2011年全国高考数学试卷(理科)
2011年全国高考理科数学试题及答案-全国
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅰ卷一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考数学试卷(含答案)
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
2011年高考新课标全国卷理科数学试题(附答案)
2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011年高考数学理科试卷(全国2卷)(含答案)(全国卷)
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题 卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z(A) i 2- (B) i - (C) i (D) i 2(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(42≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y (3) 下面四个条件中,使b a >成立的充分而不必要的条件是(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=(A) 8 (B) 7 (C) 6 (D) 5(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 31 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 32 (B) 33 (C)36 (D) 1(7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种(8) 曲线12+=-x ey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A) 31 (B) 21 (C) 32 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)25(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 54- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为(A) π7 (B) π9 (C) π11 (D)π13(12)设向量c b a ,,满足1||||==b a ,21-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年高考数学理科试卷(全国2卷)(含答案)(全国卷)
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z(A) i 2- (B) i - (C) i (D) i 2(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(42≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y(3) 下面四个条件中,使b a >成立的充分而不必要的条件是(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=(A) 8 (B) 7 (C) 6 (D) 5(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 31 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 32 (B) 33 (C)36 (D) 1 (7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种(8) 曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A)31 (B) 21 (C) 32 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)25(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 54- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为(A) π7 (B) π9 (C) π11 (D)π13(12)设向量c b a ,,满足1||||==b a ,21-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考理科数学试卷(及答案)_全国卷(word版)[1]1
2011年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A)22(B)33(C)63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年高考数学真题(全国卷)理科(详细解析)
1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年高考理科数学试题及答案-全国卷1
2011年高考理科数学试题及答案-全国卷12011年普通高等学校招生全国统一考试(全国卷1)理科数学第I卷一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1) 复数 $2+i$ 的共轭复数是()A) $-i$ (B) $i$ (C) $-1+2i$ (D) $1-2i$2) 下列函数中,既是偶函数又是单调递增的函数是()A) $y=x^3$ (B) $y=x+1$ (C) $y=-x^2+1$ (D) $y=2|x|$3) 执行右面的程序框图,如果输入的 $N$ 是 $6$,那么输出的 $p$ 是()A) $120$ (B) $720$ (C) $1440$ (D) $5040$4) 有 $3$ 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{2}{3}$5) 已知角 $\theta$ 的顶点与原点重合,始边与 $x$ 轴的正半轴重合,终边在直线 $y=2x$ 上,则 $\cos2\theta$ =()A) $-\frac{3}{4}$ (B) $-\frac{1}{4}$ (C) $\frac{3}{4}$ (D) $\frac{1}{4}$6) 在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()此处应该有图片,但无法显示]7) 设直线 $L$ 过双曲线 $C$ 的一个焦点,且与 $C$ 的一条对称轴垂直,$L$ 与 $C$ 交于 $A,B$ 两点,$AB$ 为 $C$ 的实轴长的 $2$ 倍,则 $C$ 的离心率为()A) $2$ (B) $3$ (C) $4$ (D) $6$8) 已知 $\frac{x+2}{x-2}$ 的展开式中各项系数的和为 $2$,则该展开式中常数项为()A) $-40$ (B) $-20$ (C) $20$ (D) $40$9) 由曲线 $y=x$,直线 $y=x-2$ 及 $y$ 轴所围成的图形的面积为()A) $\frac{10}{16}$ (B) $4$ (C) $\frac{3}{16}$ (D)$\frac{3}{32}$10) 已知 $a$ 与 $b$ 均为单位向量,其夹角为 $\theta$,有下列四个命题text{P}_1$:$a+b>1$ $\Leftrightarrow$ $\theta\in\left(0,\frac{2\pi}{3}\right)$text{P}_2$:$a+b>1$ $\Leftrightarrow$ $\theta\in\left(\frac{\pi}{3},\pi\right)$text{P}_3$: $a-b>1$ $\Leftrightarrow$ $\theta\in\left(0,\frac{\pi}{3}\right)\cup\le ft(\frac{2\pi}{3},\pi\right)$text{P}_4$: $a-b>1$ $\Leftrightarrow$ $\theta\in\left(\frac{\pi}{3},\frac{2\pi}{3} \right)$其中的真命题是()A) $\text{P}_1,\text{P}_4$ (B) $\text{P}_1,\text{P}_3$ (C) $\text{P}_2,\text{P}_3$ (D) $\text{P}_2,\text{P}_4$11) 设函数 $f(x)=\sin(\omega x+\theta)+\cos(\omegax+\theta)$($\omega>0,\theta<\frac{\pi}{2}$)的最小正周期为$\pi$,且 $f(-x)=f(x)$,则()A) $f(x)$ 在 $\left(0,\frac{\pi}{2}\right)$ 单调递减 (B)$f(x)$ 在$\left(0,\frac{\pi}{4}\right)\cup\left(\frac{3\pi}{4},\pi\right)$ 单调递减C) $f(x)$ 在 $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$ 单调递减 (D) $f(x)$ 在$\left(0,\frac{\pi}{4}\right)\cup\left(\frac{\pi}{2},\frac{3\pi}{4}\ri ght)$ 单调递减P(X=-2)=0.04.P(X=2)=0.54.P(X=4)=0.42,因此X的分布列为:2: 0.042: 0.544: 0.42根据配方A,生产的产品中有22/100的次品率,根据配方B,生产的产品中有8/1000的次品率。
11年全国高考数学卷及答案
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答.......无效。
... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年全国卷高考数学答案(理科)
(A) 8
( B)7
( C) 6
( D)5
(5)设函数 f ( x) cos x( >0) ,将 y f (x) 的图像向右平移 个单位
3
长度后,所得的图像与原图像重合,则 的最小值等于
(A) 1
3
(B) 3
(C) 6 (D) 9
(6) 已知直二面角α - ι - β,点 A∈α, AC⊥ι, C 为垂足, B
(D) y 4x2 ( x≥0)
-1-
(3)下面四个条件中,使 a> b 成立的充分而不必要的条件是 ( A) a> b 1 (B) a> b 1 ( C) a2> b2 ( D) a3> b3
( 4 ) 设 Sn 为 等 差数列 an 的 前 n 项 和 ,若 a1 1 , 公 差 d 2 ,
SA 2 Sn 24 ,则 k
个选项中,只有一项是符合题目要求的。
一、选择题
( 1)复数 z 1 i , z 为 z 的共轭复数,则 zz z 1
( A) 2i
(B) i
(C) i
( D) 2i
( 2)函数 y 2 x (x≥0) 的反函数为
(A) y
x2 (x
R)
4
(B) y
x2 ( x≥ 0)
4
( C) y 4x2 ( x R)
(Ⅰ)求 an 的通项公式;
(Ⅱk , 证明: Sn 1.
k1
(21)已知 O 为坐标原点, F 为椭圆 C : x2 y2 1 在 y 轴正半轴上的焦
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分把答案填在题中
横线上 ( 注意:在.试.卷.上.作.答.无.效. )
(13)(1- x ) 20 的 二 项 展 开 式 中 , x 的 系 数 与 x9 的 系 数 之 差
2011年高考理科数学试题及答案全国卷1
2011年一般高等学校招生全国统一考试(全国卷1)理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,假如输入的N 是6,那么输出的p 是( )(A )120 (B )720 (C )1440 (D )5040(4)有3个爱好小组,甲、乙两位同学各自参与其中一个小组,每位同学参与各个小组的可能性一样,则这两位同学参与同一个爱好小组的概率为( )(A )13(B )12(C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( ) (A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的绽开式中各项系数的与为2,则该绽开式中常数项为( ) (A )-40 (B )-20 (C )20 (D )40 (9)由曲线y =直线2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )其中的真命题是( )(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像全部交点的横坐标之与等于( )(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题与选考题两局部。
2011年全国高考理科数学试题及答案-全国
2011年普通高等学校招生全国统一考试理科数学一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为 A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α? ι?β,点A∈α,AC⊥ι,C 为垂足,B∈β,BD⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种8.曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 A .13B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -= A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2B CD .1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效........)13.()20的二项展开式中,x 的系数与x 9的系数之差为: .y 214.已知a∈(2π,π),sin α=5,则tan2α= 15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB,CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤17.(本小题满分l0分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C =90°,b ,求C .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I )求该地1位车主至少购买甲、乙两种保险中的l 种的概率; (Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
2011年全国高考理科数学试题含答案(新课标卷)
2011 年普通高等学校招生全国统一考试理科数学第 I 卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数2i 的共轭复数是( )1 2i(A )3 i (B )3i(C )i( D )i55(2)下列函数中,既是偶函数又在(0,+)单调递增的函数是()(A ) y x 3(B) yx1(C )yx 21(D) y2 x(3)执行右面的程序框图,如果输入的 N 是 6,那么输出的 p 是()(A )120(B )720(C )1440(D )5040(4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()(A )1 ()1 ( C )2 (D )33B 342(5)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则 cos 2 =()(A )4(B )3(C )3(D )45 555(6)在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为()(7)设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, L 与 C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为()(A ) 2(B ) 3 (C )2(D )3a 2 x 15(8) x的展开式中各项系数的和为 2,则该展开式中常数项为( )x x(A )-40(B )-20(C )20(D )40(9)由曲线 yx ,直线yx 2 及 y 轴所围成的图形的面积为()(A )10(B )4(C )16(D )633(10)已知 a 与 b 均为单位向量,其夹角为,有下列四个命题()P 1 : a b 10,2P 2 : a b 12,33P 3 : a b 10, P 4 : a b 1,33其中的真命题是()(A ) P 1,P 4(B ) P 1, P 3(C ) P 2, P 3(D ) P 2 , P 4( 11)设函数 f ( x)sin( x) cos( x)(0,) 的最小正周期为,且 f ( x) f ( x),则2()(A )f ( x)在0,单调递减( B )f (x)在4 ,3单调递减24(C )f ( x)在0,单调递增( D )f ( x)在, 3单调递增244(12)函数y1 的图像与函数 y 2sin x( 2x 4) 的图像所有交点的横坐标之和等于()1-x(A )2(B) 4(C) 6(D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011全国高考新课标理科数学试题及答案
2011年普通高等学校招生全国统一考试(新课标卷)理科数学 第I 卷、选择题:本大题共 12小题,每小题5分,共60分.每小题有且只有 () C. -i D. i(0,+::)单调递增的函数是 ()B. y =|x| 1 D. y =2*N 是6,那么输出的p 是( )B. 720 D. 50404.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()1 —2i 3 3A.i B. i55 2.下列函数中, 既是偶函数又在个选项是符合题目要求的A. y =xC. y - -x 2 13.执行右面的程序框图,如果输入的A. 120 C.14401.复数2 J 的共轭复数是3开始■- 输入N*k =1,P =1 p = p k 4-输出P吉束「19.由曲线,直线y =x-2及y 轴所围成的图形的面积为 ()( ) A. 2B. ■. 3C. 2D. 38. (x • a )(2x-1)5的展开式中各项系数的和为2,则该展开式中常数项为 ( )x xA. — 40B. — 20C. 20D. 40A.B. C.D.5.已知角r 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线A. B.C.D.6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图7.设直线l 过双曲线C 的一个焦点,且与 C 的一条对称轴垂直,y =2x 上,贝Vl 与C 交于A 、B 两点,|AB|为C 的实轴长的2倍,贝U C 的离心率为其中的真命题是TTC. f (x)在(0,—)单调递增2112. 函数y =—— 的图像与函数y =2sin 二x ( _2岂x^4)的图像所有交点的横坐标之和等于1 —x第II 卷本卷包括必考题和选考题两部分 .第13题〜第21题为必考题,每个试题考生都必须做答A. 2B. 4C. 6D. 8B. 4C."D. 610.已知a 与b 均为单位向量,其夹角为v,有下列四个命题:P 1 : |a b| - [0,—);3P 2 : |a b| 1 : r (生,二];3P 3 : |a -b | 1— v [0,—);3 P 4: |a -b| 1 : v (—,二].A. P 1, P 4B. P 1, P 3C. P 2, P 3D. P 2, P 411.设函数 f (x)二sinC ,x 亠巧 cos(・,x 亠「)(u >0,的最小正周期为 二,且f (-X )f(x),则A. f (x)在(0,刁)单调递减B. f (x)在(一,—)单调递减4 4f (x)在(一,—)单调递增4 4D. .第22题〜第24题为选考题,考生根据要求做二、填空题:本大题共4小题,每小题5分,共20分.『3 2x 亠v 913. 若变量x , v满足约束条件一一,则z=x 2v的最小值为________________________ .兰x_y兰914. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F i,F2在x轴上,离心率为.过F i的直线l交C于A、B两点,且△ ABF?2的周长为16,那么C的方程为 _________________ .15. 已知矩形ABCD的顶点都在半径为4的球0的球面上,且AB=6,BC =2・.3,则棱锥0-ABCD的体积为__________________________ .16. 在厶ABC中,B =60,AC = .3,贝AB 2BC的最大值为______________________ .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)等比数列{a n}的各项均为正数,且2a1 3a2 =1 , a, Ma z^ .(I) 求数列何}的通项公式;1(II) 设 b =log3 a log3a2 - - - log3 a n,求数列{一}的前n 项和.b n18. (本小题满分12分)如图,四棱锥P -ABCD中,底面ABCD为平行四边形,/ DAB =60 , AB =2AD , PD 丄底面ABCD.(I) 证明:PA丄BD ;C(II) 若PD =AD,求二面角A -PB -C的余弦值.19. (本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配布表指标值分组[90, 94)[94, 98)[98 , 102)[102 , 106)[106, 110]频数82042228B配布表指标值分组[90, 94)[94, 98)[98 , 102)[102 , 106)[106, 110]频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;匚2, t ::: 94(II)已知用B配方生产的一件产品的利润y (单位:元)与其质量指标值t的关系式为y二2, 94竺:::102.从用B配方生产的产品中任取一4, t_102件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. (本小题满分12分)在平面直角坐标系xOy中,已知点A(0,-1), B点在直线y =-3上,M点满足MB // OA , MA・AB二MB -BA , M点的轨迹为曲线C .(I) 求C的方程;(II) P为C上的动点,I为C在P点处的切线,求0点到I距离的最小值21. (本小题满分12分)已知函数f(x)=创口卫,曲线y=f(x)在点(1, f (1))处的切线方程为x・2y—3=0.X勺X(I) 求a,b的值;(II) 如果当x 0,且x=1时,f(x) —k,求k的取值范围.X -1 x22. (本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ ABC的边AB,AC上的点,且不与厶ABC的顶点重合•已知AE的长为m , AC的长为n , AD,AB的长是关于2x的方程x -14x - mn F的两个根.(I) 证明:C,B,D,E四点共圆;(II) 若/ A =90,且m =4 , n =6,求C , B , D , E所在圆的半径.23. (本小题满分10分)选修4 —4:坐标系与参数方程f x - 2cos '■在直角坐标系xOy中,曲线G的参数方程为一G为参数),1 y=2+2sin a(I)当求C2的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线3T^3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.M是C1上的动点, P点的轨迹为曲线C2.P点满足OP二2OM故数列富1的通项公式为弘为 1 24. (本小题满分10分)选修4 — 5:不等式选讲 设函数 f (x) x -a | 3x ,其中 a 0.(I) 当a =1时,求不等式f(x) _3x 2的解集;(II) 若不等式f (x)岂0的解集为{x | x 乞_1},求a 的值.2011年普通高等学校招生全国统一考试理科数学参考答案一•选择题(1) C (2) B (3) B (4) A (5) B (6) D (7) B(8) D(9) C(10) A(11) A(12) D填空题(13) -6(14)2 2x y 1(15) 83(16) 2.716 8三•解答题(17) 解:(I )设数列 & f 的公比为q .由a ; =9a ?a 6得a ; =9a :,所以q 1 2 3」.9 由条件可1 由2a1■3a2 =1得 2a i ' 3a 1q =1,所以 a .3(新课标卷)知q 0,故q」.3故数列富1的通项公式为弘为1(II) b n ^log a S! log a a^i • log s a n - - 1 • 2 •川• n 二f1 I 2n所以数列 - 的前n项和为-旦pn ”n +1(18) 解:(I)因为.DAB =60 , AB =2AD,由余弦定理得BD = 3AD . 从而BD2AD2二AB2,故BD _ AD .又PD _底面ABCD,可得BD _ PD •所以BD _平面PAD •故PA _ BD •A 1,0,0,B 0, .3,0,C -1, 3,0,P 0,0,1n 1AB 二-1, .3,0,BC 二-1,0,0设平面PAB的法向量为3y「z =0n=[x,y,z,则(II)如图,以D为坐标原点, AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系 D -xyz,则因此可取n = 3,1/ 3 .设平面PBC的法向量为m,则2 ,可取m=(0,—1,—J3).BC =C/ \ -4 2 仃cos m, n .2盲7故二面角A -PB -C的余弦值为-仝上.7(19) 解:(I)由试验结果知,用A配方生产的产品中优质品的频率为经卫=0.3,所以用A配方生产的产品的优质品率的估计值为100由试验结果知,用B配方生产的产品中优质品的频率为辺卫=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.100(II)用B配方生产的100件产品中,其质量指标落入区间90,94,94,102,1.102,1101的频率分别为0.04,0.54,0.42,因此P X - ~2 讦0.04,P X =2 ]=0.54, P X =4 j=0.42.即X的分布列为则X 的数学期望EX 二-2 0.04 - 2 0.54 - 4 0.42 = 2.68.(20) 解:(I)设M x,y,由已知得B x,-3,A 0, -1 .所以MA 二-x, -1, -y ,MB 二0, -3, -y,AB = x, -2 .0.3.再由题意可知MA,MB AB=O,即卩-x, V,-2y x,2 =0. 所以曲线C的方程为y」x2-2.41 1(II)设Pg ,y°)为曲线C : y =:x2-2上一点,因为丫二丁,所以I的斜率为1因此直线I的方程为y -y0人X -人,即X)x -2y 2y0 _x;=0 .X。
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212i i+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120(B )720(C )1440(D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40(9)由曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163 (D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于 (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年高考数学理科试卷(全国II卷)(含答案)
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1) 复数i z +=1,z 为z 的共轭复数,则=--1z z z(A) i 2- (B) i - (C) i (D) i 2(2) 设函数)0(2≥=x x y 的反函数为 (A) )(42R x x y ∈= (B) )0(42≥=x x y (C) )(42R x x y ∈= (D) )0(42≥=x x y(3) 下面四个条件中,使b a >成立的充分而不必要的条件是(A) 1+>b a (B) 1->b a (C) 22b a > (D) 33b a >(4)设n S 为等差数列}{n a 的前n 项和,若11=a ,公差21=d ,242=-+k k S S ,则k=(A) 8 (B) 7 (C) 6 (D) 5(5) 设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A) 31 (B) 3 (C) 6 (D) 9 (6) 已知直二面角βα--l ,点α∈A ,AC ⊥l ,C 为垂足,点β∈B , BD ⊥l,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A) 32 (B) 33 (C)36 (D) 1 (7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种(8) 曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A)31 (B) 21 (C) 32 (D) 1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=则=-)25(f (A) 21- (B) 41- (C) 41 (D) 21 (10)已知抛物线C :x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=AFB cos (A) 54 (B) 53 (C) 53- (D) 54- (11)已知平面α截一球面得圆M ,过圆心M 且与α成o 60二面角的平面β截该球面得圆N ,若该球面的半径为4,则圆M 的面积为π4,则圆N 的面积为(A) π7 (B) π9 (C) π11 (D)π13(12)设向量c b a ,,满足1||||==b a ,21-=∙b a ,o c b c a 60,>=--<则||c 的最大值等于 (A) 2 (B) 3 (C) 2 (D) 1绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)
2011年普通高等学校招生全国统一考试理科数学(新课标卷 河南省用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A)2y x = (B ) 1y x =+ (C)21y x =-+ (D) 2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B)12 (C )23 (D)34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A 2 (B 3(C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )-20 (C )20 (D )40 (9)由曲线y x =2y x =-及y 轴所围成的图形的面积为 (A )103 (B)4 (C )163(D)6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A)2 (B) 4 (C ) 6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是
(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)
(2)复数212i i
-=+ (A )i (B )-i (C )4355i -- (D )4355
i -+ (3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是 (A) (1,)2π (B) (1,)2
π- (C) (1,0) (D)(1,π) (4)执行如图所示的程序框图,输出的s 值为
(A )-3
(B )-12
(C )13
(D )2
(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆
O 交于另一点G 。
给出下列三个结论:
○
1AD+AE=AB+BC+CA ;
○
2AF ·AG=AD ·AE ③△AFB ~△ADG
其中正确结论的序号是
(A )①② (B )②③
(C )①③ (D )①②③
(6)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为(A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是
(A )75,25 (B )75,16 (C )60,25 (D )60,16
(7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是
(A) 8 (B) (8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为
(A ){}9,10,11 (B ){}9,10,12
(C ){}9,11,12 (D ){}10,11,12
第二部分 (非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
(9)在ABC ∆中。
若b=5,4B π
∠=,tanA=2,则sinA=____________;a=_______________。
(10)已知向量a =1),b =(0,-1),c =(k 。
若a -2b 与c 共线,则
k=___________________。
(11)在等比数列{a n }中,a 1=12
,a 4=-4,则公比q=______________;12...n a a a +++=_________________。
(12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。
(用数字作答)
(13)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩
若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值
范围是_______
(14)曲线C 是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数 2( >1)的点的轨迹.给出下列三个结论:
① 曲线C 过坐标原点;
② 曲线C 关于坐标原点对称;
③若点P 在曲线C 上,则△F 1PF 2的面积大于2
1a 2。
其中,所有正确结论的序号是 。
三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分) 已知函数()4cos sin()16
f x x x π=+-。
(Ⅰ)求()f x 的最小正周期:
(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦
上的最大值和最小值。
(16)(本小题共14分)
如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD
是菱形,2,60AB BAD =∠=.
(Ⅰ)求证:BD ⊥平面;PAC
(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;
(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
(17)本小题共13分
以下茎叶图记录了甲、乙两组个四名同学的植树棵树。
乙组记录中有一个数据模糊,无法确认,在图中以X 表示。
(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。
(注:方差()()()222
2121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数) (18)(本小题共13分) 已知函数2()()x k
f x x k e =-。
(Ⅰ)求()f x 的单调区间;
(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e ,求k 的取值范围。
(19)(本小题共14分) 已知椭圆2
2:14
x G y +=.过点(m ,0)作圆221x y +=的切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率;
(II )将AB 表示为m 的函数,并求AB 的最大值.
(20)(本小题共13分)
若数列12,,...,(2)n n A a a a n =≥满足111(1,2,...,1)n a a k n +-==-,数列n A 为E 数列,记
()n S A =12...n a a a +++.
(Ⅰ)写出一个满足10s a a ==,且()s S A 〉0的E 数列n A ;
(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;
(Ⅲ)对任意给定的整数n (n ≥2),是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由。