第04讲 一元多项式与线性表习题
线性表复习题答案
线性表复习题答案线性表复习题答案线性表是数据结构中最基本的一种,它是由一组具有相同数据类型的元素组成的数据结构。
线性表的常见实现方式有顺序表和链表。
在学习线性表的过程中,掌握相关的复习题答案是非常重要的。
本文将针对线性表的复习题进行解答,帮助读者巩固对线性表的理解和掌握。
一、顺序表1. 什么是顺序表?顺序表的特点是什么?答:顺序表是用一段连续的存储单元依次存储数据元素的线性结构。
顺序表的特点是元素在物理位置上相邻,逻辑上也相邻。
2. 顺序表的存储结构是怎样的?答:顺序表的存储结构是一段连续的存储空间,可以使用数组来实现。
3. 如何实现顺序表的插入操作?答:顺序表的插入操作需要将插入位置后的元素依次后移,然后将待插入元素放入指定位置。
4. 如何实现顺序表的删除操作?答:顺序表的删除操作需要将删除位置后的元素依次前移,然后将最后一个元素删除。
5. 顺序表的查找操作有哪些?答:顺序表的查找操作包括按值查找和按位置查找。
按值查找是指根据给定的值在顺序表中查找对应的位置,按位置查找是指根据给定的位置获取对应的值。
二、链表1. 什么是链表?链表的特点是什么?答:链表是一种使用指针来实现的动态数据结构,它由一系列的节点组成。
链表的特点是元素在物理位置上不一定相邻,但逻辑上相邻。
2. 链表的存储结构是怎样的?答:链表的存储结构由节点组成,每个节点包含数据域和指针域。
数据域用于存储数据元素,指针域用于指向下一个节点。
3. 如何实现链表的插入操作?答:链表的插入操作需要创建新节点,并将新节点的指针域指向插入位置的后继节点,然后将插入位置的前驱节点的指针域指向新节点。
4. 如何实现链表的删除操作?答:链表的删除操作需要找到待删除节点的前驱节点,将前驱节点的指针域指向待删除节点的后继节点,然后释放待删除节点的内存空间。
5. 链表的查找操作有哪些?答:链表的查找操作包括按值查找和按位置查找。
按值查找是指根据给定的值在链表中查找对应的节点,按位置查找是指根据给定的位置获取对应的节点。
数据结构(线性表)习题与答案
1、线性表是具有n个 ______ 的有限序列。
A.数据项B.字符C.数据元素D.表元素正确答案:C2、线性表是 _______。
A.一个无限序列,可以为空B.一个有限序列不可以为空C.一个无限序列,不可以为空D.一个有限序列,可以为空正确答案:D3、关于线性表的正确说法是 _______。
A.每个元素都有一个前驱和一个后继元素B.除第一个元素和最后一个元素外,其余元素有且仅有一个前驱和一个后继元素C.表中元素的排序顺序必须是由小到大或由大到小D.线性表中至少有一个元素正确答案:B4、线性表采用链表存储时,其存放各个元素的单元地址是 _______。
A.连续与否均可以B.部分地址必须是连续的C.一定是不连续的D.必须是连续的5、链表不具备的特点是 _______。
A.插入删除不需要移动元素B.所需空间与其长度成正比C.不必事先估计存储空间D.可随机访问任一节点正确答案:D6、线性表的静态链表存储结构与顺序存储结构相比,优点是 _______。
A.所有的操作算法实现简单B.便于利用零散的存储器空间C.便于随机存取D.便于插入和删除正确答案:D7、线性表的顺序存储结构和链式存储结构相比,优点是 _______。
A.便于随机存取B.便于插入和删除C.所有的操作算法实现简单D.节省存储空间正确答案:A8、设线性表有n个元素,以下操作中,_______在顺序表上实现比在链表上实现效率高。
A.交换第1个元素第2个元素的值B.输出与给定值x相等的元素在线性表中的符号C.输入第i(1<=i<=n)个元素值D.顺序输出这n个元素的值正确答案:C9、对于一个线性表,既要求能够较快地进行插入和删除操作,又要求存储结构能够反映数据元素之间的逻辑关系,则应采用 _______ 存储结构。
A.顺序B.链式C.散列D.索引正确答案:B10、设线性表中有n个元素,以下操作,_______ 在单链表上实现要比在顺序表上实现效率高。
数据结构_线性表练习题
一、判断题1. 线性表的逻辑顺序与存储顺序总是一致的。
(FALSE)2. 顺序存储的线性表可以按序号随机存取。
(TRUE)3.顺序表的插入和删除一个数据元素,每次操作平均只有近一半的元素需要移动。
TRUE)4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此是属于同一数据对象。
(TRUE)5,在线性表的顺序存储结构中,逻辑上相邻的两个元素在物理位置上并不一定紧邻。
(FALSE )6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。
(TRUE)7.线性表的链式存储结构优于顺序存储结构。
(FALSE )8. 在线性表的顺序存储结构中,插入和删除时,移动元素的个数与该元素的位置有关。
(TRUE)9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。
(TRUE)10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储结构。
(FALSE )二.选择题11.线性表是()。
(A)一个有限序列,可以为空;(B)一个有限序列,不能为空;(C)一个无限序列,可以为空;(D)一个无序序列,不能为空。
答:A12.对顺序存储的线性表,设其长度为n,在任何位置上插入或删除操作都是等概率的。
插入一个元素时平均要移动表中的()个元素。
(A)n/2(B)(n+1)/2(C)(n–1)/2(D)n答:A13.线性表采用链式存储时,其地址()。
(A)必须是连续的;(B)部分地址必须是连续的;(C)一定是不连续的;(D)连续与否均可以。
答:D14.用链表表示线性表的优点是()。
(A)便于随机存取(B)花费的存储空间较顺序存储少(C)便于插入和删除(D)数据元素的物理顺序与逻辑顺序相同答:C15.单链表中,增加一个头结点的目的是为了()。
(A)使单链表至少有一个结点(B)标识表结点中首结点的位置(C)方便运算的实现(D)说明单链表是线性表的链式存储答:C16.若某线性表中最常用的操作是取第i个元素和找第i个元素的前趋元素,则采用()存储方式最节省运算时间()。
数据结构(线性表)练习题与答案1
数据结构(线性表)练习题与答案11、线性表是()。
A.一个有限序列,可以为空B.一个有限序列,不可以为空C.一个无限序列,可以为空D.一个无限序列,不可以为空正确答案:A解析:线性表是具有n(n≥0)个数据元素的有限序列。
2、线性表的基本运算ListInsert(&L,i,e)表示在线性表L中第i 个位置上插入一个元素e,若L的长度为n,则i的合法取值是()。
A.1≤i≤nB.1≤i≤n+1C.0≤i≤n-1D. 0≤i≤n正确答案:B解析:线性表的基本运算ListInsert(&L,i,e)中,位置i是指逻辑序号,可以在L的位置1到位置n+1插入元素。
3、顺序表具有随机存取特性,指的是()。
A.查找值为x的元素与顺序表中元素个数n无关B.查找值为x的元素与顺序表中元素个数n有关C.查找序号为i的元素与顺序表中元素个数n无关D.查找序号为i的元素与顺序表中元素个数n有关正确答案:C解析:一种存储结构具有随机存取特性指的是,对于给定的序号i,在O(1)时间内找到对应元素值。
4、在顺序表中删除一个元素所需要的时间()。
A.与删除元素的位置及顺序表的长度都有关B.只与删除元素的位置有关C.与删除任何其他元素所需要的时间相等D.只与顺序表的长度有关正确答案:A解析:当从顺序表中删除元素时,为了保持顺序表的逻辑特性,需要移动元素以覆盖该删除的元素。
因此在顺序表中删除一个元素与该元素的位置及顺序表的长度都有关。
5、在n(n>1)个运算的顺序表中,算法时间复杂度为O(1)的运算是()。
A.访问第i个元素(2≤i≤n)并求其前驱元素B.在第i个元素之后插入一个新元素C.删除第i个元素D.将这n个元素递增排序正确答案:A解析:访问第i个元素(2≤i≤n)即L->data[i-1]和求其前驱元素L->data[i-2]的时间复杂度均为O(1)。
6、关于线性表的顺序存储结构和链式存储结构的描述中,正确的是()。
数据结构第04讲一元多项式与线性表习题C
4 12 ∧ 7 15 ∧
40
23
64
7 12 7 15 ∧
C(x) 4 2x3 6x4 7x12 7x15
运算规则
设p,q分别指向A,B中某一结点,p,q初值是第一结点
p->exp < q->exp: p结点是和多项式中的一项
比较
p后移,q不动
p->exp与q->exp p->exp > q->exp: q结点是和多项式中的一项
4. 比较顺序表与链表的优缺点。在什么情况下用顺
序表比链表好? 5. 为什么在单循环链表中设置尾指针比设置头指针
更好? 6. 已知L是无表头结点的单链表,且P结点既不是首
元结点,也不是尾元结点,试写出完成下列功能的 语句: (1) 在P结点后插入S结点的语句序列是__。 (2) 在P结点前插入S结点的语句序列是__。 (3) 在表首插入S结点的语句序列是__。 (4) 在表尾插入S结点的语句序列是__。
qb=NextPos(pb,hb); qa=NextPos(pa,ha); break;
} // switch
} //while
if (!ListEmpty(pb)) Append(pa, qb) ; //链接pb剩余结点
FreeNode(hb);
//释放pb头结点
} // AddPolyn
本章小结
双向链表的操作特点:
1、“查询” 和单链表相同 2、“插入” 和“删除”时需要同时修改两
个方向上的指针。
双向链表的插入(后插)
p
ai-1
ai
e
s
s->next = p->next; p->next = s; s->next->prior = s; s->prior = p;
高等代数一元多项式例题
高等代数一元多项式例题
当涉及到高等代数的一元多项式例题时,我可以为您提供一个典型的例子,以便更好地理解。
假设我们有以下一元多项式:
P(x) = 3x^4 - 2x^3 + 5x^2 - 7x + 10
在这个例子中,P(x) 是一个四次多项式,其中x 是变量,3、-2、5、-7 和10 是系数。
每个项是由变量的幂次和对应的系数组成。
现在,我们来解决几个与这个多项式相关的问题
1. 求导:
要求P(x) 的导函数,可以通过对每一项进行求导并合并结果来实现。
对于这个例子来说,得到的导函数为:
P'(x) = 12x^3 - 6x^2 + 10x - 7
2. 求函数值:
给定一个特定的x 值,我们可以求出P(x) 的函数值。
例如,当x = 2 时,可以计算出:
P(2) = 3(2)^4 - 2(2)^3 + 5(2)^2 - 7(2) + 10 = 48
3. 因式分解:
对于多项式P(x),我们可以尝试将其因式分解为更简单的形式。
这需要使用因式分解的技巧和方法。
但是,并非所有的多项式都可以被因式分解,有些可能需要使用更高级的技术。
4. 求根:
求多项式的根是找出使得P(x) 等于零的x 值。
这就是求方程P(x) = 0 的解。
对于这个例子来说,我们可以通过使用因式分解、配方法、综合定理等方法来解决这个问题。
以上是一些关于高等代数一元多项式例题的常见问题和解决方法。
数据结构(线性表)习题与答案
数据结构(线性表)习题与答案数据结构(线性表)习题与答案1. 线性表的定义线性表是一种常用的数据结构,它由一系列元素组成,并且每个元素具有前驱和后继关系。
线性表可以通过顺序存储或链式存储来实现。
2. 线性表的实现方式2.1 顺序存储顺序存储是利用数组来实现线性表的一种方式。
数组的每个元素可以存储一个数据项,通过下标可以快速访问和操作其中的元素。
2.2 链式存储链式存储是通过节点之间的指针关联来实现线性表的一种方式。
每个节点包含数据域和指针域,指针域指向下一个节点。
3. 线性表的基本操作3.1 初始化线性表初始化线性表需要给表头节点分配内存空间,并将头节点的指针域置为空。
3.2 插入元素在线性表的某个位置插入元素,需要先找到插入位置的前一个节点,然后将新节点插入到该位置。
调整节点之间的指针关联即可完成插入操作。
3.3 删除元素删除线性表中的某个元素,需要找到待删除元素的前一个节点,然后将该节点的指针指向待删除节点的下一个节点,释放待删除节点的内存空间即可。
3.4 查找元素查找线性表中某个元素的位置,可以从表头节点开始逐个比较节点的数据域,直到找到目标元素或者遍历结束。
4. 线性表的习题与答案4.1 习题1已知线性表L中的元素按非递减顺序排列,设计一个算法,将元素x插入到L中,保持L的有序性。
解答:1) 从表头节点开始,顺序遍历节点的数据域,找到第一个大于等于x的节点的前一个节点,记为p。
2) 创建新的节点node,将x赋值给node的数据域。
3) 将node的指针域指向p的下一个节点。
4) 将p的指针域指向node。
5) 插入完成。
4.2 习题2已知线性表L中的元素按递减顺序排列,设计一个算法,删除L中所有大于x的元素。
解答:1) 从表头节点开始,顺序遍历节点的数据域,找到第一个小于等于x的节点的前一个节点,记为p。
2) 将p的指针域指向p的下一个节点,删除p的后继节点。
3) 重复执行步骤2,直到遍历结束。
一元多项式习题及解答
习 题 一A 组1.判别{},a a b =+∈QQ 是否为数域解 是.2. 设32()1f x x x x =+++,2()32g x x x =++,求()()f x g x +,()()f x g x -,()()f x g x . 解32()()243f x g x x x x +=+++, 3()()21f x g x x x -=--,5432()()46652f x g x x x x x x =+++++.3.设19932199431995()(54)(421)(8112)f x x x x x x =----+,求()f x 的展开式中各项系数的和.解 由于()f x 的各项系数的和等于(1)f ,所以199319941995(1)(54)(421)(8112)1f =----+=-.4. 求()g x 除以()f x 的商()q x 与余式()r x . (1) 322()31,()321f x x x x g x x x =---=-+;(2) 42()25,()2f x x x g x x x =-+=-+.解 (1) 用多项式除法得到23232227321313923374133714739926299x x x x x x x x x x x x x x -+-----+----+---所以,17262(),()3999q x x r x x =-=--. (2) 用多项式除法得到24243232322222512225245257x x x x x x x x x x x x x x x x x x x x -+-++--+--+-+--+-+--+所以,2()1,()57q x x x r x x =+-=-+.5.设,a b 是两个不相等的常数,证明多项式()f x 除以()()x a x b --所得余式为()()()()f a f b af b bf a x a b a b--+--. 证明 依题意可设()()()()f x x a x b q x cx d =--++,则(),().f a ca d f b cb d =+⎧⎨=+⎩ 解得()()()()(),()()).c f a f b a b d af b bf a a b =--⎧⎪⎨=--⎪⎩故所得余式为()()()()f a f b af b bf a x a b a b--+--. 6. 问,,m p q 适合什么条件时,()f x 能被()g x 整除 (1) 3()f x x px q =++,2()1g x x mx =+-; (2) 42()f x x px q =++,2()1g x x mx =++.解 (1) 由整除的定义知,要求余式()0r x =.所以先做多项式除法,233222221(1)(1)()x mx x px q x mx mx xmx p x q mx m xmp m x q m +-++-+--+++--++++-要求2()(1)()0r x p m x q m =+++-=, 所以2(1)0,0p m q m ++=-=.即21,p m q m =--=时,可以整除.(2) 方法同上.先做多项式除法,所得余式为22()(2)(1)r x m p m x q p m =--++--,所以22(2)0,10m p m q p m --=+--=,即01m p q ==+,或22,1p m q -==时,可以整除.7. 求()f x 与()g x 的最大公因式: (1) 43232()341,()1f x x x x x g x x x x =+---=+--;(2) 4332()41,()31f x x x g x x x =-+=-+;(3)42432()101,()61f x x x g x x x =-+=-+++.解 (1) 用辗转相除法得到3243232432222211134124312213841231223313122244331441x x x x x x x x xx x x x x x xx x x x x x x x xx x x -++--+---+++--------+-----------用等式写出来,就是2()()(231)f x xg x x x =+---,21133()(231)2444g x x x x x ⎛⎫⎛⎫=-+----+ ⎪ ⎪⎝⎭⎝⎭,284332313344x x x x ⎛⎫⎛⎫---=+-- ⎪⎪⎝⎭⎝⎭,所以()(),()1f x g x x =+.(2) 同样地,3243324323232221103141139123331021133101020313991611274413299162563331649216495391625627256x x x x x x x x x x x xx x x x x x x x x x x x x xx x -+-+-+-+--+-++--+--+-+----+---+-+-+-所以()(),()1f x g x =.(3) 同样用辗转相除法,可得()2(),()1f x g x x =--.8. 求(),()u x v x 使()()()()()(),()u x f x v x g x f x g x +=: (1) 432432()242,()22f x x x x x g x x x x x =+---=+---:(2) 43232()421659,()254f x x x x x g x x x x =--++=--+:(3) 4322()441,()1f x x x x x g x x x =--++=--.解 (1) 利用辗转相除法,可以得到3()()(2)f x g x x x =+-, 32()(1)(2)(2)g x x x x x =+-+-,322(2)x x x x -=-.因而,()2(),()2f x g x x =-,并且()()23(),()2()(1)(2)()(1)()() (1)()(2)(),f xg x x g x x x x g x x f x g x x f x x g x =-=-+-=-+-=--++所以()1,()2u x x v x x =--=+(2) 利用辗转相除法,可以得到2()2()(639)f x xg x x x =-+-,211()(639)(1)33g x x x x x ⎛⎫=-+--+-- ⎪⎝⎭,2(639)(1)(69)x x x x -+-=--+.因而,()(),()1f x g x x =-,并且()()2211(),()1(639)()3311()2()()331122()1(),3333f x g x x x x x g x f x xg x x g x x f x x x g x ⎛⎫=-=-+--+- ⎪⎝⎭⎛⎫=--+- ⎪⎝⎭⎛⎫⎛⎫=-++-- ⎪ ⎪⎝⎭⎝⎭所以21122(),()13333u x x v x x x =-+=--.(3) 利用辗转相除法,可以得到2()(3)()(2)f x x g x x =-+-,()(1)(2)1g x x x =+-+.因而()(),()1f x g x =,并且()232(),()1()(1)(2)()(1)(()(3)())(1)()(32)(),f xg x g x x x g x x f x x g x x f x x x x g x ==-+-=-+--=--++--所以32()1,()32u x x v x x x x =--=+--.9. 设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 利用辗转相除法,可以得到2()()(1)(2)f x g x t x t x u =+++-+,222222212()(1)(2)[(1)(2)]()(1)(2)1(1)(1)(1)t t t u t t u t t g x x t x t x u x t t t t ⎡⎤⎛⎫-+-++-+--⎡⎤=+++-+++ ⎪⎢⎥⎣⎦++++⎝⎭⎣⎦由题意,()f x 与()g x 的最大公因式是一个二次多项式,所以22222()(1)(2)0,(1)[(1)(2)]0,(1)t t u t t t u t t t ⎧+-++-=⎪+⎪⎨+--⎪=⎪+⎩解得0,4u t ==-.10. 设()242(1)1x Ax Bx -++,求A 和B .解 用2(1)x -去除()f x 421Ax Bx =++,得余式1()(42)13r x A B x A B =++--,由题意要求知1()0r x =,即420,130,A B A B +=⎧⎨--=⎩解得1,2A B ==-.11. 证明:如果()(),()1f x g x =,()(),()1f x h x =,那么()(),()()1f x g x h x =. 证明 由条件可知,存在1()u x 和1()v x 使得11()()()()1u x f x v x g x +=,存在2()u x 和2()v x 使得22()()()()1u x f x v x h x +=.用()h x 乘以第一式得11()()()()()()()u x f x h x v x g x h x h x +=,代入第二式得[]2211()()()()()()()()()1u x f x v x u x f x h x v x g x h x ++=,即[]21212()()()()()[()()]()()1u x u x v x h x f x v x v x g x h x ++=,所以()(),()()1f x g x h x =.12. 证明:如果()f x 与()g x 不全为零,且()()()()()(),()u x f x v x g x f x g x +=,那么()(),()1u x v x =.证明 由于()()()()()(),()u x f x v x g x f x g x +=,()f x 与()g x 不全为零,所以()(),()0f x g x ≠.两边同时除以()(),()0f x g x ≠,有()()()()()()1(),()(),()f x g x u x v x f x g x f x g x +=,所以()(),()1u x v x =.13. 证明:如果()(),()()d x f x d x g x ,且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由题意知()d x 是()f x 与()g x 的公因式.再由条件设()()()()()d x u x f x v x g x =+. 又设()h x 为()f x 与()g x 的任一公因式,即()(),()()h x f x h x g x ,则由上式有 ()()h x d x .故而()d x 是()f x 与()g x 的一个最大公因式.14. 证明:()()()(),()()(),()()f x h x g x h x f x g x h x =,其中()h x 的首项系数为1.证明 显然()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个公因式.下面来证明它是最大公因式. 设(),()u x v x 满足()()()()()(),()u x f x v x g x f x g x +=,则()()()()()()((),())()u x f x h x v x g x h x f x g x h x +=.由上题结果知,()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又首项系数为1,所以()()()(),()()(),()()f x h x g x h x f x g x h x =.15. 设多项式()f x 与()g x 不全为零,证明()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭.证明 设()()(),()d x f x g x =,则存在多项式(),()u x v x ,使()()()()()d x u x f x v x g x =+.因为()f x 与()g x 不全为零,所以()0d x ≠.上式两边同时除以()d x ,有()()()()1()()(),()(),()f x g x u x v x f x g x f x g x =+,故()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭成立.16.分别在复数域、实数域和有理数域上分解41x +为不可约因式之积. 解 在实数域上的分解式为()()4222221(1)211x x x x x +=+-=+++.在复数域上的分解式为4122222222x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=+-++---+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.在有理数域上41x +是不可约多项式.否则,若41x +可约,有以下两种可能. (1)41x +有一次因式,从而它有有理根,但(1)0f ±≠,所以41x +无有理根.(2)41x +无一次因式,设4221()()x x ax b x cx d +=++++,其中,,,a b c d 为整数.于是0a c +=,0b d ac ++=,0ad bc +=,1bd =,又分两种情况:①1b d ==,又 a c =-,从而由 0b d ac ++=,得22a =,矛盾;②1b d ==-,则22a =-,矛盾. 综合以上情况,即证.17. 求下列多项式的有理根: (1) 32()61514f x x x x =-+-; (2) 42()4751g x x x x =---;(3) 5432()614113h x x x x x x =+----.解 (1)由于()f x 是首项系数为1的整系数多项式,所以有理根必为整数根,且为14-的因数.14-的因数有:1,2,7,14±±±±,计算得到:(1)4,(1)36,(2)0,(2)72,(7)140,(7)756, (14)1764,(14)4144,f f f f f f f f =--=-=-=-=-=-=-=-故2x =是()f x 的有理根.再由多项式除法可知,2x =是()f x 的单根.(2) 类似(1)的讨论可知,()g x 的可能的有理根为:111,,24±±±,计算得到 111171111(1)9,(1)1,5,0,,22464464g g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=--==--==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故12x =-是()g x 的有理根.再由多项式除法可知,12x =-是()f x 的2重根. (3) 类似地,()h x 的可能的有理根为:1,3±±,计算得到(1)28,(1)0,(3)0,(3)96h h h h =--==-=-.故1x =-,3x =是()h x 的有理根.再由多项式除法可知,1x =-是()h x 的4重根,3x =是()h x 的单根.18.若实系数方程30x px q ++=有一根a bi +(,a b 为实数,0b ≠),则方程30x px q +-=有实根2a .证明 设原方程有三个根123,,ααα.不失一般性,令1a bi α=+,从而有 2a bi α=-,由根与系数的关系可知12330()()a bi a bi αααα=++=++-+,所以32a α=-,即3(2)(2)0a p a q -+-+=,故3(2)(2)0a p a q +-=.这说明30x px q +-=有实根2a .19. 证明:如果(1)()nx f x -,那么(1)()n n x f x -.证明 因为(1)()nx f x -,所以 (1)(1)0nf f ==.因此,令()(1)()f x xg x =-,则有()(1)()n n n f x x g x =-,即(1)()n n x f x -.20. 下列多项式在有理数域上是否可约(1) 21()1f x x =+;(2) 4322()8122f x x x x =-++; (3) 633()1f x x x =++;(4) 4()1pf x x px =++,p 为奇素数; (5) 45()41f x x kx =++,k 为整数.解 (1)1()f x 的可能的有理根为:1±,而(1)2f ±=,所以它在有理数域上不可约.(2)由Eisenstein 判别法,取素数2p =,则2不能整除1,而 2(8),212,22-,但是22不能整除2,所以该多项式在有理数域上不可约.(3)令1x y =+,代入633()1f x x x =++有654323()(1)615211893g y f y y y y y y y =+=++++++.取素数3p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以()f x 在有理数域上不可约.(4) 令1x y =-,代入4()1pf x x px =++,得11222214()(1)()p p p p p p p p p g y f y y C yC y C y C p y p ----=-=-+--++-L , 取素数p ,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以4()f x 在有理数域上不可约.(5) 令1x y =+,代入45()41f x x kx =++,得4325()(1)46(44)42g y f y y y y k y k =+=++++++,取素数2p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以5()f x 在有理数域上不可约.B 组1.设()f x ,()g x ,()h x 是实数域上的多项式,(1) 若222()()()f x xg x xh x =+,则()()()0f x g x h x ===.(2) 在复数域上,上述命题是否成立证明 (1)当()()0g x h x ==时,有2()0f x =,所以()0f x =,命题成立.如果()g x ,()h x 不全为零,不妨设()0g x ≠.当()0h x =时,()22()()12()xg x xh x g x ∂+=+∂为奇数;当()0h x ≠时,因为()g x ,()h x 都是实系数多项式,所以2()xg x 与2()xh x 都是首项系数为正实数的奇次多项式,于是也有22(()())xg x xh x ∂+为奇数.而这时均有2()0f x ≠,且2()2()f x f x ∂=∂为偶数,矛盾.因此有()()0g x h x ==,从而有()0f x =.(2) 在复数域上,上述命题不成立.例如,设()0f x =,()n g x x =,()i nh x x =,其中n 为自然数,有222()()()f x xg x xh x =+,但()0g x ≠,()0h x ≠.2. 设(),(),()[]f x g x h x P x ∈,满足 2(1)()(1)()(2)()0x h x x f x x g x ++-++=,2(1)()(1)()(2)()0x h x x f x x g x ++++-=.证明()2(1)(),()x f x g x +.证明 两式相加得到22(1)()2(()())0x h x x f x g x +++=.由2(1,)1x x +=可知 ()2(1)()()x f x g x ++.两式相减得到2()4()0,()2()f x g x f x g x -+==. 故()()221(),1()x f x x g x ++,即()()21(),()x f x g x +.3.设1212()()()()g x g x f x f x ,证明(1) 若11()()f x g x ,1()0f x ≠,则22()()g x f x ;(2) 若212()()()g x f x f x ,是否有22()()g x f x解 (1) 因为1212()()()()g x g x f x f x ,11()()f x g x ,故存在多项式()h x ,1()h x 使得1212111()()()()(),()()()f x f x g x g x h x g x f x h x ==.于是12112()()()()()()f x f x f x h x g x h x =.由于1()0f x ≠,故有212()()()()f x h x g x h x =,即22()()g x f x .(2) 否.例如取1()2g x x =-,22()1g x x =-,1()(1)(2)f x x x =--,2()(1)(2)f x x x =++.虽然1212()()()()g x g x f x f x 且212()()()g x f x f x ,但2()g x 不能整除2()f x .4.当k 为何值时,2()(6)42f x x k x k =++++和2()(2)2g x x k x k =+++的最大公因式是一次的并求出此时的最大公因式.解 显然()()(2)g x x k x =++.当()(),()2f x g x x =+时,(2)42(6)420f k k -=-+++=,则3k =.当()(),()f x g x x k =+时,2()(6)420f k k k k k -=-+++=,则1k =.这时()(),()1f x g x x =+. 5.证明:对于任意正整数n ,都有 ()()(),()(),()n n n f x g x f x g x =.证明 由题意可知()f x 与()g x 不全为零.令()(),()()f x g x d x =,则()0d x ≠,从而()(),1()()f x g x d x d x ⎛⎫= ⎪⎝⎭,所以对任意正整数n ,有()(),1()()n n f x g x d x d x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是有 ()()()()1()()n nf xg x u x v x d x d x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 即 ()()()()()n n n u x f x v x g x d x +=. 又由()()d x f x ,()()d x g x ,有()()n n d x f x ,()()n n d x g x ,因此()n d x 是()nf x 与()ng x 的首项系数为1的最大公因式,从而有()()(),()()(),()nn n n f x g x d x f x g x ==. 6. 设11()()(),()()(),f x af x bg x g x cf x dg x =+=+且0ad bc -≠,证明()()11(),()(),()f x g x f x g x =.证明 设()(),()()f x g x d x =,则()(),()()d x f x d x g x .由于1()()()f x af x bg x =+,1()()()g x cf x dg x =+, 故11()(),()()d x f x d x g x .又设11()(),()()h x f x h x g x ,由上式及0ad bc -≠,可得11()()()d b f x f x g x ad bc ad bc =---, 11()()()c a g x f x g x ad bc ad bc-=+--, 从而 ()(),()()h x f x h x g x ,于是 ()()h x d x ,即()d x 也是1()f x 和1()g x 的最大公因式,即()()11(),()(),()f x g x f x g x =.7.设1()()()f x d x f x =,1()()()g x d x g x =,且()f x 与()g x 不全为零,证明()d x 是()f x 与()g x 的一个最大公因式的充分必要条件是()11(),()1f x g x =.证明 必要性.若()d x 是()f x 与()g x 的一个最大公因式,则存在多项式(),()u x v x 使()()()()()u x f x v x g x d x +=,于是11()()()()()()()u x d x f x v x d x g x d x +=.由()f x 与()g x 不全为零知()0d x ≠,因此有11()()()()1u x f x v x g x +=,即()11(),()1f x g x =.充分性.若()11(),()1f x g x =,则存在多项式(),()u x v x ,使11()()()()1u x f x v x g x +=.两边同时乘()d x 有()()()()()u x f x v x g x d x +=.由()d x 是()f x 与()g x 的一个公因式知,()d x 是()f x 与()g x 的一个最大公因式.8.设()f x 和()g x 是两个多项式,证明()(),()1f x g x =当且仅当()()(),()()1f x g x f x g x +=. 证明 必要性.设()(),()1f x g x =,若()()f x g x +与()()f x g x 不互素,则有不可约公因式()p x ,使()()()p x f x g x , 所以()()p x f x 或()()p x g x .不妨设()()p x f x ,由()()()()p x f x g x +可知()()p x g x ,因此()p x 是()f x 和()g x 的公因式,与(),()f x g x 互素矛盾,故()()f x g x +与()()f x g x 互素.充分性.设(()(),()())1f x g x f x g x +=,则存在(),()u x v x 使()()()()()()()1f x g x u x f x g x v x ++=,()()()()()()()1f x u x g x u x f x v x ++=,上式说明()(),()1f x g x =.9. 如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x -.证明 21x x ++的两个根为1ε=和2ε=33121εε==. 因为()23312(1)()()x x f x xf x +++,所以331212()()()()x x f x xf x εε--+,故有33111213312222()()0,()()0,f f f f εεεεεε⎧+=⎪⎨+=⎪⎩ 即112122(1)(1)0,(1)(1)0.f f f f εε+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而1(1)()x f x -,2(1)()x f x -.10. 若()()n f x f x ,则()f x 的根只能是零或单位根.证明 因为()()n f x f x ,故存在多项式()q x ,使()()()nf x f x q x =.设a 为()f x 的任一根,即()0f a =,则()()()0n f a f a q a ==.也就是说,当a 为()f x 的一根时,n a 也为()f x 的一根.依此类推,可知2,,,n n a a a L 也是()f x 的根.由于()f x 的根的个数有限,故必定存在正整数,s t (不妨设s t >),使得s t n n a a =,(1)0t s t n n n a a --=.于是有0t n a =即0a =,或者(1)0s t n n a --=,即a 为单位根.11. 设()f x 是一个整系数多项式,且(0),(1)f f 都是奇数,则()f x 没有整数根.证明 设10()n n f x a x a x a =+++L ,假设()f x 有整数根α,则x α-整除()f x ,即()()()f x x q x α=-,其中商式()q x 也是一个整系数多项式.事实上,设1110()n n q x b x b x b --=+++L ,代入上式并比较两端同次幂系数,得112110100,,,,n n n n n a b a b b a b b a b ααα----==-=-=-L ,因为()f x 是一个整系数多项式,所以,110,,,n b b b -L 也是整数,令0,1x x ==分别代入展开式,得(0)(0),(1)(1)(1)f q f q αα=-=-.由于(0),(1)f f 都是奇数,则α及1α-都必须是奇数,这是不可能的,所以,()f x 不能有整数根.12.证明对于任意非负整数n ,都有 ()()22211(1)n n x x x x ++++++. 证明 设α是21x x ++的任一根,即 210αα++=,21αα+=-,31α=.由此得221222123(1)()(1)0n n n n n n αααααα+++++++=+-=-=,即α也是221(1)n n x x ++++的根.又因为21x x ++无重根,因此()()22211(1)n n x x x x ++++++.13. 假设12,,,n a a a L 是两两不同的整数,证明:多项式12()()()()1n f x x a x a x a =----L 在有理数域上不可约.证明 用反证法.假设()f x 在有理数域上可约,则有整系数多项式12(),()g x g x ,使得12()()()f x g x g x =.于是12()()()i i i f a g a g a =,1,2,,i n =L .因此,12()1,()1i i g a g a ==-或12()1,()1i i g a g a =-=.这样总有12()()i i g a g a =-,从而由推论2知12()()g x g x =-,所以21()()f x g x =-.这与()f x 的首项系数为1相矛盾,故()f x 在有理数域上不可约.。
线性表练习题(答案)
线性表练习题(答案)第2章线性表一选择题下列程序段的时间复杂度为( C )。
for( int i=1;i<=n;i++)for( int j=1;j<= m; j++)A[i][j] = i*j ;A. O(m2)B. O(n2)C. O(m*n)D. (m+n)下面关于线性表的叙述中,错误的是哪一个?( B )A.线性表采用顺序存储,必须占用一片连续的存储单元。
B.线性表采用顺序存储,便于进行插入和删除操作。
C.线性表采用链接存储,不必占用一片连续的存储单元。
D.线性表采用链接存储,便于插入和删除操作。
线性表是具有n个( C )的有限序列(n>0)。
A.表元素 B.字符 C.数据元素D.数据项若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用( A )存储方式最节省时间。
A.顺序表 B.双链表 C.带头结点的双循环链表 D.单循环链表某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除第一个元素,则采用( D )存储方式最节省运算时间。
A.单链表 B.仅有头指针的单循环链表 C.双链表 D.仅有尾指针的单循环链表设一个链表最常用的操作是在末尾插入结点和删除尾结点,则选用( D )最节省时间。
A. 单链表B.单循环链表C. 带尾指针的单循环链表D.带头结点的双循环链表若某表最常用的操作是在最后一个结点之后插入一个结点或删除最后一个结点。
则采用( D )存储方式最节省运算时间。
A.单链表 B.双链表 C.单循环链表D.带头结点的双循环链表链表不具有的特点是( B )A.插入、删除不需要移动元素 B.可随机访问任一元素A.O(i) B.O(1) C.O(n) D.O (i-1)循环链表H的尾结点P的特点是( A )。
A.P->next=H B.P->next= H->next C.P=H D.P=H->next完成在双循环链表结点p之后插入s的操作是( D );A.p->next=s ; s->priou=p; p->next->priou=s ; s->next=p->next;B. p->next->priou=s; p->next=s; s->priou=p; s->next=p->next;C. s->priou=p; s->next=p->next; p->next=s; p->next->priou=s ;D.s->priou=p; s->next=p->next; p->next->priou=s ; p->next=s;设指针q指向单链表中结点A,指针p指向单链表中结点A的后继结点B,指针s指向被插入的结点X,则在结点A和结点B插入结点X的操作序列为( B )。
线性表习题
线性表习题第2章线性表一.选择题(1)顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。
A.110 B.108 C.100 D.120(2)在n个结点的顺序表中,以下算法的时间复杂度是O(1)的操作是()。
A.访问第i个结点(1≤i≤n)和求第i个结点的直接前驱(2≤i≤n)B.在第i个结点后插入一个新结点(1≤i≤n)C.删除第i个结点(1≤i≤n)D.将n个结点从小到大排序(3)向一个有127个元素的顺序表中插入一个新元素并保持原来顺序不变,平均要移动的元素个数为()。
A.8 B.63.5 C.63 D.7(4)链接存储的存储结构所占存储空间()。
A.分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针B.只有一部分,存放结点值C.只有一部分,存储表示结点间关系的指针D.分两部分,一部分存放结点值,另一部分存放结点所占单元数(5)线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
A.必须是连续的B.部分地址必须是连续的C.一定是不连续的D.连续或不连续都可以(6)线性表L在()情况下适用于使用链式结构实现。
A.需经常修改L中的结点值B.需不断对L进行删除插入C.L中含有大量的结点D.L中结点结构复杂(7)单链表的存储密度()。
A.大于1 B.等于1 C.小于1 D.不能确定解释:存储密度是指一个结点数据本身所占的存储空间和整个结点所占的存储空间之比,假设单链表一个结点数据域所占的空间为D,指针域所占的空间为N,则存储密度为:D/(D+N) 。
(8)将两个各有n个元素的有序表归并成一个有序表,其最少的比较次数是()。
A.n B.2n-1 C.2n D.n-1(9)在一个长度为n的顺序表中,在第i个元素(1≤i≤n+1)之前插入一个新元素时须向后移动()个元素。
A.n-i B.n-i+1 C.n-i-1 D.I(10) 线性表L=(a1,a2,……a n),下列说法正确的是()。
数据结构--线性表习题及答案
数据结构--线性表习题及答案第⼆章线性表⼀、选择题1、若长度为n的线性表采⽤顺序存储结构,在其第i个位置插⼊⼀个新元素算法的时间复杂度()。
A. O(log2n)B.O(1)C. O(n)D.O(n2)2、若⼀个线性表中最常⽤的操作是取第i个元素和找第i个元素的前趋元素,则采⽤()存储⽅式最节省时间。
A. 顺序表B. 单链表C. 双链表D. 单循环链表3、具有线性结构的数据结构是()。
A. 图B. 树C. ⼴义表D.栈4、在⼀个长度为n的顺序表中,在第i个元素之前插⼊⼀个新元素时,需向后移动()个元素。
A. n-iB. n-i+1C. n-i-1D. i5、⾮空的循环单链表head的尾结点p满⾜()。
A. p->next==headB. p->next==NULLC. p==NULLD. p==head6、链表不具有的特点是()。
A. 可随机访问任⼀元素B. 插⼊删除不需要移动元素C. 不必事先估计存储空间D. 所需空间与线性表长度成正⽐7、在双向循环链表中,在p指针所指的结点后插⼊⼀个指针q所指向的新结点,修改指针的操作是()。
A. p->next=q;q->prior=p;p->next->prior=q;q->next=q;B. p->next=q;p->next->prior=q;q->prior=p;q->next=p->next;C. q->prior=p;q->next=p->next;p->next->prior=q;p->next=q;D. q->next=p->next;q->prior=p;p->next=q;p->next=q;8、线性表采⽤链式存储时,结点的存储地址()。
A. 必须是连续的B. 必须是不连续的C. 连续与否均可D. 和头结点的存储地址相连续9、在⼀个长度为n的顺序表中删除第i个元素,需要向前移动()个元素。
一元多项式习题及解答
习 题 一A 组1. 判别{},a a b =+∈QQ 是否为数域 解 是.2. 设32()1f x x x x =+++,2()32g x x x =++,求()()f x g x +,()()f x g x -,()()f x g x . 解 32()()243f x g x x x x +=+++,3()()21f x g x x x -=--,5432()()46652f x g x x x x x x =+++++.3.设19932199431995()(54)(421)(8112)f x x x x x x =----+,求()f x 的展开式中各项系数的和. 解 由于()f x 的各项系数的和等于(1)f ,所以199319941995(1)(54)(421)(8112)1f =----+=-.4. 求()g x 除以()f x 的商()q x 与余式()r x .(1) 322()31,()321f x x x x g x x x =---=-+; (2) 42()25,()2f x x x g x x x =-+=-+.解 (1) 用多项式除法得到 所以,17262(),()3999q x x r x x =-=--. (2) 用多项式除法得到 所以,2()1,()57q x x x r x x =+-=-+.5.设,a b 是两个不相等的常数,证明多项式()f x 除以()()x a x b --所得余式为()()()()f a f b af b bf a x a b a b--+--. 证明 依题意可设()()()()f x x a x b q x cx d =--++,则解得故所得余式为()()()()f a f b af b bf a x a b a b--+--.6. 问,,m p q 适合什么条件时,()f x 能被()g x 整除(1) 3()f x x px q =++,2()1g x x mx =+-;(2) 42()f x x px q =++,2()1g x x mx =++.解 (1) 由整除的定义知,要求余式()0r x =.所以先做多项式除法,要求2()(1)()0r x p m x q m =+++-=, 所以2(1)0,0p m q m ++=-=.即21,p m q m =--=时,可以整除.(2) 方法同上.先做多项式除法,所得余式为22()(2)(1)r x m p m x q p m =--++--,所以22(2)0,10m p m q p m --=+--=,即01m p q ==+,或22,1p m q -==时,可以整除.7. 求()f x 与()g x 的最大公因式:(1) 43232()341,()1f x x x x x g x x x x =+---=+--;(2) 4332()41,()31f x x x g x x x =-+=-+;(3) 42432()101,()61f x x x g x x x =-+=-+++.解 (1) 用辗转相除法得到用等式写出来,就是2()()(231)f x xg x x x =+---,21133()(231)2444g x x x x x ⎛⎫⎛⎫=-+----+ ⎪ ⎪⎝⎭⎝⎭,284332313344x x x x ⎛⎫⎛⎫---=+-- ⎪⎪⎝⎭⎝⎭,所以()(),()1f x g x x =+.(2) 同样地,所以()(),()1f x g x =.(3) 同样用辗转相除法,可得 ()2(),()1f x g x x =--.8. 求(),()u x v x 使()()()()()(),()u x f x v x g x f x g x +=:(1) 432432()242,()22f x x x x x g x x x x x =+---=+---:(2) 43232()421659,()254f x x x x x g x x x x =--++=--+:(3) 4322()441,()1f x x x x x g x x x =--++=--.解 (1) 利用辗转相除法,可以得到3()()(2)f x g x x x =+-,32()(1)(2)(2)g x x x x x =+-+-,322(2)x x x x -=-.因而,()2(),()2f x g x x =-,并且所以()1,()2u x x v x x =--=+(2) 利用辗转相除法,可以得到2()2()(639)f x xg x x x =-+-,211()(639)(1)33g x x x x x ⎛⎫=-+--+-- ⎪⎝⎭, 2(639)(1)(69)x x x x -+-=--+.因而,()(),()1f x g x x =-,并且 所以21122(),()13333u x x v x x x =-+=--. (3) 利用辗转相除法,可以得到2()(3)()(2)f x x g x x =-+-, ()(1)(2)1g x x x =+-+.因而()(),()1f x g x =,并且所以32()1,()32u x x v x x x x =--=+--. 9. 设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 利用辗转相除法,可以得到 2()()(1)(2)f x g x t x t x u =+++-+,222222212()(1)(2)[(1)(2)]()(1)(2)1(1)(1)(1)t t t u t t u t t g x x t x t x u x t t t t ⎡⎤⎛⎫-+-++-+--⎡⎤=+++-+++ ⎪⎢⎥⎣⎦++++⎝⎭⎣⎦由题意,()f x 与()g x 的最大公因式是一个二次多项式,所以解得0,4u t ==-.10. 设()242(1)1x Ax Bx -++,求A 和B .解 用2(1)x -去除()f x 421Ax Bx =++,得余式1()(42)13r x A B x A B =++--,由题意要求知1()0r x =,即解得1,2A B ==-.11. 证明:如果()(),()1f x g x =,()(),()1f x h x =,那么()(),()()1f x g x h x =.证明 由条件可知,存在1()u x 和1()v x 使得11()()()()1u x f x v x g x +=,存在2()u x 和2()v x 使得22()()()()1u x f x v x h x +=.用()h x 乘以第一式得11()()()()()()()u x f x h x v x g x h x h x +=,代入第二式得[]2211()()()()()()()()()1u x f x v x u x f x h x v x g x h x ++=,即[]21212()()()()()[()()]()()1u x u x v x h x f x v x v x g x h x ++=,所以()(),()()1f x g x h x =.12. 证明:如果()f x 与()g x 不全为零,且()()()()()(),()u x f x v x g x f x g x +=,那么()(),()1u x v x =.证明 由于()()()()()(),()u x f x v x g x f x g x +=,()f x 与()g x 不全为零,所以()(),()0f x g x ≠.两边同时除以()(),()0f x g x ≠,有()()()()()()1(),()(),()f x g x u x v x f x g x f x g x +=, 所以()(),()1u x v x =. 13. 证明:如果()(),()()d x f x d x g x ,且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由题意知()d x 是()f x 与()g x 的公因式.再由条件设()()()()()d x u x f x v x g x =+. 又设()h x 为()f x 与()g x 的任一公因式,即()(),()()h x f x h x g x ,则由上式有 ()()h x d x .故而()d x 是()f x 与()g x 的一个最大公因式.14. 证明:()()()(),()()(),()()f x h x g x h x f x g x h x =,其中()h x 的首项系数为1.证明 显然()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个公因式.下面来证明它是最大公因式. 设(),()u x v x 满足()()()()()(),()u x f x v x g x f x g x +=,则()()()()()()((),())()u x f x h x v x g x h x f x g x h x +=.由上题结果知,()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又首项系数为1,所以()()()(),()()(),()()f x h x g x h x f x g x h x =.15. 设多项式()f x 与()g x 不全为零,证明()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫= ⎪ ⎪⎝⎭.证明 设()()(),()d x f x g x =,则存在多项式(),()u x v x ,使()()()()()d x u x f x v x g x =+.因为()f x 与()g x 不全为零,所以()0d x ≠.上式两边同时除以()d x ,有()()()()1()()(),()(),()f x g x u x v x f x g x f x g x =+, 故()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫= ⎪ ⎪⎝⎭成立.16.分别在复数域、实数域和有理数域上分解41x +为不可约因式之积.解 在实数域上的分解式为 ()()4222221(1)211x x x x x +=+-=+++.在复数域上的分解式为4122222222x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=+-++---+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.在有理数域上41x +是不可约多项式.否则,若41x +可约,有以下两种可能.(1)41x +有一次因式,从而它有有理根,但(1)0f ±≠,所以41x +无有理根.(2)41x +无一次因式,设4221()()x x ax b x cx d +=++++,其中,,,a b c d 为整数.于是0a c +=,0b d ac ++=,0ad bc +=,1bd =,又分两种情况:①1b d ==,又 a c =-,从而由 0b d ac ++=,得22a =,矛盾;②1b d ==-,则22a =-,矛盾.综合以上情况,即证.17. 求下列多项式的有理根:(1) 32()61514f x x x x =-+-;(2) 42()4751g x x x x =---;(3) 5432()614113h x x x x x x =+----.解 (1)由于()f x 是首项系数为1的整系数多项式,所以有理根必为整数根,且为14-的因数.14-的因数有:1,2,7,14±±±±,计算得到:故2x =是()f x 的有理根.再由多项式除法可知,2x =是()f x 的单根.(2) 类似(1)的讨论可知,()g x 的可能的有理根为:111,,24±±±,计算得到 111171111(1)9,(1)1,5,0,,22464464g g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=--==--==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故12x =-是()g x 的有理根.再由多项式除法可知,12x =-是()f x 的2重根. (3) 类似地,()h x 的可能的有理根为:1,3±±,计算得到(1)28,(1)0,(3)0,(3)96h h h h =--==-=-.故1x =-,3x =是()h x 的有理根.再由多项式除法可知,1x =-是()h x 的4重根,3x =是()h x 的单根.18.若实系数方程30x px q ++=有一根a bi +(,a b 为实数,0b ≠),则方程30x px q +-=有实根2a .证明 设原方程有三个根123,,ααα.不失一般性,令1a bi α=+,从而有 2a bi α=-,由根与系数的关系可知 12330()()a bi a bi αααα=++=++-+,所以32a α=-,即3(2)(2)0a p a q -+-+=,故3(2)(2)0a p a q +-=.这说明30x px q +-=有实根2a .19. 证明:如果(1)()n x f x -,那么(1)()n n x f x -.证明 因为(1)()n x f x -,所以 (1)(1)0nf f ==.因此,令()(1)()f x xg x =-,则有 ()(1)()n n n f x x g x =-, 即(1)()n n x f x -.20. 下列多项式在有理数域上是否可约(1) 21()1f x x =+;(2) 4322()8122f x x x x =-++;(3) 633()1f x x x =++;(4) 4()1p f x x px =++,p 为奇素数;(5) 45()41f x x kx =++,k 为整数.解 (1)1()f x 的可能的有理根为:1±,而(1)2f ±=,所以它在有理数域上不可约.(2)由Eisenstein 判别法,取素数2p =,则2不能整除1,而 2(8),212,22-,但是22不能整除2,所以该多项式在有理数域上不可约.(3)令1x y =+,代入633()1f x x x =++有654323()(1)615211893g y f y y y y y y y =+=++++++.取素数3p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以()f x 在有理数域上不可约.(4) 令1x y =-,代入4()1p f x x px =++,得11222214()(1)()p p p p p p p p p g y f y y C y C y C y C p y p ----=-=-+--++-,取素数p ,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以4()f x 在有理数域上不可约.(5) 令1x y =+,代入45()41f x x kx =++,得4325()(1)46(44)42g y f y y y y k y k =+=++++++,取素数2p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以5()f x 在有理数域上不可约.B 组1.设()f x ,()g x ,()h x 是实数域上的多项式,(1) 若222()()()f x xg x xh x =+,则()()()0f x g x h x ===.(2) 在复数域上,上述命题是否成立证明 (1)当()()0g x h x ==时,有2()0f x =,所以()0f x =,命题成立.如果()g x ,()h x 不全为零,不妨设()0g x ≠.当()0h x =时,()22()()12()xg x xh x g x ∂+=+∂为奇数;当()0h x ≠时,因为()g x ,()h x 都是实系数多项式,所以2()xg x 与2()xh x 都是首项系数为正实数的奇次多项式,于是也有22(()())xg x xh x ∂+为奇数.而这时均有2()0f x ≠,且2()2()f x f x ∂=∂为偶数,矛盾.因此有()()0g x h x ==,从而有()0f x =.(2) 在复数域上,上述命题不成立.例如,设()0f x =,()n g x x =,()i nh x x =,其中n 为自然数,有222()()()f x xg x xh x =+,但()0g x ≠,()0h x ≠.2. 设(),(),()[]f x g x h x P x ∈,满足 2(1)()(1)()(2)()0x h x x f x x g x ++-++=,2(1)()(1)()(2)()0x h x x f x x g x ++++-=.证明()2(1)(),()x f x g x +.证明 两式相加得到22(1)()2(()())0x h x x f x g x +++=.由2(1,)1x x +=可知 ()2(1)()()x f x g x ++.两式相减得到2()4()0,()2()f x g x f x g x -+==. 故()()221(),1()x f x x g x ++,即()()21(),()x f x g x +.3.设1212()()()()g x g x f x f x ,证明(1) 若11()()f x g x ,1()0f x ≠,则22()()g x f x ;(2) 若212()()()g x f x f x ,是否有22()()g x f x解 (1) 因为1212()()()()g x g x f x f x ,11()()f x g x ,故存在多项式()h x ,1()h x 使得1212111()()()()(),()()()f x f x g x g x h x g x f x h x ==.于是12112()()()()()()f x f x f x h x g x h x =.由于1()0f x ≠,故有212()()()()f x h x g x h x =,即22()()g x f x .(2) 否.例如取1()2g x x =-,22()1g x x =-,1()(1)(2)f x x x =--,2()(1)(2)f x x x =++.虽然1212()()()()g x g x f x f x 且212()()()g x f x f x ,但2()g x 不能整除2()f x .4.当k 为何值时,2()(6)42f x x k x k =++++和2()(2)2g x x k x k =+++的最大公因式是一次的并求出此时的最大公因式.解 显然()()(2)g x x k x =++.当()(),()2f x g x x =+时,(2)42(6)420f k k -=-+++=,则3k =.当()(),()f x g x x k =+时,2()(6)420f k k k k k -=-+++=,则1k =.这时()(),()1f x g x x =+. 5.证明:对于任意正整数n ,都有 ()()(),()(),()n n n f x g x f x g x =.证明 由题意可知()f x 与()g x 不全为零.令()(),()()f x g x d x =,则()0d x ≠,从而()(),1()()f x g x d x d x ⎛⎫= ⎪⎝⎭,所以对任意正整数n ,有()(),1()()n n f x g x d x d x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是有 ()()()()1()()n nf xg x u x v x d x d x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即 ()()()()()n n n u x f x v x g x d x +=. 又由()()d x f x ,()()d x g x ,有()()n n d x f x ,()()n n d x g x ,因此()n d x 是()nf x 与()ng x 的首项系数为1的最大公因式,从而有()()(),()()(),()nn n n f x g x d x f x g x ==. 6. 设11()()(),()()(),f x af x bg x g x cf x dg x =+=+且0ad bc -≠,证明()()11(),()(),()f x g x f x g x =.证明 设()(),()()f x g x d x =,则()(),()()d x f x d x g x .由于1()()()f x af x bg x =+,1()()()g x cf x dg x =+, 故11()(),()()d x f x d x g x .又设11()(),()()h x f x h x g x ,由上式及0ad bc -≠,可得11()()()d b f x f x g x ad bc ad bc =---, 11()()()c a g x f x g x ad bc ad bc-=+--, 从而 ()(),()()h x f x h x g x ,于是 ()()h x d x ,即()d x 也是1()f x 和1()g x 的最大公因式,即()()11(),()(),()f x g x f x g x =.7.设1()()()f x d x f x =,1()()()g x d x g x =,且()f x 与()g x 不全为零,证明()d x 是()f x 与()g x 的一个最大公因式的充分必要条件是()11(),()1f x g x =.证明 必要性.若()d x 是()f x 与()g x 的一个最大公因式,则存在多项式(),()u x v x 使()()()()()u x f x v x g x d x +=,于是11()()()()()()()u x d x f x v x d x g x d x +=.由()f x 与()g x 不全为零知()0d x ≠,因此有11()()()()1u x f x v x g x +=,即()11(),()1f x g x =.充分性.若()11(),()1f x g x =,则存在多项式(),()u x v x ,使11()()()()1u x f x v x g x +=.两边同时乘()d x 有()()()()()u x f x v x g x d x +=.由()d x 是()f x 与()g x 的一个公因式知,()d x 是()f x 与()g x 的一个最大公因式.8.设()f x 和()g x 是两个多项式,证明()(),()1f x g x =当且仅当()()(),()()1f x g x f x g x +=. 证明 必要性.设()(),()1f x g x =,若()()f x g x +与()()f x g x 不互素,则有不可约公因式()p x ,使()()()p x f x g x , 所以()()p x f x 或()()p x g x .不妨设()()p x f x ,由()()()()p x f x g x +可知()()p x g x ,因此()p x 是()f x 和()g x 的公因式,与(),()f x g x 互素矛盾,故()()f x g x +与()()f x g x 互素.充分性.设(()(),()())1f x g x f x g x +=,则存在(),()u x v x 使()()()()()()()1f x g x u x f x g x v x ++=,()()()()()()()1f x u x g x u x f x v x ++=,上式说明()(),()1f x g x =.9. 如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x -.证明 21x x ++的两个根为1ε=和2ε=33121εε==. 因为()23312(1)()()x x f x xf x +++,所以331212()()()()x x f x xf x εε--+,故有即解得12(1)(1)0f f ==,从而1(1)()x f x -,2(1)()x f x -.10. 若()()n f x f x ,则()f x 的根只能是零或单位根.证明 因为()()n f x f x ,故存在多项式()q x ,使()()()n f x f x q x =.设a 为()f x 的任一根,即()0f a =,则()()()0n f a f a q a ==.也就是说,当a 为()f x 的一根时,n a 也为()f x 的一根.依此类推,可知2,,,n n a a a 也是()f x 的根.由于()f x 的根的个数有限,故必定存在正整数,s t (不妨设s t >),使得s t n n a a =,(1)0t s t n n n a a --=.于是有0t n a =即0a =,或者(1)0s tn n a --=,即a 为单位根. 11. 设()f x 是一个整系数多项式,且(0),(1)f f 都是奇数,则()f x 没有整数根.证明 设10()n n f x a x a x a =+++,假设()f x 有整数根α,则x α-整除()f x ,即()()()f x x q x α=-,其中商式()q x 也是一个整系数多项式.事实上,设1110()n n q x b x b x b --=+++,代入上式并比较两端同次幂系数,得112110100,,,,n n n n n a b a b b a b b a b ααα----==-=-=-, 因为()f x 是一个整系数多项式,所以,110,,,n b b b -也是整数,令0,1x x ==分别代入展开式,得 (0)(0),(1)(1)(1)f q f q αα=-=-.由于(0),(1)f f 都是奇数,则α及1α-都必须是奇数,这是不可能的,所以,()f x 不能有整数根.12.证明对于任意非负整数n ,都有 ()()22211(1)n n x x x x ++++++. 证明 设α是21x x ++的任一根,即 210αα++=,21αα+=-,31α=.由此得221222123(1)()(1)0n n n n n n αααααα+++++++=+-=-=,即α也是221(1)n n x x ++++的根.又因为21x x ++无重根,因此()()22211(1)n n x x x x ++++++.13. 假设12,,,n a a a 是两两不同的整数,证明:多项式12()()()()1n f x x a x a x a =----在有理数域上不可约.证明 用反证法.假设()f x 在有理数域上可约,则有整系数多项式12(),()g x g x ,使得12()()()f x g x g x =.于是12()()()i i i f a g a g a =,1,2,,i n =.因此,12()1,()1i i g a g a ==-或12()1,()1i i g a g a =-=.这样总有12()()i i g a g a =-,从而由推论2知12()()g x g x =-,所以21()()f x g x =-.这与()f x 的首项系数为1相矛盾,故()f x 在有理数域上不可约.。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
数据结构线性表知识点及例题
L->data[j+1]=L->data[j];
/* 结点移动 */
L->data[i-1]=x;
datatype data[MAXSIZE];
int last; 这样表示的顺序表如图2.1 所示。表长为 last+1,数据元素分别存放在data[0]到data[last] 中。这样使用简单方便,但有时不便管理。
01…
i-1 i … n-1 ... MAXSIZE1-1
data a1 a2 … ai-1 ai ai+1 … an
Loc(ai)=Loc(a1)+(i-1)*d
1<=i<=n
这就是说只要知道顺序表首地址和每个数据元素所占地址单元的个数就可求出第i个数据元
素的地址来,这也是顺序表具有按数据元素的序号随机存取的特点。
在程序设计语言中,一维数组在内存中占用的存储空间就是一组连续的存储区域,因此,
用一维数组来表示顺序表的数据存储区域是再合适不过的。考虑到线性表的运算有插入、删
SeqList *init_SeqList( ) { SeqList *L; L=malloc(sizeof(SeqList)); L->last=-1; return L; }
算法2.1
设调用函数为主函数,主函数对初始化函数的调用如下:
main()
{SeqList *L;
L=Init_SeqList(); ...
{ int j; if (L->last==MAXSIZE-1) { printf("表满"); return(-1); } /*表空间已满,不能插入*/
if (i<1 || i>L->last+2) /*检查插入位置的正确性*/ { printf("位置错");return(0); }
《数据结构》关于线性表的练习题(PPT内含答案)
C.插入删除时不需移动元素
D.所需空间与线性表成正比
7.在( B )的运算中,使用顺序表比链表好。
A.插入
B.根据序号查找
C.删除
D.根据元素查找
8.在单链表指针为p的结点之后插入指针为s的结点,正确 的操作是( B )。
A.p->next=s;s->next=p->next;
B.s->next=p->next;p->next=s;
9.若对一个线性表经常进行查找操作,而很少进行插入和 删除操作时,则采用 顺序 存储结构为宜,相反,若经 常进行的是插入和删除操作时,则采用 链式 存储结构 为宜。
习题2
三、判断题 1.线性表的链式存储结构优于顺序存储结构。( F ) 2.链表的每个结点都恰好包含一个指针域。 ( F ) 3.在线性表的链式存储结构中,逻辑上相邻的两个元素在
B.循环链表和单向链表
C.循环链表
15.对具有n个结点的线性表进行插入或删除操作, 所需的算法时间复杂度为( D )。
A.O(n2) C.O(log2n)
B.O(nlog2n) D.O(n)
习题2
二、填空题
1.线性表L=(a1,a2,…,an)采用顺序存储,假定删除 表中任意元素的概率相同,则删除一个元素平均 需要移动元素的个数是 (n-1)/2 。
习题2
5.链表相对于顺序表的优点是插入、删除方便;缺点是存 储密度 小 。
6.链式存储的特点是利用 指针 来表示数据元素之间的 逻辑关系。
7.在双向链表中,每个结点有两个指针域,一个指向其 前驱结点,另一个指向其 后继 结点。
8.在一个双链表中,设指针p是指向该表中待删除的结点, 则需要执行的操作为: p->pre->next=p->next 。
《数据结构》第二章线性表习题
《数据结构》第二章线性表习题一、单项选择题1. 线性表是________。
A.一个有限序列,可以为空B.一个有限序列,不可以为空C.一个无限序列,可以为空D.一个无限序列,不可以为空2. 在一个长度为n的顺序表中删除第i个元素(0<=i<=n)时,需向前移动个元素。
A.n-i B.n-i+l C.n-i-1 D.i3. 线性表采用链式存储时,其地址________。
A.必须是连续的B.一定是不连续的C.部分地址必须是连续的D.连续与否均可以4. 从一个具有n个结点的单链表中查找其值等于x的结点时,在查找成功的情况下,需平均比较________个元素结点。
A.n/2 B.n C.(n+1)/2 D.(n-1)/25. 在双向循环链表中,在p所指的结点之后插入s指针所指的结点,其操作是____。
A. p->next=s; s->prior=p;p->next->prior=s; s->next=p->next;B. s->prior=p; s->next=p->next;p->next=s; p->next->prior=s;C. p->next=s; p->next->prior=s;s->prior=p; s->next=p->next;D. s->prior=p; s->next=p->next;p->next->prior=s; p->next=s;6. 设单链表中指针p指向结点m,若要删除m之后的结点(若存在),则需修改指针的操作为________。
A.p->next=p->next->next; B.p=p->next; C.p=p->next->next; D.p->next=p;7. 在一个长度为n的顺序表中向第i个元素(0< i<n+l )之前插入一个新元素时,需向后移动______个元素。
完整word版数据结构练习题线性表习题及答案
第二章线性表一.名词解释1.线性结构2.数据结构的顺序实现3.顺序表4.链表5.数据结构的链接实现6. 建表7.字符串8.串9.顺序串 10.链串二、填空题1.为了便于讨论,有时将含n(n>=0)个结点的线性结构表示成(a,a,……a),其中每n12个a代表一个______。
a称为______结点,a称为______结点,i称为a在线性表中的________ii1n或______。
对任意一对相邻结点a、a(1<=i<n),a称为a的直接______a称为a的直iii┼1i┼1┼i1i接______。
2.为了满足运算的封闭性,通常允许一种逻辑结构出现不含任何结点的情况。
不含任何结点的线性结构记为______或______。
3.线性结构的基本特征是:若至少含有一个结点,则除起始结点没有直接______外,其他结点有且仅有一个直接______;除终端结点没有直接______外,其它结点有且仅有一个直接______.4.所有结点按1对1的邻接关系构成的整体就是______结构。
5.线性表的逻辑结构是______结构。
其所含结点的个数称为线性表的______,简称______.6.表长为O的线性表称为______7.线性表典型的基本运算包括:______、______、______、______、______、______等六种。
8.顺序表的特点是______。
9.顺序表的类型定义可经编译转换为机器级。
假定每个datatype类型的变量占用k(k>=1)个内存单元,其中,b是顺序表的第一个存储结点的第一个单元的内存地址,那么,第i个结点a的存储地址为______。
i10.以下为顺序表的插入运算,分析算法,请在______处填上正确的语句。
Void insert_sqlist(sqlist L,datatype x,int i)/*将X插入到顺序表L的第i-1个位置*/{ if( st == maxsize) error(“表满”);if((i<1)||(i>st+1))error(“非法位置”);for(j=st;j>=i;j--)______;L.data[i-1]=x;st=st+1;}11.对于顺序表的插入算法insert_sqlist来说,若以结点移动为标准操作,则插入算法的最坏时间复杂性为________,量级是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
StatusOrderInsert(LinkList&L,ElemTypee,
相加得到的和多项式
上述多项式的相加过程和上一节讨论的归并两个有序表的过程极其类似,不同之处仅在于,后者在比较数据元素时只出现两种情况。因此,多项式相加的过程亦完全可以利用线性链表的基本操作来完成。
StatusLocateElem(LinkListL,ElemTypee,Position &q,
int(*compare)(ElemType,ElemType));
CreatPolyn(&P,m)
操作结果:输入m项的系数和指数,建立一元多项式P
DestroyPolyn(&P)
初始条件:一元多项式P已存在。操作结果:销毁一元多项式P
PrintPolyn(P)
初始条件:一元多项式P已存在。操作结果:打印输出P
PolynLength(P)
初始条件:—元多项式P已存在。
数据结构第4次课
章节名称
2.4一元多项式的表示及相加
线性表总结与习题
目的要求
1.熟悉线性链表的应用(一元多项式的表示及相加运算)。熟练地通过上机编程练习掌握对线性表的操作算法。
2. 通过习题的练习,熟练掌握线性表的操作和具体应用。
主
要
内
容
与
时
间
概
算
序号
主要内容ቤተ መጻሕፍቲ ባይዱ
时间概算
1
一元多项式及相加的表示
10分
2
课堂提问
在计算机中如何表示一个一元多项式Pn(x) = p0+ p1x+ p2x2+….+pnxn?
本次课内容总结
1.一元多项式及相加的表示;
2.一元多项式及相加的实现;
3.本章知识要点回顾及内容精要;
思
考
题
作
业
题
1.约瑟夫(Joseph)问题:编号为1,2,···,n的n个人按顺时针方向围坐在一张圆桌旁,每个人手中持有一个密码(正整数)。首先输入一个正整数作为报数上限值m,然后,从第一个人开始按顺时针方向自1开始顺序报数,报到m的人离开桌旁,并将他手中的密码作为新的m值,从顺时针方向的下一个就坐在桌旁的人人开始重新从1报数,如此下去,直至所有人全部离开桌旁为止。
其中pi,是指数为ei的项的非零系数,且满足0 ≤ e1< e2< …<em= n,若用一个长度为m且每个元素有两个数据项(系数项和指数项)的线性表便可唯一确定多项式Pn(x)。
((p1,e1) , (p2,e2) , … ,(pm,em))
二、一元多项式的实现
1.抽象数据类型一元多项式的定义如下:
//输入m项的系数和指数,建立表示一元多项式的有序链表P
voidDestroyPolyn(polynomail&P);//销毁一元多项式P
voidPrintPolyn(polynomailP);//打印输出一元多项式P
intPolynLength(polymomailP);//返回一元多项式P中的项数
2.线性表的特点
(1)存在唯一的一个被称做“第一个”的数据元素;
(2)存在唯一的一个被称做“最后一个”的数据元素;
(3)除第一个之外,集合中的每个数据元素均只有一个前驱;
(4)除最后一个之外,集合中每个数据元素均只有一个后继。
3.线性表的顺序存储结构(顺序表)
线性表的顺序存储方式就是用一组地址连续的存储单元依次存储线性表的各个元素,可借助一维数组实现。在顺序存储中,每个存储结点只含有所存数据元素本身的信息,元素之间的逻辑关系是通过数组下标反映出来的。
一、一元多项式的表示
在数学上,一元多项式Pn(x)可按升幂写成:
Pn(x) = p0+ p1x+ p2x2+….+pnxn
它由n+1个系数唯一确定 ,因此,在计算机里,它可用一个线性表P来表示:P = (p0,p1,p2,…pn)每一项的指数i隐含在其系数pi的序号里。
然而在通常的应用中,多项式的次数可能很高且变化很大,使得顺序存储结构的最大长度很难决定。
if(sum != 0.0){ //修改多项式PA中当前结点的系数值
SetCurElem(qa,sum); ha=qa;}
else { //删除多项式PA中当前结点
DelFirst(ha,qa);FreeNode(qa);
}
DelFirst(hb,qb);FreeNode(qb);
qb=NextPos(Pb,hb);qa=NextPos(Pa,ha);break;
intexpn; //指数
}term,ElemType; //两个类型名:term用于本ADT,ElemType为LinkList的数据对象名
typedefLinkListpolynomial;//用带头结点的有序链表表示多项式
(2)基本操作的函数原型说明
voidCreatPolyn(polynomail&P,intm)
voidMultiplyPolyn(polynomail&Pa,polynomail&Pb);
//完成多项式相乘运算,即:Pa= Pa *Pb,并销毁一元多项式Pb
(3)基本操作的算法描述(部分)
intcmp(term a,term b);
//依a的指数值<(或=)(或>)b的指数值,分别返回-1,0和1;
voidAddPolyn(polynomail&Pa,polynomail&Pb);
//完成多项式相加运算,即:Pa=Pa+Pb,并销毁一元多项式Pb
voidSubtractPolyn(polynomail&Pa,polynomail&Pb);
//完成多项式相减运算,即:Pa=Pa-Pb,并销毁一元多项式Pb
2.假设有7个人,编号从1到7,他们手中的密码分别是3,1,7,2,4,8,4,最初的m=2,通过报数,这7个人离开桌旁的顺序应该是:2,3,5,4,7,6,1。
参考
资料
《数据结构辅导与提高》,徐孝凯编著,清华大学出版社
《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社
授课内容
2.4一元多项式的表示及相加
int(*compare)(ElemType,ElemType));
// 按有序判定函数compare()的约定,将值为e的结点插入到有序链表L的适当位置
(1)抽象数据类型Polynomial的实现
typedefstruct{ //项的表示,多项式的项作为LinkList的数据元素
floatcoef; //系数
一元多项式及相加的实现
35分
3
本章知识点回顾
5分
4
内容精要
15分
5
习题
35分
共计
100分
重点
难点
重点:一元多项式的表示及相加的表示与实现;
难点:采用线性表实现一元多项式相加。
方法
手段
采用教员课堂讲授、学员上机实验实施教学。授课中应对于重/难点作详细分析,并结合课堂讲授的内容实施上机实验教学任务。
(续表)
ADT Polynomial{
数据对象:D = {ai|ai∈TermSet,i=1,2,…,m,m>=0;TermSet中的每个元素包含一个表示系数的实数和表示指数的整数}
数据关系:R1= {<ai-1,ai> | ai-1,ai∈D,且ai-1中的指数值<ai中的指数值,I=2,3,…,n}
基本操作:
voidCreatPolyn(polynomail&P,intm) {
//输入m项的系数和指数,建立表示一元多项式的有序链表P
InitList(P);h =GetHead(P);e.coef= 0.0;e.expn= -1;
SetCurElem(h,e); //设置头结点的数据元素
for(i=1;i<=m;++i){ //依次输入m个非零项
假设线性表中每个元素占用L个存储单元,则线性表中第i个数据元素的存储地址为LOC(ai)=LOC(a1)+(i-1)*L。
4.C语言中线性表顺序存储空间的两种分配方法
C语言中线性表顺序存储空间可以采用静态分配和动态分配两种不同的分配方法。
(1)静态分配
静态分配是在类定义中用一维数组来定义线性表的存储空间。这种方式在程序开始运行前,系统按数组大小事先分配出相应的空间,因此向量空间的大小应慎重选择,使它既能标元素数目动态增加的需求,又不至于过多浪费存储空间。其C描述如下:
操作结果:返回一元多项式P中的项数
AddPolyn(&Pa,&Pb)
初始条件:一元多项式Pa和Pb存在。
操作结果:完成多项式相加运算,即Pa=Pa+Pb,并销毁Pb
SubtractPolyn(&Pa,&Pb)
初始条件:一元多项式Pa和Pb存在。
操作结果:完成多项式相减运算,即Pa=Pa-Pb,并销毁Pb
a=GetCurElem(qa);b=GetCurElem(qb);//a,b为当前比较元素
switch(*cmp(a,b)) {
case -1: //多项式PA中当前结点的指数值小
ha=qa;qa=NextPos(Pa,qa); break;
case 0: //两者的指数值相等
sum =a.coef+b.coef;