2018考研数一数二数三必看重点
【优质文档】2018年考研数一数二数三必看重点-推荐word版 (2页)
【优质文档】2018年考研数一数二数三必看重点-推荐word版本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018年考研数一数二数三必看重点考研数学一数学二数学三复习要抓哪些重点?欢迎阅读!数学一必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗微分中值定理及其应用★★★★★日中值定理、柯西中值定理和泰勒定理积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简用微分方程解决一些应用问题★★★★★单应用矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相有关实对称矩阵的问题★★★★★似对角阵的方法数学二必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗微分中值定理及其应用★★★★★日中值定理、柯西中值定理和泰勒定理积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简用微分方程解决一些应用问题★★★★★单应用矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相有关实对称矩阵的问题★★★★★似对角阵的方法。
2018考研数一大纲完整版
2018考研数一大纲完整版2018年考研数学一大纲完整版一、数理统计与概率论1. 集合论和事件(1)集合,包含比较基本的集合概念和运算,A,B,A∩B,A∪B,Ac,Bc,A-B。
(2)事件,事件以及事件运算,全集和空集,和事件的差与补,事件之间的包含关系和等价关系。
2. sigma域和随机事件(1)sigma域,虽然很多人对此并不是很熟悉,但是它却是和概率密切相关的,必须掌握。
(2)随机事件,随机事件是和概率密切相关的,必须掌握。
3. 条件概率和全概率公式(1)条件概率,条件概率是概率论研究的核心内容之一,其应用范围非常广。
(2)全概率公式,全概率公式是求解某些事件的概率时非常重要的方法。
4. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,应用范围十分广泛,所以必须掌握。
5. 随机变量和概率密度函数(1)随机变量,随机变量的概念、离散型和连续型变量。
(2)概率密度函数,概率密度函数是随机变量的重要概念,因为它可以用来计算随机变量取特定值的概率,所以必须掌握。
6. 分布函数和矩(1)分布函数,分布函数又称为累积分布函数,它是随机变量的重要概念之一,因为它可以用来计算随机变量取特定值的概率。
(2)矩,矩是随机变量的重要概念之一,它不仅可以用来计算随机变量的期望值,还可以计算随机变量的各种特征,比如方差和偏度等。
7. 常见分布(1)离散型分布,包括0-1分布、二项分布、泊松分布等。
(2)连续型分布,包括均匀分布、正态分布、指数分布等。
二、高等代数1. 线性代数初步(1)向量、线性方程组,以及它们的基本性质和运算法则。
(2)矩阵、行列式,它们的基本性质和运算法则。
2. 矩阵初等变换矩阵初等变换是将一个矩阵通过一系列基本变换变成标准型的过程,是线性代数中重要的概念,必须掌握。
3. 线性空间的基本概念和性质线性空间是线性代数研究的重要对象,其中包括向量空间、矩阵空间等多种空间,所以必须掌握其基本概念和性质。
2018年考研数学大纲主要内容
2018年考研数学大纲主要内容店铺考研网为大家提供2018年考研数学大纲主要内容,更多考研资讯请关注我们网站的更新!2018年考研数学大纲主要内容数学老师将深度剖析一下数学考试大纲,主要为2018考研学子介绍和分析一下数学考试大纲的框架及所包含的内容要点。
首先数学考试大纲的全称是《全国硕士研究生招生考试数学考试大纲》,由教育部考试中心编写,由高等教育出版社出版。
考试大纲包含七部分的内容,本文先介绍前四部分内容。
(一)考试性质这一部分主要介绍的是数学考试是为高等院校和科研院所招收工学、经济学、管理类硕士研究生而设置的具有选拨性质的全国招生考试科目。
其目的是测试考生是否具备具有继续攻读硕士学位所需的数学知识和能力。
这一部分主要是简介,2018考生可以简略阅读即可。
(二)考查目标这一部分主要是对考生的一些要求。
要求考生要比较系统的理解数学的基本概念和基本理论,掌握一些数学的基本方法,具备一些抽象思维的能力、逻辑推理能力、空间想象能力、运算能力和分析综合能力等。
这一部分建议2018考生看看即可,不是重点内容。
(三)试卷分类及使用专业这一部分相比前两部分是重要一些的,主要介绍的是全国硕士研究生数学考试的分类,主要分为数学(一)、数学(二)和数学(三)以及须使用数学(一、二、三)的招生专业。
这一部分是重要的,考生根据自己的本科专业来分析一下自己要考数学几,然后有针对性的来复习备考。
(四)考试形式和试卷结构考试形式是闭卷、笔试,满分150分。
考试时间180分钟。
数学(一)的考试内容:高等数学56%、线性代数22%、概率论与数理统计22%;数学(二)的考试内容:高等数学78%、线性代数22%;数学(三)的考试内容:高等数学56%、线性代数22%、概率论与数理统计22%。
题型结构:单项选择题8个,每个4分,共32分;填空题6个,每题4分,共24分;解答题9个,共94分。
(五)考试内容和考试要求全国硕士研究生招生考试数学考试大纲中最重要的就是这部分内容。
2018考研数学一高等数学考点介绍
2018考研数学一高等数学考点介绍
来源:智阅网
准备参加2018年考研数学的朋友,由于考研数学一考查内容多、题量大、解题有难度,所以我们可以开始着手复习了。
那么,就让我们先了解一下考研数学一高等数学部分,都有哪些考点!
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
当然,关于高等数学部分,还有其他考点,我们可以通过毛纲源老师的2018《考研数学常考题型解题方法技巧归纳》(数学一),加深我们对于考点和解题方法的掌握。
想买考研数学复习相关书籍的朋友,可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。
考研数学五大高频考点
考Байду номын сангаас数学五大高频考点
考研数学复习要研究历年真题,看题型分值,也看考察知识点的分 布,出题形式等等。下面跟大家说说 2018 年考研数学五大高频考点,各位考 研的小伙伴一定要记牢。 2018 年考研数学五大高频考点一: 两个重要极限,未定式的极限、等 价无穷小代换这些小的知识点在历年的考研数学考察中都比较高。而透过分 析,假如考研数学考极限的话,主要考的是洛必达法则加等价无穷小代换, 特别针对数学三的同学,这儿可能出大题。 2018 年考研数学五大高频考点二: 处理连续性,可导性和可微性的关 系考研数学要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导 等等这一类的,还有注意一元函数的应用问题,这也是历年考研数学考试的 一个重点。数学三的同学这儿结合经济类的一些试题进行考察。 2018 年考研数学五大高频考点三: 微分方程:一是一元线性微分方程, 第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考研考生需要掌握 九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程, 套用不同的公式就行了。对于考研数学二阶常系数线性微分方程大家一定要 理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的 联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特 征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。对于 二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同 学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且 提醒大家一下,考研数学复习的时候要注意,差分方程的解题方式和微方程
是相似的,学习的时候要注意这一点。 2018 年考研数学五大高频考点四: 级数问题,主要针对数学一和数学 三考研数学这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯 到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数, 幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函 数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱 们求它的和,要转化成适 当的幂级数来进行求和。 2018 年考研数学五大高频考点五: 一维随机变量函数的分布考研数学 复习要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数 这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法, 这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围 有一定的局限性。
2018考研数学一高等数学考点之极限
2018考研数学一高等数学五大考点汇总
来源:文都图书
高等数学在数一中的考点分布相对数二、数三而言比较广,并且出题的角度和方向也比较琐屑,但是也并非无迹可寻。
只要我们认真的剖析和剖析考研真题,还是可以发现一些对我们非常有价值的信息。
数学在考研中的考试题型不外乎是定义题、计算题、证明题。
下面具体为大家剖析高等数学中极限这个大的内容,有哪些考点。
极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。
我们要充分掌握求不定式极限的种种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;其次就是极限的应用,主要表现为连续,导数等等,对函数的连续性和可导性的探讨也是考试的重点,这要求我们直接从定义切入,充分理解函数连续的定义和掌握判定连续性的方法。
建议同学们再做做毛纲源老师的2018《考研数学常考题型解题方法技巧归纳》(数学一),书中对于常考题型的介绍,有助于我们掌握答题技巧和解题方法。
想买考研数学相关书籍的朋友,可以去智阅网上看看,最近智阅网上,有很多购书优惠,可以让我们尽情享受到质优价廉的购书体验!。
2018考研数学:数一、数二及数三侧重点解读
凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页 2018考研数学:数一、数二及数三侧重
点解读
考研数学一、数学二、数学三考察不同,复习侧重也有差别,针对不同专业类别的考生,大家要有针对性的复习。
下面凯程考研解读数一、数二及数三科目分值差异,并讲解复习的侧重,2018考生要注意。
数学1、2、3之间在科目和分值上的区表
卷种 考试内容 数学(一) 数学(二) 数学(三)
高等数学(微积分) 82 116 82
线性代数 34 34 34
概率论与数理统计 34 —— 34
总计(分数) 150 150 150
从以往的真题来看,数学一、二、三之间最大的区别在于知识面的要求上:数学一最广,数学三其次,数学二最低。
事实上,对于不同的专业,对数学的要求不一样。
▶考研数学一
高数,线性代数,概率论与数理统计,考察内容十分的广泛,学生较为容易遗忘,需要不断的复习巩固。
属于理工类的。
▶考研数学二
高数和线性代数,不考概率与数理统计,对于高数的部分内容如不定积分要求较高。
属于理工类的。
▶考研数学三
微积分,线性代数,概率论与数理统计,数三是经济类的,所以对于概率与数理统计的要求较高。
属于经济类的,高等数学中的曲线积分,曲面积分在数学三中不作要求。
2018考研数学三知识点总结
2018考研数学三知识点总结考研数学三复习有哪些重要知识点需要看?结合大纲和历年真题来看,凯程网考研频道为2018考生总结分享考研数学三必看知识点,大家注意不要遗漏。
2018考研数学三知识点总结考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。
下面凯程网考研频道整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度,2018考生注意参考。
2018考研数学三考前必看核心知识点科目大纲章节知识点题型高等数学第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题定积分的应用用定积分计算几何量第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章无穷级数级数的基本性质及收敛的必要条件,正项级数的比较判别法、比值判别法和根式判别法,交错级数的莱布尼茨判别法数项级数敛散性的判别第六章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念相似矩阵的判定及逆问题及性质第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵概率论与数理统计第一章随机事件和概率概率的加、减、乘公式事件概率的计算第二章随机变量及其分布常见随机变量的分布及应用常见分布的逆问题第三章多维随机变量及其分布两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性第四章随机变量的数字特征随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差的计算第五章大数定律大数定理用大数定理估计、计算概率和中心极限定理第六章数理统计常用统计量的性质求统计量的数字特征的基本概念第七章/ /参数估计。
2018年考研数学高数高频考点
考研网为大家提供2018年考研数学高数高频考点,更多考研资讯请关注我们网站的更新!2018年考研数学高数高频考点高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。
为了帮助提高大家高效复习,本文为大家梳理了高等数学的常考考点,希望大家不要盲目复习,加强巩固以下知识点。
?函数、极限与连续求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
?一元函数微分学求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
?一元函数积分学计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
?向量代数和空间解析几何计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分为数一同学考查,难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
2018考研数学:5个重点一定要搞懂
2018考研数学:5个重点一定要搞懂一、函数连续与极限极限是高数的基本工具,是三大运算之一。
求极限是考研试卷中常考的题型,是考试的重点。
要求考生对于极限的概念以及求极限的基本方法掌握到位。
在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的凯程,此处是我们复习的重点。
常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。
二、一元函数微分学求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。
这一部分需要注意两个概念:导数和微分,要求理解导数的定义以及可导的充分必要条件。
此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程根的判别等。
这一部分还有一个难点,就是中值定理的相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。
三、多元函数微分学多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。
多元函数复合函数和隐函数求偏导和求全微分一定要过关。
这些都是考试的重点。
四、多元函数积分学数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交换坐标系和积分次序等等,这些都是基本的运算。
对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。
尤其需要注意的是第二类曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。
五、微分方程掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。
需要注意一下常系数线性方程的解的结构。
此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。
数一的个别考点伯努利方程和欧拉方程,数三的个别考点有差分方程,同学们只需要掌握一般解法即可,不需要研究太多,不是考试的重点。
2018年 考研数学一 精讲
2018年考研数学一精讲2018年的考研数学一科目是学生们备考的一大难关。
为了应对这个考试,很多考生选择参加培训班,从而提高自己的学习效果。
以下是对2018年考研数学一科目的一些精讲。
2018年考研数学一共有12个大题,其中包括数学分析、高等代数、概率论与数理统计、数值分析和离散数学等内容。
接下来,我们将依次对各个大题进行精讲。
第一大题是数学分析,涵盖了函数极限、连续性与间断点、一元函数的微分学和一元函数的积分学等内容。
这部分的难度主要集中在题目的变形和思维方式上,考生需要熟练掌握相关的概念和定理,并能够将其应用到实际问题中去。
第二大题是高等代数,主要包括线性方程组、矩阵与行列式、线性空间、线性变换和特征值特征向量等内容。
这部分的题目较为理论化,考生需要对相关概念有清晰的认识,并能够运用相关方法解决问题。
第三大题是概率论与数理统计,主要包括随机事件与概率、随机变量及其分布、多维随机变量及其分布、样本及抽样分布以及参数估计与假设检验等内容。
这部分的题目相对来说比较繁琐,考生需要耐心分析题目,并能够对概念的定义和定理的应用有清晰的认识。
第四大题是数值分析,主要包括插值与逼近、数值微积分、线性方程组的数值解法、非线性方程的数值解法以及常微分方程的初值问题的数值解法等内容。
这部分的题目与实际应用结合较为紧密,考生需要掌握各种数值方法的原理和算法,并能够熟练地计算。
第五大题是离散数学,主要包括命题逻辑、集合论、代数系统、图论和数论等内容。
这部分的题目相对来说较为独立,考生需要掌握各种定义和定理,并能够熟练运用它们解决问题。
总的来说,2018年考研数学一科目的难度较为适中,重点考察考生的逻辑思维能力和解题能力。
对于考生来说,除了熟练掌握相关的知识点和技巧,还需要在备考过程中注重实际操作和刷题练习。
同时,考生还需要掌握一些解题方法和技巧,例如通过画图、列式子、分析问题特点等方式。
在考试中,要保持冷静、沉着,并注意时间的合理分配。
数三重点知识清单(背诵版)
数三重点知识清单(背诵版)第一章极限和连续序号知识名称备注考纲要求1极限的定义(1)数列极限的定义(2)函数极限的定义了解2极限的性质(1)唯一性(2)局部有界性(3)局部保号性了解3极限存在准则(1)夹逼准则(2)单调有界准则了解4极限的四则运算法则(1)加减法运算(2)乘除法运算(3)幂指数运算掌握5两个重要极限(1)x xx sinlim0→(2)xx x)11(lim+∞→掌握6无穷小量的基本内容(1)定义(2)常用性质[1]无穷小与有界函数之间的关系[2]无穷小与常数之间的关系[3]有限个无穷小之间的关系理解7无穷大量的基本内容(1)定义(2)无穷大与无穷小的关系了解8无穷小量的比较方法(1)三种无穷小的定义[1]高阶无穷小[2]同阶无穷小[3]等阶无穷小(2)等阶无穷小的常用替代[1])](1ln[,1,)(arcsin,)(arctan,)(tan,)(sin)(xfexfxfxfxfxf+-[2])(cos1xf-[3]1)](1[-+kxf[4]1)(-xxf掌握9函数的连续的概念函数连续的定义(含左连续与右连续)理解10函数间断点的类型(1)两大类间断点的判定及所含类型[1]第一类间断点[2]第二类间断点(2)几种间断点的判定[1]可去间断点[2]跳跃间断点[3]振荡间断点[4]无穷间断点会11连续函数的性质和初等函数的连续性(1)函数连续的三个条件(2)几种常见的函数的连续判定[1]初等函数[2]三角函数[3]其他了解12闭区间上连续函数的性质(1)有界性(2)最值定理(3)介值定理会13洛必达法则(1)计算公式(2)适用条件与类型会第二章一元微分和一元积分序号知识名称备注考纲要求1导数的基本内容(1)定义(2)函数的可导与连续的关系(3)导数的几何意义与经济意义(含边际与弹性的概念)了解2利用导数处理平面曲线(1)导数求平面曲线的切线方程(2)导数求平面曲线的法线方程会3基本导数公式(1)初高中初等函数的导数公式(2)三角函数的导数公式(6个,弦切割)(3)反三角函数的导数公式(4个,弦切)掌握4导数的运算(1)导数的四则运算法则(和差积商)(2)复合函数的求导法则(含幂函数)(3)分段函数函数的求导法则(4)反函数的求导法则(5)隐函数的求导法则(6)参数方程的求导法则会5高阶导数的基本内容(1)定义(2)高阶导数的运算法则[1]加法法则[2]乘法法则(3)几个常用的高阶导数展开式[1]xex xn ln,,[2]baxxx1,cos,sin会6微分的基本内容(1)定义(2)导数与微分之间的关系(数学表达式)(3)一阶微分形式的不变性了解7微分的求解法则(1)基本公式(与导数)(2)运算法则[1]加法法则[2]乘法法则会8四个微分中值定理及其应用(1)罗尔定理(2)拉格朗日中值定理(3)柯西中值定理(4)泰勒定理(两种形式)掌握9函数单调性的判别方法(1)利用基本比较方法判断单调性(2)利用导数的方法判断单调性掌握10函数的极值、最值(1)定义[1]极值的定义[2]最值的定义(2)常用求解方法[1]函数极值的判定方法(一阶,二阶)[2]函数最值的判定方法(结合函数性质)掌握11函数凹凸性的判断(1)定义判别法(中点与中值的关系)(2)二阶导数判别法会12函数拐点的判定与求解(1)定义判定(凹凸弧分解处)(2)二阶导数判别法(3)三阶导数判别法会13函数渐近线的求解(1)水平渐近线的求解(2)垂直渐近线的求解(3)斜渐近线的求解会14简单函数的图形描述方法与步骤(微分作图法)会15原函数与不定积分的基本内容(1)定义(包括不定积分的几何意义)(2)二者间的关系理解16不定积分的基本性质(1)不定积分的求导与微分的性质(2)导函数或微分的积分性质(3)函数与常数的四则运算的积分性质(4)不定积分的加减法公式掌握17基本积分公式(1)xx eaxx,,,1,)1(0-≠αα(2)xxxxxx csc,sec,cot,tan,cos,sin(3)xarcxxx cot,arctan,arccos,arcsin(4)222211,11sec,cscxxxx-+,(5)xaxaxln1,12222,±±掌握18不定积分的两种重要方法(1)换元积分法(2)分部积分法掌握19定积分的基本内容(1)定义(2)基本性质[1]积分上下限与积分结果之间的性质[2]常数与函数的表达式的积分性质[3]积分区域分段处理的性质[4]被积函数大小与积分大小之间的关系[5]定积分的估值定理[6]定积分的中值定理了解20积分上限函数(1)定义(2)积分上限函数的求导法则[1]积分上限为x,下限为a[2]积分上限为a,下限为x[3]积分上限为b,下限为a[4]积分上下限均为x的函数[5]积分内部为f(t)g(x)的复合函数会21定积分求解的两种重要方法(1)牛顿——莱布尼茨公式(2)两种重要方法[1]定积分的换元积分法[2]定积分的分部积分法掌握22反常积分(广义积分)的基本内容(1)定义(2)反常积分敛散性的判定方法(3)反常积分的计算方法[1]定义计算法[2]牛顿——莱布尼茨法会23定积分解决实际问题(1)计算平面图形的面积[1]与x轴[2]与y轴(2)计算旋转体的体积[1]与x轴(垫圈法)[2]与y轴(柱壳法)(3)计算函数的平均值(4)利用定积分求解简单的经济应用问题会第三章多元微分和多元积分序号知识名称备注考纲要求1多元函数的基本内容(1)定义(2)二元函数的几何意义了解2二元函数极限与连续(1)定义[1]二元函数极限[2]二元函数连续(2)二元函数极限的求解方法[1]定义法[2]二次极限法了解3有界闭区域上二元连续函数的性质二元连续函数的基本性质了解4偏导数与全微分(1)定义[1]偏导数[2]全微分(2)偏导数的求解[1]定义法[2]复合函数偏导数[3]高阶偏导数[4]隐函数的偏导数(3)全微分的求解会5多元函数的极值与最值(1)定义[1]多元函数极值[2]条件极值(2)多元函数极值存在的必要条件(3)二元函数极值存在的充分条件(4)二元函数极值的求解方法(5)条件极值的求解方法(拉格朗日法)(6)多元函数的最值求解(边界分析)(7)多元函数的简单应用问题掌握6二重积分的基本内容(1)定义(2)基本性质[1]加减法运算[2]积分区域运算[3]积分函数大小与积分大小的关系[4]二重积分的估值定理[5]二重积分的中值定理了解7二重积分的计算(1)两种常见类型的计算[1]直角坐标系内的计算[2]极坐标系内的计算(2)无界区域上较简单的反常二重积分计算掌握第四章无穷级数序号知识名称备注考纲要求1级数的收敛与发散(1)定义[1]级数收敛[2]级数发散(2)收敛级数和的定义了解2级数的基本性质和收敛的必要条件(1)基本性质[1]收敛级数与常数的关系[2]加减法运算[3]加括号运算(2)收敛的必要条件了解3几何级数敛散性的判定(1)几何级数的定义(2)几何级数敛散性的判定掌握4正项级数敛散性的判定(1)定义(2)正项级数敛散性的判定方法[1]比较判别法[2]比值判别法[3]根值判别法掌握5任意项级数的基本内容(1)定义(2)绝对收敛与条件收敛、收敛的关系(3)交错级数[1]定义[2]莱布尼茨判别法了解6幂级数的基本内容(1)定义(2)收敛半径的求解(3)收敛区间的求解(4)收敛域的求解会7幂级数在收敛区间的基本性质(1)和函数的连续性(2)逐项求导性质(3)逐项积分性质了解8幂级数的和函数与麦克劳林展开(1)幂级数在收敛区间和函数的求解方法(2)幂级数展开的方法(3)几个重要的幂级数的展开式[1]1||)1()1(,)1(32<-+-xxxxxx[2]1||11,arctan2<+xxx[3]1||)1(1,11,112<++-xxxx[4]11)1ln(<≤---xx[5]11)1ln(≤<-+xx[6]Rxe x∈[7]几何级数会第五章常微分方程和差分方程序号知识名称备注考纲要求1微分方程的基本内容(1)定义(2)微分方程的阶(3)微分方程的解(含解、通解、特解)了解2一阶微分方程的求解(1)变量可分离的微分方程的求解方法(2)齐次微分方程的求解方法(3)一阶线性微分方程的求解方法掌握3二阶常系数齐次线性微分方程的求解(1)可降阶的高阶微分方程的求解方法(2)二阶常系数齐次线性微分方程的特征根解法会4线性微分方程解的性质及结构定理(1)解的性质(2)结构定理(通解与特解)了解5非其次线性微分方程的求解(1)自由项为多项式(2)自由项为指数函数(3)自由项为正余弦函数会6差分方程基本内容(1)定义(2)通解与特解了解7一阶常系数线性差分方程的求解(1)一阶常系数线性差分方程的形式(2)求解方法了解8微分方程求解简单经济问题利用微分方程方法求解经济应用问题会第六章行列式序号知识名称备注考纲要求1行列式的概念基本概念(n阶行列式定义式)了解2行列式的性质(1)转置性质(2)互换性质(3)两行或两列成比例性质(4)常数与行列式性质(5)加法性质(6)某一行(列)变换后加到另一行时性质掌握3行列式计算(1)几个特殊的行列式[1]主对角线[2]次对角线[3]拉普拉斯展开式(4个)[4]2n阶行列式[5]范德蒙德行列式(2)行列式按行(列)展开的方法会第七章矩阵基础序号知识名称备注考纲要求1矩阵的基本内容(1)定义(2)几类矩阵的定义及性质[1]单位矩阵[2]数量矩阵[3]对角矩阵[4]三角矩阵[5]对称矩阵[6]反对称矩阵[7]正交矩阵[8]奇异与非奇异矩阵理解2矩阵的计算(1)矩阵的加减法[1]两个矩阵相加的表达式[2]交换律[3]结合律[4]减法变加法(2)矩阵的乘法[1]常数与矩阵相乘的表达式[2]常数与矩阵的结合律与展开[3]矩阵与矩阵相乘的表达式[4]矩阵与矩阵的结合律与展开(不满足交换律)(3)矩阵的转置[1]TTA)([2]T BA)(+[3]TA)(λ[4]TAB)(掌握3方阵的幂与方阵乘积的行列式性质(1)方阵的幂[1]方阵乘积中的幂变换[2]多项式形式下的方阵幂的运算(2)方阵的行列式[1]定义[2]运算规律①||T A②||Aλ③||AB④||k A了解4逆矩阵的基本内容(1)定义(2)逆矩阵的性质[1]可逆与行列式值的关系[2]可逆与逆阵可逆性的关系[3]可逆与转置阵可逆性的关系[4]可逆阵与常数的关系[5]两个可逆阵乘积的情况(3)矩阵可逆的充分必要条件(行列式A)(4)伴随矩阵[1]定义[2]利用伴随矩阵求逆矩阵掌握5分块矩阵(1)定义(2)运算法则(加法乘法转置、n次、求逆)掌握6矩阵的初等变换及初等矩阵性质(1)矩阵初等变换方式[1]对调[2]数乘[3]加减行列(2)初等矩阵[1]定义[2]等价关系[3]三个性质了解7矩阵的秩的基本内容(1)定义(2)性质[1]等价矩阵秩的关系[2]m×n矩阵秩的关系[3]矩阵与其转置阵和数乘阵秩的关系[4]两个矩阵运算后秩的大小关系[5]矩阵的秩的三角不等式法则[6]两个矩阵相乘后秩的关系[7]m×n矩阵与n×l矩阵零积阵的秩关系理解8初等变换法(1)初等变换法求矩阵的逆矩阵(2)初等变换法求矩阵的秩掌握第八章向量序号知识名称备注考纲要求1向量的基本内容(1)定义(2)分类与向量组的概念了解2向量的加法和数乘运算法则(1)向量的加法法则(2)向量的数乘运算法则掌握3向量的线性关系基本内容(1)线性组合的概念(2)向量组线性相关的概念(3)向量组线性无关的概念理解4向量组线性关系的性质及判别(1)线性关系的性质[1]向量组A线性相关的充要条件[2]向量组A线性无关的充要条件[3]向量组添项后的线性关系性质[4]维数小于向量个数时的线性关系性质[5]两个向量组线性关系与相互表示的性质(2)判别的五大定理[1]向量b能由向量组A线性表示的定理[2]向量组A线性相关的定理[3]向量组A线性相关的充要条件(组内)[4]向量组A线性无关,向量组(A,b)线性相关的b向量线性关系判定定理[5]向量组B中每一个向量与向量组A的关系与向量组B线性关系的判定定理掌握5向量组极大线性无关组与秩(1)定义[1]向量组极大线性无关组[2]向量的秩(2)求解[1]向量组极大线性无关组的求解[2]向量的秩的求解会6向量组等价、矩阵秩与向量秩的关系(1)等价向量组[1]定义[2]三个性质(2)矩阵秩与向量秩关系(三秩相等规则)理解7向量内积与正交的概念(1)定义[1]向量的内积[2]向量的正交(2)单位向量的概念(3)标准正交向量组的概念了解8施密特正交化(1)正交矩阵的定义(2)施密特正交化的方法及步骤掌握第九章线性方程组序号知识名称备注考纲要求1克拉默法则(1)克拉默法则解线性方程组的方法(2)克拉默法则的性质[1]非齐次方程组解的判定[2]齐次方程组解的判定会2非齐次方程组(1)定义(2)有解和无解的判定方法(秩判别法)(3)解的结构(基础解系+通解)掌握3齐次线性方程组(1)定义(2)基础解系(3)通解的求法:高斯消元法掌握第十章矩阵综合序号知识名称备注考纲要求1矩阵的特征值、特征向量(1)定义[1]特征值[2]特征向量(2)特征值的性质[1]加法性质和乘法性质[2]求特征值对应的特征向量的方法[3]全部特征向量与特征向量[4]特征值与线性关系的性质掌握2相似矩阵(1)定义(2)性质[1]相似矩阵间特征多项式、特征值的关系[2]与对角矩阵相似的情况性质[3]相似矩阵秩、行列式的性质[4]相似矩阵可逆关系的性质掌握3矩阵对角化(1)n阶矩阵可对角化的充要条件(2)矩阵化为相似对角矩阵的方法掌握第十一章二次型序号知识名称备注考纲要求1二次型的基本内容(1)定义(2)二次型秩的概念(3)二次型标准型、规范型的概念(4)惯性定理(5)合同变换与合同矩阵的概念了解2二次型基本处理方法(1)用矩阵形式表示二次型(2)用正交变换法化二次型为标准型(3)用配方法化二次型为标准型会3正定二次型和正定矩阵(1)定义[1]正定二次型[2]正定矩阵(2)正定二次型的判别方法掌握第十二章概率基础序号知识名称备注考纲要求1样本空间和随机事件(1)样本空间的定义(2)随机事件的定义理解2事件的关系及运算法则(1)事件之间的关系[1]包含[2]相等[3]相容[4]对立(2)运算法则[1]吸收律[2]交换律[3]结合律[4]分配律[5]对偶律(德摩根定律)掌握2概率的基本内容(1)概率的定义(2)条件概率的定义理解3概率的基本性质(1)空集的概率(2)有限可加性(3)单调性(4)有界性(5)逆事件的概率掌握4概率运算的常用公式(1)古典型概率(2)几何型概率(3)加法公式(4)减法公式(5)乘法公式(6)全概率公式(7)贝叶斯公式会5事件独立性(1)定义(2)概率计算方法(3)独立重复试验的基本内容掌握第十三章一元随机变量及其分布、数字特征序号知识名称备注考纲要求1分布函数的基本内容(1)分布函数的定义(2)分布函数的性质(判断某一函数是否为一随机变量X的分布函数的充要条件[1]单调不减性[2]右连续性[3]无穷与极限的关系理解2与随机变量相联系事件的概率计算相关计算(高中)会3随机变量的基本内容(1)定义[1]离散型随机变量[2]连续型随机变量(2)概率分布[1]离散型随机变量的分布列[2]连续型随机变量的密度函数理解4常用离散型随机变量性质及应用(1)0-1分布(2)二项分布(3)几何分布(4)超几何分布(5)泊松分布(需掌握定理结论和应用条件,以及用泊松分布近似二项式的方法)掌握5常用连续型随机变量性质及应用(1)均匀分布(2)正态分布(3)指数分布掌握6随机变量函数的分布的求法(1)公式法(2)概率法会7一维随机变量的数字特征及性质(1)期望(2)方差(3)标准差(4)矩(5)协方差(6)相关系数掌握第十四章多元随机变量及其分布、数字特征序号知识名称备注考纲要求1多维随机变量的基本内容(1)定义[1]多维随机变量[2]多维随机变量的分布函数(2)多维随机变量性质(是判别某多元函数是某一多维随机变量分布函数的充要条件)以二维为例,有:[1]单调不减性[2]右连续性[3]有界性[4]非负性理解2二维随机变量(1)离散型二维随机变量的概率分布(2)联合分布函数[1]离散型[2]连续型(3)边缘分布[1]离散型[2]连续型(4)条件分布[1]离散型[2]连续型(5)连续型二维随机变量的概率密度[1]定义[2]与分布函数的关系[3]边缘概率密度[4]条件概率密度掌握3随机变量的独立性和不相关性(1)定义[1]独立性[2]不相关性(2)二者之间的关系(3)随机变量相互独立的条件[1]定义法[2]离散型判定条件(联合分布与边缘分布)[3]连续型判定条件(概率密度与边缘密度)掌握4两个重要的二维分布及其性质(1)二维均匀分布(2)二维正态分布掌握5根据联合分布求函数分布(1)两个随机变量的联合分布(2)多个相互独立随机变量的联合分布会6多维随机变量的数字特征(1)期望(2)方差(3)标准差(4)协方差(5)相关系数掌握第十五章大数定理和中心极限定理序号知识名称备注考纲要求1大数定理(1)切比雪夫大数定理(2)伯努利大数定理(3)辛钦大数定律(独立同分布随机变量序列的大数定律)了解2中心极限定理(1)棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)(2)列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理)了解3利用中心极限定理近似计算事件概率应用上述2个中心极限定理进行近似计算会第十六章常用统计量及抽样分布序号知识名称备注考纲要求1数理统计基础知识(1)总体(2)简单随机样本(3)统计量(4)样本均值(5)样本方差(6)样本矩了解2经验分布函数(1)定义(2)基本性质了解3常用统计量(1)样本均值(2)样本方差和标准差(3)样本k阶原点矩(4)样本k阶中心矩(5)顺序统计量了解4常用统计量的性质均值的期望、方差(3个)掌握5四大抽样分布及其性质(1)标准正态分布(2)卡方分布(3)F分布(4)t分布了解。
2018年考研数学一二三真题解析及点评(史上最强版)
证明数列收敛只有唯一的方法:证明数列单调有界。 《金讲》17页予以重要说明并给出两道难度高于本题 的同型例题详解,本题再不济,直接用第一问的结论 求出第二问的结果应该是一丝难度都没有。
数一第20题 数三第20题 数二第22题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。
本质 一样
数一第18题
(Ⅰ)是简单一阶微分方程求解,直接套公式即得, 送分题;(Ⅱ)不定积分函数与变现积分函数的灵活 转换,需要对两者关系有较深度地掌握方可轻易转 换,稍有难度,本题完整证明出来的同学应该不超 过万分之一。
较 难 题
考查不等式的证明,具有天然的难题属性。但 《金讲》在142页对这类题型设了一个专题给予 了本质性的总结,任何不等式证明本质都可以归 结到两类情况,每类情况的证明有唯一思路,因 此,不等式证明对于《金讲》读者不太可能成为 难题,但《金讲》以外,没有任何参考书做过这 种深度总结,因此本道题对于有些人是难题。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数二第20题
考查微分的基本应用,将题目 内容用数学式子表示出来,问 题就转化为了最简单的微分或 积分问题,本题几乎是《金 讲》配套暑期集训讲义中的原 题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。
数学一数学二数学三的重点知识点有哪些
数学一数学二数学三的重点知识点有哪些一、数学一的重点知识点1. 整数与有理数1.1 整数的概念和性质1.2 有理数的概念和性质1.3 整数的四则运算1.4 有理数的四则运算1.5 整数与有理数的大小比较2. 代数式与多项式2.1 代数式的概念与运算2.2 一元一次方程与一元一次不等式2.3 多项式的概念与运算2.4 一元多项式的因式分解2.5 一元一次方程组与一元一次不等式组3. 几何图形的性质3.1 直线、线段、射线与角的概念与性质3.2 三角形的概念与性质3.3 直角三角形、等腰三角形与等边三角形的性质3.4 四边形的概念与性质3.5 圆的概念与性质4. 数据分析与统计4.1 数据的收集与整理4.2 统计指标的计算与应用4.3 概率与统计的基本概念4.4 随机事件与概率的计算4.5 列联表与线性回归分析二、数学二的重点知识点1. 平面与空间几何1.1 平面的性质与判定1.2 空间中的点、直线与平面1.3 球面、圆柱面、圆锥面与圆台面的概念与性质1.4 空间几何体的相交与投影2. 幂指对数与三角函数2.1 指数与幂的性质与运算2.2 对数的概念、性质与运算2.3 三角函数的定义与性质2.4 三角函数的图像与性质2.5 三角恒等式与解三角形3. 概率与统计3.1 随机变量与概率分布3.2 离散型与连续型随机变量的统计量3.3 正态分布与二项分布3.4 抽样与统计量的抽样分布3.5 参数估计与假设检验4. 数列与数项级数4.1 数列的概念与性质4.2 数列的通项与递推关系4.3 数列的极限与性质4.4 等比数列与等差数列的求和4.5 数项级数的概念与性质三、数学三的重点知识点1. 函数与极限1.1 函数的概念与性质1.2 函数的表示与运算1.3 函数的极限与性质1.4 极限的运算与计算1.5 无穷小与无穷大研究2. 导数与微分2.1 导数的定义与性质2.2 导数的计算与应用2.3 高阶导数与隐函数求导2.4 微分的定义与应用2.5 函数图像的绘制与分析3. 积分与应用3.1 不定积分与定积分的概念3.2 基本积分公式与常用积分法3.3 定积分的性质、计算与应用3.4 无穷级数与幂级数3.5 曲线长度与曲面面积的计算4. 空间解析几何4.1 点、直线、平面的表示与性质4.2 空间直角坐标系与方向余弦4.3 空间曲线的方程与性质4.4 空间几何体的方程与性质4.5 空间解析几何的应用以上是数学一、数学二和数学三的重点知识点,掌握这些知识可以帮助学生在数学学科中更加熟练地运用相关理论和方法,提高解题能力和分析问题的能力。
2018年考研数学大纲重难点解析
凯程考研,为学员服务,为学生引路!第 1 页 共 1 页 2018年考研数学大纲重难点解析 从科目上看,从数一到数三,分量最重的都是高等数学,它在数一数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。
在高数里边比较难的有微分中值定理以及定积分的证明题,这一部分题目技巧性比较强,考生普遍反映难度比较大。
另外数一的曲线积分和曲面积分在考试中得分率也不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。
这个现象,根本原因在考生的复习规划上,大多数考生对这一部分重视程度不够,导致对这一部分的内容很生疏,那到考试中得分率当然就不高了,这是高数需要我们注意的地方。
而线代的内容,我本身认为比较简单,考试的时候出题的套路也比较固定。
但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。
这就要求我们在复习时多注意一下基本概念,只要能抓准概念认清题型,拿到线代的分数还是很容易的。
概率论里边考生反映最大的问题就是不知道怎么把实际的问题抽象转化为数学问题。
这就要求大家学习知识要灵活,在做题的时候不要想着生搬硬套,要真正去理解一些数学概念的实际意义。
当然了,考研数学的出题也并不一定都是按照我们预想的规律的来出题。
分析历年的试卷,会发现数学出题存在这样一种现象:出题人为了避免考生猜题,会有很多不按常理出牌的行为。
比如说傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在08年数一里,考了一道傅里叶级数的大题,11分,这是任何人都事先都没有想到的。
又比如说数一在考查多元函数积分学时,它的大题大多数时候都是出在第二类曲线积分或是第二类曲面积分上的,因为这里有一些很重要的公式和定理,题目比较好出。
但2010年,我们的数一考的却是一道第一类曲面积分的题目;2018年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是看这道题的要求又是在大纲范围之内的,不能说它超纲。
考研数学备考:数一的7个常考知识点
考研数学备考:数一的7个常考知识点1500字数学一是考研数学科目中的一部分,也是很多考生备考的重点。
在备考数学一时,有一些常考知识点是必须要掌握的,下面我将列举七个常考知识点,并详细介绍它们的相关内容。
1. 极限与连续:极限与连续是数学分析的基础,也是数学一考试中的重要内容。
要理解极限和连续的概念,并掌握基本定理和方法。
其中包括函数的极限存在性、无穷小与无穷大的比较、函数的连续性、连续函数的运算等。
2. 导数与微分:导数与微分是微积分研究的核心内容,考生需要熟悉导数的定义、导数的计算方法、高阶导数的概念和计算、隐函数求导、参数方程的导数等。
此外,还需要掌握微分的概念、微分中值定理、泰勒公式等重要内容。
3. 级数:级数是数学分析中的重要内容,也是考研数学一中的考察点。
要掌握级数的概念、级数的敛散性判别法、级数收敛的性质、级数的运算等。
此外,还需要会应用级数判断函数的连续性、可导性等。
4. 微分方程:微分方程是数学分析与实际问题联系的重要桥梁,也是考研数学一的考察内容。
要熟悉常微分方程的基本概念、常微分方程的解法、变量可分离方程、一阶线性微分方程、二阶线性常系数齐次与非齐次微分方程等。
5. 多元函数微分学:多元函数微分学是微积分的重要内容,也是考研数学一中的考察点。
要掌握多元函数的极限、偏导数、全微分、多元函数的极值、条件极值、隐函数与显函数的求导等。
同时,还需要会应用多元函数微分学解决实际问题。
6. 多元函数积分学:多元函数积分学是微积分的另一个重要内容,也是考研数学一中的考察点。
要熟悉多元函数的重积分、重积分的计算方法、曲线、曲面积分的概念和计算方法、格林公式、高斯公式等。
7. 线性代数:线性代数是考研数学一中的一部分,要掌握矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量、线性方程组及其解法、线性空间与子空间等。
此外,还需要会应用线性代数解决实际问题。
以上是数学一备考中的常考知识点,考生在备考过程中要注重理论知识的学习与掌握,并结合大量的练习题进行巩固和提高。
2018考研数学备考:数二复习知识要点归纳
2018考研数学备考:数二复习知识要点归纳进入到三月份,基础阶段复习也进入了黄金期。
那么对于数学二的备考,应该注意哪些问题?现在许多大三的学生已经开始投入到基础复习中,对怎样合理安排复习计划、把握复习重点、复习使用的教材以及复习方法等多方面的问题都有诸多疑惑。
下面就具体来看看。
一、关于考研数学二中的高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、关于线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计全方位研究典型题型对于数二的同学来说,需要做大量的试题。
即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。
面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。
做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。
做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。
就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。
学习数学二,重在做题,熟能生巧。
对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。
数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。
训练解答综合题此外,还要初步进行解答综合题的训练。
数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。
考研数学备考:数三中常考知识点
考研数学备考:数三中常考知识点1500字考研数学备考中,数学三是一个非常重要的科目。
它涵盖了较多的知识点,需要我们进行系统的学习和复习。
下面我将介绍一些数三中常考的知识点,供大家参考。
1. 极限与连续:- 函数极限的概念和性质,如极限存在准则、函数极限的四则运算、夹逼定理等。
- 数列极限的概念和性质,如数列极限的四则运算、夹逼定理等。
- 连续函数的定义和性质,如连续函数的四则运算、连续函数的复合、连续函数的保号性等。
2. 一元函数微分学:- 函数的导数和导数的基本运算法则,如常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数计算。
- 高阶导数的计算和应用,如泰勒公式、极值、凹凸性等。
- 隐函数的导数计算,如隐函数定理等。
3. 一元函数积分学:- 积分的基本概念和性质,如定积分的定义、定积分的性质、积分中值定理等。
- 基本积分公式和换元积分法、分部积分法的应用。
- 微积分基本定理,如牛顿—莱布尼茨公式等。
4. 多元函数微分学:- 多元函数的偏导数和偏导数的应用,如多元函数的全微分、多元函数的极值、隐函数偏导数计算等。
- 多元函数的方向导数和梯度,如方向导数的计算公式、梯度的计算公式等。
5. 多元函数积分学:- 二重积分和三重积分的概念和性质,如积分的可加性、积分的线性性质等。
- 二重积分和三重积分的计算方法,如极坐标法、累次积分法等。
- 曲线积分和曲面积分的概念和计算方法,如格林公式、斯托克斯公式等。
6. 常微分方程:- 常微分方程的基本概念和性质,如初值问题、解的存在唯一性等。
- 一阶常微分方程的求解方法,如分离变量法、齐次方程法、一阶线性常微分方程法等。
- 高阶常微分方程的求解方法,如常系数齐次线性方程、常系数非齐次线性方程等。
以上是考研数学三中常考的知识点的简单介绍。
备考过程中,我们需要系统地学习这些知识点,并进行大量的练习和习题训练,以提高自己的解题能力和应试水平。
同时,要善于总结归纳,将学过的知识点整理成思维导图或笔记,方便复习时查阅和回顾。
2018考研数学一每年必考的7个知识点_毙考题_0
下载毙考题APP免费领取考试干货资料,还有资料商城等你入驻2018考研数学一每年必考的7个知识点数学一难度最大,考数一的同学你复习的怎么样了?小编整理了数学一每年必考的7个知识点,都来看看你掌握好了吗?一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。
以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。
其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,2017年考查了第一型曲面积分及投影曲线,散度旋度常见于小题。
无穷级数中的傅里叶级数考过解答题也考过小题,31年真题中考过4次大题,6次小题。
多元函数微分学中考点常见于小题,切线和法平面,切平面和法线尤其喜欢出填空题,隐函数存在定理考过选择题。
微分方程中可降阶出现频率较高,常在微分方程的应用题中出现,欧拉方程单独直接考查出现过1次。
一元微分学中的曲率常见于小题如选择题填空题,隐函数求导属于常考题型,是一种计算工具,常与其他考点结合考查,如与极值、拐点相结合。
一元积分学中的物理应用:功、压力、质心等考频不高,考过3次。
由于这些考点属于数一单有的,也是考官比较青睐的内容,难度不大,只要我们复习到了就能拿分,所以希望大家引起重视。
考试使用毙考题,不用再报培训班邀请码:8806。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数一数二数三必看重点
考研数学一数学二数学三复习要抓哪些重点?文都网校考研频道整理如下,五星重点知识,请2018考研考生复习时多关注!
数学一必看五星重点
知识点题型
重要度等
级
等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★
闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应
用
★★★★★
积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算
二重积分的计算及应
用
★★★★★一阶线性微分方程、齐次方程,微分方程的简单应用
用微分方程解决一些
应用问题
★★★★★矩阵的初等变换、初等矩阵
与初等变换有关的命
题
★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法
有关实对称矩阵的问
题
★★★★★数学二必看五星重点
知识点题型
重要度等
级
等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★
闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应
用
★★★★★
积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算
二重积分的计算及应
用
★★★★★一阶线性微分方程、齐次方程,微分方程的简单应用
用微分方程解决一些
应用问题
★★★★★矩阵的初等变换、初等矩阵
与初等变换有关的命
题
★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法
有关实对称矩阵的问
题
★★★★★数学三必看五星重点
知识点题型
重要度等
级
等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★
闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应
用
★★★★★
积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算
二重积分的计算及应
用
★★★★★
矩阵的初等变换、初等矩阵
与初等变换有关的命
题
★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法
有关实对称矩阵的问
题
★★★★★两个随机变量函数的分布
二维随机变量函数的
分布
★★★★★
随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差
的计算
★★★★★
2018考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索文都网校进入考研频道,查看2018考研辅导课程,咨询专业老师考研相关内容。
考研不是你一个人在战斗,漫漫考研路上,文都网校考研老师会一直陪伴在同学们左右。
祝2018考研学子备考顺利,考研成功!。