识:加强防 雷知识的宣传和培训, 提高相关人员的防雷意
识和应对能力
性能
优化防雷线路布 局,减少雷击风
险
增加防雷接地装 置,提高接地电
阻
定期进行防雷检 测,确保防雷设
施的有效性
变压器防雷的综合效益评估
防雷效果:降低变压器遭受雷击 的风险,提高供电可靠性
社会效益:保障电力供应,提高 居民生活品质和企业生产效率
A
B
C
D
经济效益:减少因雷击导致的设 备损坏和停电损失,降低维修和
04
避雷器维护:定期清洁避雷器表面, 检查避雷器内部结构,更换损坏或老 化的部件
接地电阻的监测
01
接地电阻是变压器防雷安全的 重要指标
02
监测方法:采用接地电阻测试 仪进行测量
03
监测频率:定期进行,如每年 一次或两次
监测结果分析:根据测试结果
04 判断接地电阻是否满足要求,
如不满足,需采取措施改善
的损害。
绝缘保护:提 高变压器的绝 缘性能,防止 雷电对变压器
变压器防雷措施和接地要求
变压器防雷措施和接地要求变压器据不完全统计,年平均雷暴日数在35~45的地区,10kv级配电变压器被雷击损坏率大约占配变总数4%~10%。
损坏的主要原因是变压器装设的避雷器和接地引下线不妥而造成的。
如;①变压器高压侧避雷器利用支架作接地引下线;②变压器中性点、高、低压侧避雷器分别接地;③避雷器未作预防性试验;④接地引下线截面过小及引线过长等。
1.杆上变压器防火维护⑴容量在100kva以上的变压器,高压侧一般采用三个阀型避雷器作保护;50~100kva的变压器,一般采用两个阀型避雷器和一个保护间隙(又称火花或角形间隙),也有采用三个阀型避雷器作保护;50kva以下的变压器,一般采用角形间隙,或两个阀型避雷器和一个角形间隙作保护。
高压两端装设避雷器,能够有效率避免高压两端线路示现时雷电波袭入而损毁变压器。
工程中常在配变10kv高压两端装设fs―10型阀型避雷器高压侧装设避雷器后,避雷器接地线应与变压器外壳及低压侧中性点连接后共同接地,以充分发挥避雷器限压作用和防止逆闪络。
(中性点不接地运行时,在中性点对地加装击穿保护间隙)。
⑵多雷地区的10kv,或y,连结的配电变压器,为避免扰动两端雷电入侵波转换至高压两端损毁变压器的绝缘,以及避免反转换波(指变压器高压侧受雷电,避雷器振动,其接地装置上的电压将通过变压器扰动绕组转换至高压两端的冲击波)损毁变压器的绝缘,在扰动两端宜装设一组扰动阀型避雷器(如fs―0.25型、fs―0.5型)或压敏电阻(如my―400型、my―440型)通在流量10~20ka或打穿保险器。
防火接线如下图;1变压器u10kvvw低、扰动两端避雷器的接线fs-10my―400或fs―0.25变压器外壳380/220vuvw⑶35/0.4kv直配变压器,高压两端和扰动两端均应当装设阀型避雷器。
⑷也可以使用阀型避雷器和火花间隙双重维护。
以避雷器居多,火花间隙为后备维护。
⑸实际施工中,常在配变高压套管的引线与避雷器引线之间绕8~10匝直径为8~10cm的空心线圈。
变压器防雷措施和接地要求
变压器防雷措施和接地要求变压器是电力系统中常见的电气设备,用于将高压输电线路上的电能转换为低压用电电能。
由于变压器经常处于室外环境,特别是在雷电多发的地区,为了保护变压器免受雷击的破坏,需要采取一系列的防雷措施和接地要求。
防雷措施:1.安装避雷针:在变压器周围安装避雷针,将避雷针与变压器的金属外壳等导体相连,形成一个完整的保护系统,将雷击电流导入地下,保护变压器。
2.安装避雷器:在变压器的高压侧和低压侧分别安装避雷器。
避雷器是一种具有特定动作特性的电器元件,当遭受雷击时,能够引导大部分雷电流通过流经避雷器,保护变压器不受雷击损坏。
3.建造避雷亭:在变压器附近设置避雷亭,避雷亭顶部应有良好的避雷装置,接地引流电流,避免雷电直接击中变压器。
4.导线绝缘处理:将高压线路与低压线路之间的导线进行良好的绝缘处理,避免雷电通过导线直接传导到变压器。
接地要求:1.接地装置的种类:变压器的金属外壳和金属部件应与地面接地,接地方式可以采用单点接地或多点接地。
单点接地是将变压器的金属外壳和金属部件通过导线连接到接地极上,而多点接地是将多个接地点均匀分布在变压器周围。
2.地网的设置:变压器接地装置通常需要与地下的大面积金属结构相连接,形成一个地网。
地网需要有足够的面积和导电能力,能够有效地分散雷电流,降低接地电阻。
3.地网的材料选择:地网通常使用铜排或镀锌钢带等优良导电材料制成。
对于要求较高的场所,可以使用无氧铜材料,以提高接地的导电性能。
4.接地系统的检测和维护:定期对变压器的接地系统进行检测和维护,确保接地系统的导电性能良好和可靠,以及及时处理故障。
同时,还应对接地系统进行标识,以便在需要时进行维修和排查故障。
总之,为了保护变压器免受雷击的破坏,需要采取一系列的防雷措施和接地要求。
通过建立良好的防雷装置和接地系统,可以有效地减少雷电对变压器造成的潜在威胁,确保电力系统的安全运行。
变压器的防雷技术
变压器的防雷技术变压器是电力系统中的重要设备,用于将电压进行升降转换。
然而,在雷电天气条件下,变压器很容易受到雷击而造成损坏甚至爆炸。
因此,为了保护变压器的安全运行,必须采取相应的防雷技术。
本文将详细介绍变压器的防雷技术,以期有效预防雷击事件的发生。
1.接地系统的建设接地系统是变压器防雷的基础,通过将变压器的金属部分与地面相连,能够有效地将雷击电流导入地面。
在接地系统的建设上,需要注意以下几点:(1)接地电阻要低:接地电阻是衡量接地系统好坏的重要指标,它越低,能有效地将雷击电流引入地下。
因此,在接地系统的设计中,应尽量减小接地电阻,通过选用合适的接地电极材料和增加接地电极的数量来实现。
(2)接地环形电阻的设置:在变压器的周围设置一条导电性能好的接地环形电阻,能够将雷击电流分散到更大的地面范围内,降低雷电对变压器造成的威胁。
2.雷电防护装置的安装雷电防护装置是变压器防雷的重要手段之一,通过将雷电防护装置与变压器相连接,能够有效地引导并分散雷电电流。
在雷电防护装置的安装上,需要注意以下几点:(1)设置避雷针:将避雷针安装在变压器的高处,能够有效地引导雷电击中避雷针,并通过避雷针上的导线将雷击电流导入地下,减少对变压器的影响。
(2)设置避雷器:在变压器的进出线路上设置避雷器,能够有效地吸收和分散雷电冲击波的能量。
避雷器的选择应根据变压器的额定电压和雷电环境来确定。
3.防雷保护措施的提升除了接地系统和雷电防护装置,还可以采取其他防雷保护措施来进一步提升变压器的防雷能力:(1)设置金属屏蔽罩:在变压器周围设置金属屏蔽罩,能够有效地隔离雷电电场的干扰,减少雷击对变压器的影响。
(2)加装避雷线:将避雷线安装在变压器所在区域的建筑物顶部,能够引导雷电电流迅速传导至地下,减少雷电对变压器的危害。
(3)定期检测和维护:定期对变压器的接地系统、雷电防护装置等进行检测和维护,及时排除存在的隐患,确保防雷措施的有效性。
总结:变压器防雷技术是确保变压器安全运行的重要手段。
2024年配电变压器雷击及预防(3篇)
2024年配电变压器雷击及预防引言:配电变压器作为电力系统中的重要设备,承担着将输送到变电站的高压电能降低到用户所需的低压电能的功能。
然而,由于其在运行过程中处于露天环境中,容易受到雷击的影响,从而导致压变故障和停电事故的发生。
因此,对于配电变压器雷击和预防问题的研究具有重要的理论和实际意义。
一、配电变压器雷击原因分析1.1 气象因素雷电是一种自然现象,其产生与大气的电荷分布、电势差和空间结构有关。
当大气电荷分布不均匀时,会形成局部电荷积聚区,从而产生雷击。
而各地的气象条件不同,对雷电的发生也会有影响。
1.2 变压器结构和位置配电变压器通常是处于露天环境中的,其结构和位置会对雷电的影响造成一定的影响。
例如,在长杆式变压器中,杆塔及其附近的构筑物是雷击的容易目标。
而在箱式变压器中,箱体本身还具有一定的防雷功能。
二、配电变压器雷击后果分析2.1 压变损坏雷电的高电流通过配电变压器,会引起其内部设备的损坏,如绕组短路、线圈烧毁等,造成压变的无法工作。
2.2 系统停电配电变压器的故障会导致电力系统的局部或整体停电。
一旦发生停电,用户的日常生活和工业生产都会受到影响,给社会带来很大的损失。
三、配电变压器雷击预防措施3.1 防雷装置在配电变压器周围设置合适的避雷设施,例如接闪器、耐雷线等,能够引导雷电流从地面引流,减小雷击对变压器的影响。
3.2 地理位置选择选择合适的地理位置来安装配电变压器也是预防雷击的重要因素。
避免安装在雷电活跃区域或者高度地带,尽量选择平坦地区。
3.3 变压器外壳设计设计并制造适合的变压器外壳,使其能够防止雷电直接打击变压器设备。
例如,一些箱式变压器在外壳上设有防雷针,能够吸收和分散雷击带来的电荷。
3.4 维护保养定期对配电变压器进行检查和维护保养,及时更换老化和损坏的部件,确保其正常运行状态。
特别是对于外壳和避雷装置的检查,要保证其完好无损。
四、配电变压器雷击事故处理4.1 维修处理一旦发生雷击事故,及时采取维修措施,更换受损的部件,并进行系统的检修,确保变压器能够正常运行。
变压器防雷安全措施
变压器防雷安全措施变压器是电力系统中的重要设备,用于将电能从一级电压转换到另一级电压。
在使用过程中,变压器需要采取防雷安全措施来保护设备和人员的安全。
本文将介绍一些常用的变压器防雷安全措施。
1.安装避雷针避雷针是常见的防雷设备,可以将雷电释放到大气中,避免对变压器产生危害。
安装避雷针时应遵循相关标准并严格按照施工要求进行安装。
同时,避雷针需要定期检查和维护,确保其有效性。
2.安装避雷网避雷网是一种金属网状结构,用于分散和引导雷电,减少对设备的冲击。
在安装避雷网时,应根据变压器的尺寸和周围环境进行合理布置,将其安装在变压器周围的高地上,以确保最大限度地保护变压器免受雷电侵害。
3.接地系统接地系统是防止雷击的重要组成部分。
变压器应根据相关规范要求建立良好的接地系统,包括变压器本身的接地和周围环境的接地。
接地系统可以将由雷电引起的电流分散到大地中,保护变压器设备和附近的人员。
4.安装避雷器避雷器是一种用于保护电气设备免受雷击的器件。
变压器应安装适当的避雷器,用于吸收和分散由雷电产生的过电压,以防止过电压对变压器产生损害。
5.定期检测和维护定期检测和维护是保证变压器防雷安全措施有效性的重要手段。
定期检查变压器的防雷设备是否完好,并对其进行维护和修复。
同时,定期检测变压器的接地系统是否正常运作,并进行必要的维护。
6.加装避雷装置对于特殊环境下的变压器,如高山、高原等易受雷击的地区,可以考虑加装避雷闪光装置。
这些装置可以通过放电来吸引雷电,并将其分散到大气中,减少对变压器的影响。
7.定期培训和宣传定期培训和宣传对于提高人员对防雷安全措施的认识和理解非常重要。
培训内容可以包括防雷知识、防雷设备的使用和维护等。
同时,应加强对防雷设备的宣传,让人们了解其重要性,并予以合理使用。
综上所述,变压器防雷安全措施是确保变压器设备和人员安全的重要措施。
通过安装避雷针、避雷网、避雷器等设备,并确保良好的接地系统,进行定期检测和维护,加装避雷装置,以及进行培训和宣传等措施,可以有效地防止雷击对变压器产生的危害。
雨天变压器注意事项
雨天变压器注意事项雨天对变压器的影响是很大的,因为变压器是一个非常重要的电力设备,用于将电能从高电压输送到低电压,以供各种用电设备使用。
在雨天中,如果不注意变压器的保护和维护,就可能会出现一系列的问题,甚至会造成设备的故障。
因此,在雨天中,我们需要特别注意以下几点:1. 防水措施:变压器通常放置在室外,容易被雨水浸泡。
为了保护变压器不被雨水破坏,应该为其提供防水罩或防水设备。
这些设备可以防止雨水进入变压器内部,减少水分对设备的损害。
同时,还需要定期检查防水措施是否完好,有无破损,及时更换或修复。
2. 漏电保护:雨天中,场地湿润,地面容易积水。
如果变压器的保护措施不到位,可能会发生漏电现象。
漏电不仅会导致电压不稳定,还会对设备和运行人员产生安全隐患。
因此,在变压器周围需要进行绝缘处理,并安装漏电保护装置,及时切断电源,避免意外事故的发生。
3. 确保通风:变压器在运行过程中会产生一定的热量,如果在雨天没有良好的通风条件,热量难以散发出去,就会导致设备过热甚至损坏。
因此,在变压器周围应该保持适当的通风,确保空气循环,避免设备过热。
4. 检查接地装置:在雨天中,接地装置的重要性更加凸显。
由于地面潮湿,接地装置能够将设备上的漏电流引到地下,确保安全。
因此,我们需要定期检查和维护变压器的接地装置,确保其正常工作。
如果接地装置存在故障或损坏,应及时进行修复或更换,以保证设备的正常运行。
5. 预防雷击:雷击是变压器在雨天中容易遭受的一种灾害。
因此,在雷雨天气中,我们需要加强对变压器的防雷保护。
首先,需要在变压器周围进行良好的接地处理,以消除雷电对设备的影响。
其次,要安装避雷针和避雷网,将雷电引到地下,避免对变压器造成损害。
此外,在雷雨天气中,建议将变压器供电关闭,避免雷击对设备造成损坏。
6. 定期维护:无论是在雨天还是其他天气条件下,定期维护是保证变压器正常运行的重要手段。
定期维护包括清洁设备表面、检查接线端子的紧固情况、查看设备是否有异常故障等等。
箱式变压器防雷保护的措施
箱式变压器防雷保护的措施
箱式变压器是电力系统中常见的设备,为了防止雷击对箱式变压器造成损坏,通常会采取一些防雷保护措施。
以下是针对箱式变压器的防雷保护措施:
1. 接地保护,箱式变压器的金属外壳和引入线路应进行良好的接地,以确保雷击时将电流迅速引入地面,减少对设备的影响。
2. 避雷针,在箱式变压器周围设置避雷针,避雷针可以吸引闪电,将其引入地下,减少对箱式变压器的影响。
3. 避雷带,在箱式变压器周围设置避雷带,避雷带能够分散雷电的能量,减少雷击对设备的伤害。
4. 避雷器,在箱式变压器的进线和出线处安装避雷器,避雷器能够在雷击时迅速引导电流,保护设备不受雷击损害。
5. 电磁屏蔽,在箱式变压器的设计中考虑电磁屏蔽的措施,减少外界电磁干扰对设备的影响,包括雷电引起的干扰。
6. 定期检测,定期对箱式变压器的防雷设施进行检测和维护,确保各项防雷措施的有效性。
以上是针对箱式变压器防雷保护的一些常见措施,综合采取这些措施可以有效地保护箱式变压器免受雷击的损害。
变电站变压器防雷保护
变电站变压器的防雷保护摘要:文章分别对变电站中的三绕组变压器、自耦变压器、配电变压器以及变压器中性点的防雷保护进行了详细的探讨与分析,以供参考。
关键词:变电站变压器防雷保护前言:雷电是不可避免的自然灾害,冲击电流大,放电时间短,感应电压高。
据有关统计资料表明,雷击事故一般占变电站变压器事故总数的3 0 % 以上,并且有逐年上升的趋势。
因此,提高变压器的防雷可靠性迫在眉睫。
为了防止雷电波对配电变压器的侵害,保证配电变压器安全运行,下面将对常见的几种形式的变压器防雷保护进行分析。
1.三绕组变压器的保护当变压器高压侧有雷电波侵入时,通过绕组之间的静电感应和电磁感应,会使低压侧出现过电压。
双绕组变压器在正常运行时,高压侧和低压侧的断路器一般都是闭合的,两侧都有避雷器保护。
所以一侧来波在另一侧感应产生的过电压,不会对绕组绝缘造成损害。
三绕组变压器在正常运行时,可能出现只有高、中压绕组工作而低压绕组开路的情况。
此时,当高压或中压侧有雷电波侵入时,因处于开路状态的低压侧对地电容较小,可能使低压绕组上的感应过电压静电分量达到很高的数值,以致危害低压绕组的绝缘,所以有必要考虑保护问题。
由于静电感应过电压使低压绕组三相电位同时升高,所以只要在任一相绕组出口处对地加装一个避雷器,即可保护三相绕组。
但若变压器低压侧接有25m以上金属外皮电缆时,因其对地电容增大,已足以限制静电感应过电压,故可不必再装避雷器。
三绕组变压器的中压侧虽然也有开路运行的可能,但其绝缘水平较高,所以除了高中压绕组的变比很大的以外,一般都可不必装设限制静电感应过电压的避雷器。
分裂绕组变压器和三绕组变压器类似,在运行中同样可能有一个分支绕组开路,所以也应在每个分支绕组的任一相出口处,装设一个避雷器保护。
2.自耦变压器的保护为了减小系统的零序阻抗和改善电压波形,自耦变压器除了高、中压自耦绕组外,还有一个三角形接线的低压绕组。
在这个低压绕组上同理应装设限制静电感应过电压的避雷器。
变压器及柱上开关的防雷接地
变压器及柱上开关的防雷接地变压器及柱上开关的防雷接地防雷接地是保护电力系统设备及人身安全的重要措施之一。
在电力系统中,变压器和柱上开关是电力配电过程中不可或缺的设备。
因此,变压器和柱上开关的防雷接地尤为重要。
一、变压器的防雷接地变压器是电力系统中不可或缺的电气设备,它起到一个重要的作用,将高电压的输电线路转换成低电压的配电线路。
在实际应用中,变压器的外壳一般都是金属的,并连接着地棒,以达到防雷接地的目的。
1.变压器的防雷接地的原则(1)尽可能的增加接地电极的数量和面积。
在接地电极数量固定的情况下,可以选用更大的接地电极,以达到增加接地电极面积的目的。
(2)接地电极深度要足够,并把电流分散到更深的土层,这样可以减小地电阻。
(3)选择接地电极时要选择材料良好的导电性能和易加工形成的材料。
(4)在变压器防雷接地中,要注意安全,防止搭接,确保人员安全。
(5)变压器防雷接地要与其它设备防雷接地进行协调,避免相互干扰。
2.变压器的防雷接地的方法变压器的防雷接地方法主要有以下几种:(1)独立接地法:较为适用于容量小的变压器,这种方法采用独立接地,安装专门的接地装置,与变压器的金属壳体连接。
(2)共享接地法:对于容量较大的变压器,采用共享接地,即与变电所的共同接地网相连接。
这种方法防雷性能更为优良。
(3)接地电源法:采用接地电源法时,变压器的中性点接到电源系统的地,使之处于地接状态。
二、柱上开关的防雷接地柱上开关是电力系统中一种重要的设备,它起到开通或分断电路的作用。
柱上开关放在电缆线路或输电线路上,承担着对输入电流的控制和输出电流的传递作用。
因此,柱上开关的防雷接地尤为重要。
1.柱上开关防雷接地的原则(1)在选择接地装置时,要修建深度合适的接地基础,使其对柱上开关的金属外壳及可接地楔等零件有良好接触。
(2)接地电极应具有足够的深度和足够的面积,以降低接地电阻和带电体的电压。
(3)建立可靠的接地装置,接地装置与柱上开关需要有良好的连接。
变压器的防雷技术范本(2篇)
变压器的防雷技术范本变压器是电力系统中重要的电气设备之一,其作用是将高电压变为低电压,或将低电压变为高电压,以满足不同场合下的电能需求。
然而,在雷电频繁发生的地区,变压器常常成为雷电的直接打击对象,因此,对变压器进行防雷保护工作非常重要。
本文将详细介绍变压器的防雷技术,以提供一个实用的技术范本。
1. 地面接地系统地面接地系统是变压器防雷的基础,它能将雷电击中的电能导入地下,防止电能对变压器的损害。
地面接地系统应满足以下要求:(1) 地下电阻低:地下电阻是衡量地面接地系统可靠性的重要指标,它应尽量小于10欧姆,以确保雷电电能能够迅速导入地下。
(2) 平衡接地系统:变压器的地面接地系统应与电力系统的其他设备的接地系统相互连接,形成一个平衡接地系统,以减小雷击对变压器的影响。
(3) 技术规范遵循:地面接地系统的设计和安装应符合相关的防雷技术规范,确保接地系统的可靠性和安全性。
2. 天线避雷器的应用天线避雷器是变压器防雷的重要设备之一,它能够快速消散雷电过电压,保护变压器不受雷击伤害。
天线避雷器的应用要点如下:(1) 安装位置选择:天线避雷器应安装在变压器的进线侧,以最大限度地降低雷击过电压对变压器的影响。
(2) 选择合适的技术参数:天线避雷器的击穿电压应根据变压器的额定电压选择,通常击穿电压应大于变压器的额定电压。
(3) 定期检测和维护:定期检查天线避雷器的状态和性能,对损坏或失效的天线避雷器及时更换,确保其正常工作。
3. 避雷针的设置避雷针是一种主动防雷设备,它能通过放电来保护变压器不受雷击伤害。
避雷针的设置要点如下:(1) 设置高度和位置:避雷针的设置高度应根据变压器的位置和高度选择,一般来说,避雷针的高度应大于变压器的高度,以保证其有效起到防雷的作用。
(2) 导线连接:避雷针与变压器之间应采用导线连接,导线的截面积应根据雷暴区域的雷电容量选择,保证导线能够承受雷电击中的电流。
(3) 定期检查:定期检查避雷针的状态和导线的连接,确保其正常工作。
变压器防雷安全措施
变压器防雷安全措施1 进行全面的高压瞬态等电位连接对变压器常态非等电位部位全部实现高压瞬态等电位连接,包括在变压器高压侧和低压侧分别安装高压、低压避雷器各3只,所有避雷器与变压器壳、中性线和其它金属支撑件共同接地。
这样连接处理之后,当遭到雷击时,变压器所有金属部位电位瞬时同升同降,其相互间在理论上没有雷电流流动,因而变压器不会被雷电损坏。
实际上,用高压、低压避雷器实施了高压瞬态等电位连接后的变压器,在遇到雷击时,所接部位之间因避雷器的启动时刻和启动电压存在差别,再加上连接导体阻抗的存在,其所形成的高压瞬态等电位也只是相对的。
不过,其电位差非常小,不至于构成对变压器造成损坏或严重损坏。
目前,在变压器的高压侧和低压侧安装避雷器以达到全面的高压瞬态等电位连接,是保证变压器防雷安全最简单、最有效的方法。
2 高压架空线路防雷措施变压器高压架空线路可采用的防雷措施主要有:在野外沿高压线全线架设避雷线,或架空转埋地15m以上接入变压器均可使侵入变压器高压侧的雷电波强度大大降低。
3 低压架空线防雷措施低压架空线一般架设在10kv高压线下,不易受到直接雷击,但是单独在野外架设的低压线也易受到直接雷击。
当前,单独架设的低压架空线都是四线平行架设,均无避雷线。
低压架空线防雷措施主要有:将低压线上中性线架设于电杆顶端上作避雷接闪线,多杆重复接地;三条相线在其下横担上平行,架设处在中线的防雷保护空间之内,避免或减少低压相线受到闪击,保护变压器和终端用户设施。
4 设置良好的接地线变压器接地并不能确保变压器无雷击之虑,但良好的接地可降低变压器(或中性线)上雷电高地电位,减轻高地电反击强度。
变压器良好接地可泄放更多雷电流,避免或减轻雷电流对低压终端用户的危害。
要改良变压器接地性能,除尽可能降低接地工频电阻值外,还要尽量用短、直、粗的接地线以降低线感。
变压器防雷接地做法
变压器防雷接地做法变压器是电力系统中非常重要的设备之一。
为了保护变压器免受雷击的影响,合适的防雷接地措施是必需的。
下面介绍几种常用的变压器防雷接地做法。
1. 接地系统设计:首先,应根据变压器的额定容量和电压等级,合理设计变压器的接地系统。
该系统通常包括接地电极、接地导线和接地网等。
接地电极应埋设在不易受损的深土层或湿地中,以确保良好的接地效果。
2. 接地电极选择:选择合适的接地电极对于变压器的防雷设计至关重要。
在选取接地电极时,应考虑地面的电阻率、土壤湿度以及附近地质条件。
常见的接地电极包括接地棒、接地网和接地网孔等,具体选择取决于实际情况。
3. 接地导线布置:接地导线应合理布置,以确保短而直接的连接路径。
导线应选择具有良好导电性能和耐腐蚀性的材料,例如铜或铜包铝导线。
导线的截面积应根据变压器的额定容量和电流而定,并应满足相关电气标准要求。
4. 防雷装置安装:为了进一步保护变压器免受雷击的伤害,可以考虑安装防雷装置,例如避雷针或避雷网。
这些装置能够吸收和耗散雷电能量,降低雷电对变压器的冲击。
安装位置应根据变压器的尺寸和布置进行合理选择。
5. 定期检测和维护:变压器防雷接地设施的定期检测和维护是确保其长期有效性的关键。
定期测量和记录接地电阻,及时发现并处理接地设施的故障或损坏。
此外,确保接地线路畅通,及时清除可能影响接地效果的障碍物。
总之,变压器防雷接地是电力系统中重要的安全措施之一。
通过合理设计接地系统、选择适当的接地电极、布置良好的接地导线、安装防雷装置,并定期进行检测和维护,可以有效地减少变压器受雷击的风险,保障电力系统的安全运行。
变压器的防雷技术
变压器的防雷技术变压器是电力系统中重要的电气设备之一,其主要功能是将输送在电网中的高电压变换为适合家庭和工业用电的低电压。
然而,变压器在正常运行过程中可能会受到雷击的影响,导致设备损坏甚至发生火灾等严重后果。
因此,为了保护变压器免受雷击的影响,需要采取一系列的防雷技术措施。
1. 天馈线:天馈线是将输送的电力线路与外界隔离的一种保护装置,主要用于防止雷电沿着输电线路入侵变压器。
天馈线通常由绝缘材料制成,通过引导雷电流经过合适的路径释放掉其能量,从而减少对变压器的冲击。
2. 避雷针:避雷针是一种常见的防雷设备,用于引导雷电离开周围区域。
在变压器附近设置一支适当高度的避雷针,可以吸引雷击电流,使其通过导线引导离开变压器,从而保护设备的安全。
3. 接地系统:接地系统是减少因雷击而产生的电压梯度的一种重要措施。
通过将变压器的金属外壳和所有金属部件与地面连接,可以将雷击产生的电流通过导地线及时释放到地面上,从而保护设备安全。
4. 金属罩屏蔽:金属罩屏蔽是一种有效的防雷技术,通过将变压器的设备和线路用金属罩进行屏蔽,从而降低外界雷电对设备的干扰。
金属罩可以有效地吸收和分散雷电能量,减少对变压器的冲击。
5. 避雷器:避雷器是一种用于保护电气设备的防雷装置,主要用于吸收过电压并将其引导到地面。
在变压器输入和输出侧的电路中设置避雷器,可以有效地将过电压导向地线,避免雷电对设备的损坏。
6. 绝缘材料:绝缘材料是一种用于隔离不同电位的电气设备的重要材料。
在变压器的设计和制造过程中,采用高品质的绝缘材料可以提高设备的绝缘性能,从而减少雷击损坏的概率。
总之,变压器的防雷技术是一项重要的工作,对于保护设备和确保电力系统的稳定运行具有重要意义。
通过采取合理的措施,如设置天馈线、避雷针、接地系统、金属罩屏蔽、避雷器等,可以降低雷电对变压器的影响,保障设备和人员的安全。
同时,在变压器的设计和制造过程中,选择合适的绝缘材料也是一项重要的措施,可以提高设备的绝缘性能,减少雷击损坏的风险。
变压器防雷技术与避雷器的安装要求
变压器防雷技术与避雷器的安装要求有关变压器防雷技术与避雷器的安装要求,正反变换过电压,变压器不同接线对正反变换过电压的影响,接线配变的防雷保护,安装避雷器的实在要求,以及接地装置的安装要求等。
变压器防雷与避雷器安装要求雷击损坏配变过去单纯认为是雷电波进入高压绕组引起,实际上这种认得带有程度的片面性。
理论分析和实际试验表明:配变雷害事故的重要原因,是由于配电系统受到雷害时的正反变换的过电压引起,而反变换过电压损坏事故尤甚.现就正反变换过电压进展过程进行分析,讨论配变的防雷保护。
1、正反变换过电压1.1正变换过电压当低压侧线路受到雷击时,雷击电流侵入低压绕组经中性点接地装置入地,接地电流Ijd在接地电阻Rjd上产生压降。
这个压降使得低压侧中性点电位急剧上升.它叠加在低压绕组显现过电压,危及低压绕组.同时,这个电压通过高处与低处压绕组的电磁感应按变比上升至高压侧,与高压绕组的相电压叠加,致使高压绕组显现不安全的过电压.这种由于低压绕组受到雷击过电压,通过电磁感应变换到高压侧,引起高压绕组过电压的现象叫正变换过电压。
【变压器防雷技术与避雷器的安装要求】1.2反变换过电压当高压侧线路受到雷击时,雷电流通过高压侧避雷器放电入地,接地电流Ijd在接地电阻Rjd上产生压降.这个压降作用在低压侧中性点上,而低压侧出线此时相当于经电阻接地,因此,电压绝大部分加在低压绕组上了.又经电磁感应,这个压降以变比上升至高压侧,并叠加于高压绕组的相电压上,致使高压绕组显现过电压而导致击穿事故.这种由于高压侧受到雷击,作用于低压侧,通过电磁感应又变换到高压侧,引起高压绕组过电压的现象叫反变换过电压.2、变压器不同接线对正反变换过电压的影响2.1Yzn11接线.当低压侧线路落雷时,雷电流进入低压侧的两个半绕组中,大小相等,方向相反,在每个铁心柱上的磁通正好相互抵消,因而也就不会在高压绕组中产生正变换过电压.在高压侧线路落雷时,实际上由于变压器结构和漏磁等原因引起磁路不对称,因而磁通不可能完全抵消,正反变换过电压依旧存在,但是较小,可认为有较好的防雷作用.2.2Yyn0接线这种接法的变压器是我国的一种标准接线.它有很多优点:①正常时能保持各相电压不变,同时能供给380/220V两种不同的电压以充足用户要求;②发生单相接地短路时,可避开另两相电压的上升;③可避开高压窜入低压侧的不安全.因此,配电网中几乎全部配变均采纳此种接法.3、Yyn0接线配变的防雷保护3.1高压侧装设避雷器以防止雷击过电压.3.1.1在配变高压侧装设避雷器,能有效防止高压侧线路落雷时雷电波袭入而损坏配变,工程中常在配变高压侧装设FS10阀型避雷器.3.1.2高压侧装设避雷器后.避雷器接地线应与变压器外壳以及低压侧中性点连接后共同接地,以充分发挥避雷器限压作用和防止逆闪络.3.2低压侧装设避雷器以限制正变换过电压.对于Yyn0配变,即使高压侧装有避雷器,依旧不可避开来自高压侧进行波的反变换或来自低压侧进行波的正变换过电压.当低压侧装设一组避雷器后,正反变换过电压就可以受到限制.用正反变换过电压理论分析.产生正反变换过电压是由于低压绕组过电压引起.因此,只要设法限制低压绕组过电压的幅值,正反变换过电压就可得到限制.低压侧装设避雷器就是用来限制低压绕组过电压的幅值,有了低压避雷器,正反变换过电压也就得到有效的抑制,从而也就可以保护高压绕组。
露天变压器防护标准
露天变压器防护标准
露天变压器是电力系统中常见的设备之一,但由于其安装在室外,容易受到天气等外界因素的影响,因此需要进行防护。
以下是露天变压器防护标准:
1. 防雷防静电:在变压器周围设置避雷装置,以防止雷击和静
电引起的火灾和爆炸。
2. 防水防潮:变压器应设置在水平地面上,周围应有排水系统,并设有排水口和防水罩,以避免变压器被雨水浸泡。
3. 防晒防腐:变压器应设置在遮阳处,以减少太阳的直射,同
时应定期对变压器外壳进行清洗和防腐处理。
4. 安全防护:变压器周围应设有防护栏杆,以避免人员误入变
压器区域。
5. 温度控制:应定期对变压器进行温度检测和控制,以确保变
压器正常运行,并及时发现温度异常情况。
以上是露天变压器防护标准的基本内容,对于电力系统的安全运行至关重要。
- 1 -。
变压器防雷保护装置的选型与应用技术
变压器防雷保护装置的选型与应用技术随着电力系统的发展和电子设备的普及,变压器作为输配电的重要设备,其正常运行对电力系统的稳定性和可靠性至关重要。
然而,雷电天气等突发情况给变压器带来了巨大的威胁,因此选用合适的防雷保护装置成为了保障变压器运行安全的关键。
一、防雷保护装置的选型选择适合的防雷保护装置对于保护变压器免受雷击是至关重要的。
以下是一些常见的防雷保护装置的选型要点:1. 避雷针:避雷针常常被用于建筑物顶部,能够释放自然界的静电荷,防止其积累到危险程度。
在某些情况下,也可以将避雷针放置在变压器旁边,以吸引和分散雷电对变压器的影响。
2. 避雷器:在变压器的输入侧和输出侧安装避雷器是一种常见且有效的防雷保护措施。
避雷器能够将雷电冲击电流引入接地,通过控制回路的电压和电流,保护变压器免受雷击。
3. 防雷屏蔽:在变压器外壳和绝缘部分之间设置金属屏蔽,可以有效地屏蔽雷电的电磁波,防止其对变压器造成损害。
以上只是几种常见的防雷保护装置,选型时需要根据具体情况,如变压器类型、运行环境、雷电频率和等级等因素综合考虑。
二、防雷保护装置的应用技术选好了合适的防雷保护装置后,还需要正确应用技术来确保其有效工作。
以下是几个值得注意的技术要点:1. 接地系统:良好的接地系统是防雷保护装置正常工作的基础。
确保变压器的接地电阻足够低,并定期检测和维护接地系统的连接,以保障其接地效果。
2. 防雷电位的均衡:将防雷保护装置的引线布置在合适的位置,使得保护装置和待保护设备具有相同的等电势,从而减少雷暴时的电流流入。
3. 监测系统:安装变压器防雷保护装置后,需要定期对装置进行监测和检测,确保其正常工作。
同时,可以添加报警装置,当保护装置受损或失效时,及时发出警报,以便及时维修或更换。
4. 分级保护:根据变压器的重要性和所处环境,可以对防雷保护装置进行分级保护。
对于重要性较高的变压器,可以采用多层保护,提高防雷能力,确保其安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器如何防雷
雷击损坏配变过去单纯认为是雷电波进入高压绕组引起,实际上这种认识带有程度的片面性。
理论分析和
实际试验表明:配变雷害事故的主要原因是由于配电系统遭受雷害时的“正反变换”的过电压引起,而反变换过
电压损坏事故尤甚。
现就正反变换过电压发展过程进行分析,讨论配变的防雷保护。
1、正反变换过电压
1.1 正变换过电压当低压侧线路遭受雷击时,雷击电流侵入低压绕组经中性点接地装置入地,接地电流Ijd 在接地电阻Rjd 上产生压降。
这个压降使得低压侧中性点电位急剧升高。
它叠加在低压绕组出现过电压,危及低压绕组。
同时,这个电压通过高低压绕组的电磁感应按变比升高至高压侧,与高压绕组的相电压叠加,致使高压绕组出现危险的过电压。
这种由于低压绕组遭受雷击过电压,通过电磁感应变换到高压侧,引起高压绕组过电压的现象叫“正变换”过电压。
1.2 反变换过电压当高压侧线路遭受雷击时,雷电流通过高压侧避雷器放电入地,接地电流Ijd 在接地电阻Rjd 上产生压降。
这个压降作用在低压侧中性点上,而低压侧出线此时相当于经电阻接地,因此,电压绝大部分加在低压绕组上了。
又经电磁感应,这个压降以变比升高至高压侧,并叠加于高压绕组的相电压上,致使高压绕组出现过电压而导致击穿事故。
这种由于高压侧遭受雷击,作用于低压侧,通过电磁感应又变换到高压侧,引起高压绕组过电压的现象叫“反变换过电压”。
2、变压器不同接线对正反变换过电压的影响
2.1Yznil接线。
当低压侧线路落雷时,雷电流进入低压侧的两个半绕组”中,大小相等,方向相反,在每
个铁心柱上的磁通正好互相抵消,因而也就不会在高压绕组中产生正变换过电压。
在高压侧线路落雷时,实际上由于变压器结构和漏磁等原因引起磁路不对称,因而磁通不可能完全抵消,正反变换过电压仍然存在,但是较小,可认为有较好的防雷作用。
2.2Yyn0 接线
这种接法的变压器是我国的一种标准接线。
它有很多优点:
① 正常时能保持各相电压不变,同时能提供
380/220V 两种不同的电压以满足用户要求;② 发生单相接地短路时,可避免另两相电压的升高;③ 可避免高压窜入低压侧的危险。
因此,配电网中几乎所有配变均采用此种接法。
3、Yyn0 接线配变的防雷保护
3.1 高压侧装设避雷器以防止雷击过电压
3.1.1 在配变高压侧装设避雷器,能有效防止高压侧线路落雷时雷电波袭入而损坏配变,工程中常在配变高压侧装设FS—10 阀型避雷器。
3.1.2 高压侧装设避雷器后。
避雷器接地线应与变压器外壳以及低压侧中性点连接后共同接地,以充分发挥避雷器限压作用和防止逆闪络。
3.2 低压侧装设避雷器以限制正变换过电压
对于Yyn0 配变,即使高压侧装有避雷器,仍然不可避免来自高压侧进行波的反变换或来自低压侧进行波的正变换过电压。
当低压侧装设一组避雷器后,正反变换过电压就可以受到限制。
用正反变换过电压理论分析。
产生正反变换过电压是由于低压绕组过电压引起。
因此,只要设法限制低压绕组过电压的幅值,正反变换过电压就可得到限制。
低压侧装设避雷器就是用来限制低压绕组过电压的幅值,有了低压避雷器,正反变换过电压也就得到有效的抑制,从而也就可以保护高压绕组。
4、安装避雷器的具体要求
4.1 变压器应安装在高压熔断器与变压器之间
4.2 避雷器防雷接地引下线采用“三位一体”的接地方法。
即避雷器接地引下线、配电变压器金属外壳与低压侧中性点这三点连在一起,然后共同与接地装置相连接。
4.3 在多雷区、在变压器低压侧出线出处应安装一组低压避雷器
5、接地装置的安装
接地装置安装质量的好坏决定了为配电变压器的防雷装置是否起到良好的保护作用的关键,因此接地可靠,符合技术规范,才能很好地起分流作用,才能保护变压器。
5.1、高低压侧避雷器接地线、配变外壳和低压侧中性点应连接在一起共同接地(中性点不接地运行时,在
中性点对地加装击穿保险器)
5.2、接地电阻应满足规程要求,对于100kVA以上的配变,Rjd < 4皐重复接地每台不少于三处,每处
Rjd < 10。
②对于100kVA及以下的配变,Rjd < 10;Q重复接地每台不少于三处,每处Rjd < 30。
5.3、避雷器接地引下线(即与配变外壳间的连线)越短越好。
因为,即使0.6m 长的接地线,其电感L 约为
1mH,在不大的雷电波陡度di/dt=10kA/ 时,接地线上的压降也达Ldi/dt宀10这V羊不小的数值。
它和避雷器
残压叠加作用在配变绝缘上,也将大大加剧破坏性。
为此,对于高压侧,避雷器应装于高压跌落式熔断器的下端。
这羊不仅能减少接地引线的长度,也给避雷器安装预试带来方便(取下跌落式熔断器,做好安全措施即可
进行,不会影响高压线路运行);其次当避雷器质量不良,放电不能熄弧时工频续流使高压跌落式熔断器熔断,
熔管自动跌落,可避免因此造成对高压线路供电的影响,减少线路的跳闸率。
6、结论
由以上分析可见,配变低压侧加装避雷器是大有必要的,这也是我们以前认识上的不足。
在配电变压器低压侧加装避雷器,对减少事故跳闸率,提高供电可靠性,具有重要的意义。
因此,搞好农村配变的防雷保护不仅有直接的经济效益,还有很大的社会效益。