双曲线知识点复习总结

合集下载

高考双曲线知识点总结

高考双曲线知识点总结

高考双曲线知识点总结双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距两准线的距离;通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程分别为双曲线的左、右焦点或分别为双曲线的上下焦点长加短减原则:构成满足与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的.位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.感谢您的阅读,祝您生活愉快。

双曲线知识点复习总结

双曲线知识点复习总结

双曲线知识点总结复习1. 双曲线的定义:(1)双曲线:焦点在x 轴上时1-2222=b y a x (222c a b =+),焦点在y 轴上时2222-b x a y =1(0a b >>)。

双曲线方程也可设为:221(0)x y mn m n-=>这样设的好处是为了计算方便。

(2)等轴双曲线:(注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。

)例一:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

(要分清椭圆和双曲线中的,,a b c 。

)思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线2. 双曲线的几何性质:(1)双曲线(以)(0,01-2222>>=b a by a x 为例):①范围:x a x a ≥≤-且;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2a x c=±; ⑤离心率:ce a=,双曲线⇔1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。

⑥通径22b a(2)渐近线:双曲线22221(0,0)x y a b a b-=>>的渐近线为:等轴双曲线的渐近线方程为: ,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图)例二:方程11122=--+ky k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆1641622=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________例四:双曲线1422=+by x 的离心率)2,1(∈e ,则b 的取值范围是___________________例五:已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,过点F 作直线PF 垂直于该双曲线的一条渐近线l 于)36,33(P .求该双曲线的方程为:3.直线与双曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交或直线与渐近线平行。

双曲线知识点总结

双曲线知识点总结

椭 圆一、1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程: 222c a b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a ==-c 5.三个技巧:(1)用待定系数法求椭圆方程:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程.(2)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(3)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).1.椭圆22221x y a b+=的左右焦点分别为12,F F ,过点1F 的直线交椭圆于,A B 两点,若△ABF 2的周长为20,离心率为35,则椭圆方程为( ) A .221259x y += B .2212516x y += C .221925x y += D .2211625x y += 2.已知椭圆2221(02)4x y b b +=<<与y 轴交于,A B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为( ) A.1 B.2 C.4 D.83.直线y x =与椭圆2222:1x y C a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为 A .152-+ B .152+ C .352- D .124.已知P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上一点,且120PF PF ⋅=,且121tan 2PF F ∠=,则此椭圆的离心率为( )A .12 B .23 C .13D .53 5.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于,P Q 两点,若01160,||||F PQ PF PQ ∠==,则椭圆的离心率为( ) A .13B .23C .233D .33 6.已知设12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为( )A .33B .36C .13D . 16 7.已知椭圆22221x y a b +=上的点P 到左、右两焦点1F 、2F 的距离之和为22,离心率22e = (I )求椭圆的方程;(II )过右焦点2F 且不垂直于坐标轴的直线l 交椭圆于A ,B 两点,试问:线段2OF 上是否存在一点M ,使得||||MA MB =?请作出并证明。

双曲线知识点总结

双曲线知识点总结

双曲线1.定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数 1212||||||2,(2||2)MF MF a a F F c -=<=的点的轨迹称为双曲线.。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上图形定义1212||||||2,(2||2)MF MF a a F F c -=<=标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>渐近线方程b y x a=±a y x b=±特点 x,y 的系数一正一负,那个的分母为正数焦点就在那条轴上2.实轴和虚轴等长的双曲线称为等轴双曲线.1.椭圆22219x y m +=与双曲线2213x y m -=有相同的焦点,则实数m 的值为( )A .2B .2-C .3-D .42. 双曲线221916x y -=的离心率为( ) A .35 B .45 C .53D .543.双曲线22149x y -=的渐近线方程是( ) A .321x y ±= B .231x y ±= C .230x y ±=D .320x y ±=4.已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53BC .54D 5.若双曲线22221x ya b-=的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )AB .5CD .26.已知点,F A 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左焦点、右顶点,点(0,)B b 满足FB AB ⊥,则双曲线的离心率为( )A B 1 C . D 1 7. 过设双曲线2222:1(0,0)x y C a b a b-=>>的右顶点作x 轴的垂线,与C 的一条渐近线交于点A ,若以C 的右焦点为圆心,半径为4的圆经过,A O 两点(O 为原点),则双曲线的方程是( )A .221412x y -= B .22179x y -= C .22188x y -= D .221124x y -= 8.若双曲线22221x y a b -=的一条渐近线方程为03xy +=,则此双曲线的离心率为_______.9.已知以原点O 为中心,0)F 为右焦点的双曲线C 的离心率e =. (1)求双曲线C 的标准方程及其渐近线方程;。

高中数学双曲线知识点总结

高中数学双曲线知识点总结

高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。

具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。

在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。

二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。

对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。

2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。

3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。

双曲线的两条分支在渐近线上无限趋近。

4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。

5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。

6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。

三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。

在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。

四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。

双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。

双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。

五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。

双曲线经典知识点总结

双曲线经典知识点总结

双曲线经典知识点总结双曲线是解析几何中的一种重要曲线,是一对非重叠又对称的曲线组成,它有着丰富的性质和应用。

在数学、物理和工程等领域都有广泛的应用。

本文将通过对双曲线的定义、性质、参数方程、极坐标方程以及相关的应用等方面进行详细的总结和解释。

一、双曲线的定义和基本性质1. 双曲线的定义双曲线定义是平面直角坐标系中满足以下方程的点的轨迹:\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]其中a和b是正实数且a≠b。

当a>b时,曲线称为右双曲线;当a<b时,曲线称为左双曲线。

2. 双曲线的基本性质(1)对称性:关于x轴、y轴和原点对称。

(2)渐近线:右双曲线的渐近线为y=±\frac{b}{a}x,左双曲线的渐近线为y=±\frac{a}{b}x。

(3)焦点和准线:右双曲线的焦点为F_{1}、F_{2}(c,0),准线方程为x=c;左双曲线的焦点为F_{1}、F_{2}(0,c),准线方程为y=c。

(4)离心率:离心率ε定义为,ε=\frac{\sqrt{a^2+b^2}}{a}。

二、双曲线的参数方程和极坐标方程1. 双曲线的参数方程(1)右双曲线的参数方程:\[\begin{cases}x=a\text{sec}t \\y=b\tan t\end{cases}\]其中t为参数。

(2)左双曲线的参数方程:\[\begin{cases}x=a\text{csc}t \\y=b\cot t\end{cases}\]其中t为参数。

2. 双曲线的极坐标方程(1)右双曲线的极坐标方程:\[r=\frac{b}{\sin\theta}\](2)左双曲线的极坐标方程:\[r=\frac{a}{\cos\theta}\]三、双曲线的相关应用1. 数学方面双曲线广泛应用于解析几何、微积分、微分方程等数学领域。

在微积分中,双曲线的导数和积分形式复杂,常作为综合练习的一部分。

高考双曲线知识点总结

高考双曲线知识点总结

高考双曲线知识点总结一、双曲线的定义和性质1. 双曲线的定义双曲线是平面上的一类曲线,其定义为到两个定点的距离之差的绝对值等于常数的点的集合。

2. 双曲线的性质(1)双曲线的标准方程双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(横轴为实轴)或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(纵轴为实轴)。

其中,a和b分别为横轴和纵轴半轴的长度。

(2)双曲线的对称性双曲线关于x轴、y轴、原点对称。

(3)渐近线双曲线有两条渐近线,分别是x轴和y轴。

(4)焦点和直焦距双曲线的焦点定义为到两个定点的距离之差的绝对值等于常数的点的集合。

焦点之间的距离称为直焦距。

(5)双曲线的渐近线双曲线有两条渐近线,分别是x轴和y轴。

双曲线与它的渐近线有如下关系:a)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$时,它的渐近线是x=±a,当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=-1$时,它的渐近线是y=±b;b)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}<1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}<1$时,它的渐近线是y=ax或x=ay;c)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}>0$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}>0$时,它的渐近线是没有。

(6)四条特殊的双曲线内离心双曲线,外离心双曲线,右开弧双曲线,左开弧双曲线。

二、双曲线的图像与方程1. 双曲线的图像(1)当$a>b$时,双曲线的图像为两支开口朝左右的曲线,焦点在横轴上。

双曲线的基本知识点总结

双曲线的基本知识点总结

双曲线的基本知识点总结双曲线基本知识点总结1. 定义双曲线是二次曲线的一种,它是由一个平面和一个双圆锥面相交,除去与锥面的两个交点(焦点)所得到的曲面。

在笛卡尔坐标系中,标准形式的双曲线方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 或 \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是实数,且 \( a > 0 \) 和 \( b > 0 \)。

2. 几何性质- 焦点:双曲线有两个焦点,位于主轴上,且距离为 \( 2c \),其中 \( c^2 = a^2 + b^2 \)。

- 实轴:通过双曲线中心的一条轴,且与双曲线的两个分支相切。

- 虚轴:垂直于实轴并通过双曲线中心的轴。

- 半焦距:焦点到双曲线中心的距离,等于 \( c \)。

- 半实轴:实轴的一半,长度为 \( a \)。

- 半虚轴:虚轴的一半,长度为 \( b \)。

- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线的分支趋近于这些线。

渐近线的方程为 \( y = \pm \frac{b}{a}x \)。

3. 标准方程- 横向双曲线:\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

- 纵向双曲线:\( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

4. 双曲线的类型- 右双曲线:中心在原点,实轴向右延伸。

- 左双曲线:实轴向左延伸。

- 上双曲线:实轴向上延伸。

- 下双曲线:实轴向下延伸。

5. 双曲线的性质- 双曲线的两个分支是对称的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线知识点总结复习
1.双曲线的定义:
(1)双曲线:焦点在x 轴上时1-2222=b y a x (222
c a b =+),焦点在y 轴上时2
222-b
x a y =1(0a b >>)。

双曲线方程也可设为:
22
1(0)x y mn m n
-=>这样设的好处是为了计算方便。

(2)等轴双曲线:
(注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。


例一:已知双曲线C 和椭圆22
1169
x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

(要分清椭圆和双曲线中的,,a b c 。


思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线?
2.双曲线的几何性质:
(1)双曲线(以)(0,01-22
22>>=b a b
y a x 为例):①范围:x a x a ≥≤-且;②焦点:
两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点
(,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2
a x c
=±;⑤离心
率:c
e a =,双曲线⇔1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。

⑥通
径22b a
(2)渐近线:双曲线22
221(0,0)x y a b a b
-=>>的渐近线为:
等轴双曲线的渐近线方程为:,离心率为:
(注:利用渐近线可以较准确的画出双曲线的草图)
例二:方程
1112
2=--+k
y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆
164
162
2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________
例四:双曲线142
2=+b
y x 的离心率)2,1(∈e ,则b 的取值范围是___________________
例五:已知双曲线)0,0(122
22>>=-b a b
y a x 的右焦点为F ,过点F 作直线PF 垂直于
该双曲线的一条渐近线l 于)3
6,33(P .求该双曲线的方程为:
渐近线
准线
离心率
顶点
对称性
范围
3.直线与双曲线的位置关系:
(1)相交:0∆>⇔直线与椭圆相交或直线与渐近线平行。

(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;
例六:过点P(1,1)与双曲线22
1916
x y -
=只有一个交点的直线共有条。

例七:过点(0,3)P 的直线l 和双曲线22
:14
y C x -=,仅有一个公共点,求直线l 的方程。

∆4、焦半径(双曲线上的点P 到焦点F 的距离)的计算方法:利用双曲线的第二定义,转化到相应准线的距离,即焦半径0r ed ex a ==±,其中d 表示P 到与F 所对应的准线的距离。

例八:经过双曲线2
2
1x y -=的左焦点1F 作倾斜角为
6
π
的弦AB 。

求的2F AB ∆周长。

例九:已知A (3,2),M 是双曲线H :
上的动点,F 2是H 的右焦点,求
的最小值及此时M 的坐标。

5、弦长问题:(直线与椭圆的交点坐标设而不求) 若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB
=2
121k
x x +-,若12,y y 分别为A 、B 的纵坐标,则AB =2121
1y y k
-+
, (若弦AB 所在直线方程设为x ky b =+,则AB =2
121k
y y +-。

特别地,焦点
弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解,如例八。


例十:直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =_____________ 六、圆锥曲线的中点弦问题:(直线和双曲线的交点设而不求)
遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆1-22
22=b
y a x 中,以
00(,)P x y 为中点的弦所在直线的斜率k=0
20
2y a x b ;
例十一:过点)1,3(-M 且被点M 平分的双曲线14
22
=-y x 的弦所在直线方程为_____________
例十二:已知双曲线C 2x 2-y 2=2与点P (1,2)
(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点
(2)若Q (1,1),试判断以Q 为中点的弦是否存在
例十三:过双曲线的右焦点F 2作倾斜角为的直线,它们的交点为A 、B ,
求:
(1)线段AB 的中点M 与F 2的距离; (2)线段AB 的长度。

-1
1
21Q
P
o
y
x
例十四:双曲线的中心在坐标原点O,焦点在X轴上,过双曲线的右焦点,且斜率为的直线交双曲线于P、Q两点,若OP⊥OQ,,求双曲线的方程。

例十五:过点P(1,1)作双曲线的弦AB,使AB的中点恰与P点重合,这样的弦AB是否存在并说明理由。

例十三:双曲线的中心在坐标原点O,焦点在X轴上,过双曲线的右焦点,且斜率为的直线交双曲线于P、Q两点,若OP⊥OQ,,求双曲线的方程。

解:设双:,直线PQ方程为
由,消去得
设P(),Q()
若,故,则直线PQ与双曲线渐近线平行,与双曲线只能有一个交点,与题设矛盾,故

由于P、Q在直线上可记为P(),Q()
由OP⊥OQ,则
整理得
将(*)代入,又由,并整理得

由,则
由,得2
整理得将(*)式代入,又
代入,解得,从而,故双曲线方程
[例7] 过点P(1,1)作双曲线的弦AB,使AB的中点恰与P点重合,这样的弦AB是否存在并说明理由。

解:设AB:代入双曲线方程并整理得
(*)
若,不合题意,若,由,得
若P是AB的中点,即
得(舍去)
此时,代入(*)
当不存在时,直线与双曲线只有一个公共点
因此这样的弦AB不存在
另法:设A(),B(),由A、B在双曲线上
两式相减得
,其中
,得
以下同解法1。

相关文档
最新文档