特征判别分析人脸识别方法的
人脸识别经典算法
人脸识别经典算法
人脸识别经典算法是指在人脸识别领域经典、应用广泛的算法,主要包括以下几种:
1. 特征脸算法(Eigenface):该算法是利用主成分分析(PCA)对人脸图像进行降维处理,将高维度的图像转换为低维度的向量,然后通过计算向量之间的距离来实现人脸识别。
2. Fisherfaces算法:该算法和特征脸算法类似,但是在计算主成分时,将类内距离最小和类间距离最大作为优化目标,来提高人脸识别的准确率。
3. 局部二值模式(Local Binary Pattern)算法:该算法使用图像中每个像素点周围的像素点值来构建特征向量,并采用模式匹配算法来实现人脸识别。
4. 非负矩阵分解(Nonnegative Matrix Factorization)算法:该算法是将人脸图像矩阵分解为两个非负矩阵,利用这两个矩阵的乘积来表示原始矩阵,实现人脸特征提取和识别。
5. 线性判别分析(Linear Discriminant Analysis)算法:该算法通过最大化类间距离和最小化类内距离来提高人脸识别准确率,同时可以降低维度,减少计算量。
以上算法都有其优缺点,在实际应用中需要根据具体情况选择合适的算法来实现人脸识别。
随着人工智能技术的不断发展,人脸识别算法也在不断改进和创新。
- 1 -。
人脸识别方法综述
人脸识别方法综述一、引言随着人工智能技术的不断发展,人脸识别技术已经成为了一个非常热门的领域。
在各个领域中,都有着广泛的应用,比如安防、金融、医疗等等。
本文将对人脸识别方法进行综述,包括传统的方法和深度学习方法。
二、传统方法1. 特征提取特征提取是人脸识别过程中最重要的一步。
传统的特征提取算法主要包括LBP(局部二值模式)、HOG(方向梯度直方图)和SIFT(尺度不变特征变换)等。
2. 降维由于原始图像数据维数较高,需要进行降维处理。
PCA(主成分分析)和LDA(线性判别分析)是两种常见的降维算法。
3. 分类器分类器是将输入样本映射到输出类别的关键组件。
常见的分类器包括SVM(支持向量机)、KNN(k近邻算法)和决策树等。
三、深度学习方法1. 卷积神经网络卷积神经网络是目前应用最广泛的深度学习算法之一。
卷积神经网络主要包括卷积层、池化层和全连接层等。
其中,卷积层和池化层可以提取图像的特征,全连接层则用于分类。
2. 人脸检测人脸检测是人脸识别过程中的第一步。
常见的人脸检测算法包括Haar 特征和基于深度学习的方法,比如Faster R-CNN、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等。
3. 人脸对齐由于不同人的面部特征存在差异,需要进行人脸对齐处理。
常见的人脸对齐算法包括基于特征点的方法和基于深度学习的方法。
4. 人脸识别在完成前面三个步骤后,就可以进行人脸识别了。
常见的深度学习模型包括FaceNet、DeepID系列和VGGFace等。
四、总结本文对传统方法和深度学习方法进行了综述。
传统方法主要包括特征提取、降维和分类器等步骤;而深度学习方法则主要采用卷积神经网络进行特征提取和分类。
无论是传统方法还是深度学习方法,都有着广泛的应用前景。
在未来,人脸识别技术将会在更多领域中发挥重要作用。
人脸识别算法的性别识别方法
人脸识别算法的性别识别方法人脸识别技术是一种通过计算机对人脸图像进行分析和比对的技术,广泛应用于人脸识别、人脸检测、人脸跟踪等领域。
其中,性别识别算法是人脸识别技术的一个重要组成部分。
本文将介绍人脸识别算法中常用的性别识别方法。
一、人脸特征提取在性别识别的过程中,首先需要对人脸图像进行特征提取。
人脸特征提取是将复杂的人脸图像通过一系列算法转化为更加简洁、有意义的特征向量,以便于后续的性别分类。
目前常用的人脸特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)等。
PCA方法通过寻找最大化数据方差的特征向量来实现降维,将高维的图像数据转化为低维的特征向量。
而LDA方法则通过线性投影的方式,最大化同类样本的间隔,最小化异类样本的间隔,以获得更好的分类性能。
这两种方法在性别识别中均有应用。
二、分类器训练与测试在人脸特征提取之后,需要使用特征向量进行性别分类器的训练和测试。
常见的分类器包括支持向量机(SVM)、人工神经网络(ANN)等。
支持向量机是一种常见的监督学习方法,通过构建一个决策边界,将数据划分为不同的类别。
在性别识别中,支持向量机可以根据训练集的特征向量来学习判别性别的规律,最终得到一个具有较好分类性能的模型。
人工神经网络模拟了人脑神经元之间的连接和传递方式,通过对大量数据进行学习和训练,提取出特征,并通过不同的神经元层进行特征的组合和计算,最终得到性别分类的结果。
人工神经网络具有较强的非线性拟合能力,适合处理复杂的人脸图像。
三、数据集的准备与标注在进行性别识别的算法训练和测试之前,需要准备一个充足且准确标注的数据集。
数据集应包含不同姿态、光照条件、表情等变化的人脸图像,以保证算法的鲁棒性和泛化能力。
同时,还需要为数据集进行性别标注,即对每张人脸图像进行男性或女性的分类标记。
标注的准确性对于算法的训练和测试非常重要,需要尽可能避免标注错误和偏差。
四、算法性能评价在性别识别算法的研究中,评价算法的性能是十分重要的。
人脸识别算法_几种人脸识别算法的原理概念及其代码特征
人脸识别算法_几种人脸识别算法的原理概念及其代码特征一、基于特征分析的人脸识别算法基于特征分析的算法主要通过提取人脸图像的特征信息,然后进行对比匹配。
常用的特征分析算法有主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。
1.主成分分析(PCA)主成分分析是一种经典的人脸识别算法,其主要思想是将原始的高维人脸图像数据降维到低维空间,并通过保留最重要的特征信息来实现对人脸的识别。
该算法将人脸图像看作向量,通过对人脸样本进行协方差矩阵分析,得到一组特征向量,通常称为特征脸。
然后通过计算待测人脸与特征脸的距离来判断身份。
2.线性判别分析(LDA)线性判别分析是一种将高维空间数据映射到低维空间的方法,在保留类别内部信息的同时,还具有良好的分类性能。
在人脸识别中,LDA将人脸图像看作样本,通过计算类别内均值和类别间均值的差异,找到能最好区分不同类别的投影方向。
最后,通过计算待测人脸与特征向量的距离来进行识别。
3.局部二值模式(LBP)局部二值模式是一种用于纹理分析的特征描述符,其主要思想是使用局部区域的像素值与中心像素值进行比较,然后按照比较结果生成二进制编码。
在人脸识别中,LBP算法通过将人脸图像划分为小的局部区域,计算每个区域的LBP特征向量,然后将不同区域的特征向量连接起来形成一个长向量。
最后通过计算待测人脸与训练样本的LBP特征向量的距离来进行识别。
二、基于深度学习的人脸识别算法随着深度学习的快速发展,基于深度学习的人脸识别算法逐渐成为主流。
这类算法通过设计并训练深度神经网络,可以自动学习人脸图像的特征表示,从而实现更准确的人脸识别。
1.卷积神经网络(CNN)卷积神经网络是一种前馈神经网络,其主要特点是通过卷积层和池化层来提取图像的局部特征,使得神经网络能够更好地适应图像的结构信息。
在人脸识别中,CNN通过输入人脸图像到网络中,网络会自动提取各种特征,然后通过全连接层进行分类或验证。
人脸识别的原理和过程
人脸识别的原理和过程
人脸识别是一种通过计算机技术对人脸进行识别和验证的方法。
它的原理是基于人脸的独特性和特征来进行身份确认。
人脸识别的过程可以分为人脸检测、特征提取和特征匹配三个主要步骤。
人脸识别系统会通过摄像头或图像输入设备获取人脸图像。
然后,在人脸检测阶段,系统会利用图像处理算法来确定图像中是否存在人脸。
这一步骤通常包括人脸位置的定位和人脸边界框的绘制。
通过分析图像中的颜色、纹理和形状等信息,系统能够准确地检测到人脸的位置。
接下来,在特征提取阶段,系统会从检测到的人脸图像中提取出人脸的特征。
这些特征通常包括人脸的轮廓、眼睛、鼻子和嘴巴等部位的位置和形状信息。
为了提取这些特征,系统会使用一系列的图像处理和模式识别算法,例如主成分分析、线性判别分析等。
通过这些算法,系统能够将人脸图像转化为一个高维特征向量。
在特征匹配阶段,系统会将提取到的人脸特征与事先存储在数据库中的特征进行比对。
这个数据库中存储了已知身份的人脸特征信息。
系统会采用相似度度量算法来计算待识别人脸特征与数据库中每个特征的相似度。
然后,系统会根据相似度的大小来进行身份的验证或识别。
如果待识别人脸特征与某个数据库中的特征相似度高于设定的阈值,则认为是同一个人;反之则认为是不同的人。
总结起来,人脸识别的原理和过程是通过人脸检测、特征提取和特征匹配三个步骤来完成的。
这一技术的应用非常广泛,可以用于安全门禁、人脸支付、人脸认证等领域。
随着计算机技术的不断发展,人脸识别技术也在不断改进和完善,为我们的生活带来了更多的便利和安全。
人脸识别算法技术手册
人脸识别算法技术手册一、简介人脸识别技术是一种基于人脸特征进行身份认证和识别的技术。
随着计算机视觉和机器学习的快速发展,人脸识别算法在安全领域、人机交互、人脸分析等方面得到了广泛应用。
本手册旨在介绍人脸识别算法的原理、常见算法模型和应用场景。
二、人脸识别算法原理1. 人脸图像的采集2. 人脸图像的预处理3. 人脸特征提取4. 人脸特征匹配5. 人脸识别结果输出三、常见的人脸识别算法模型1. 主成分分析法(PCA)主成分分析法是一种常用的降维算法,通过将高维的人脸图像数据映射到低维空间,提取出最相关的特征信息,用于人脸识别。
2. 线性判别分析法(LDA)线性判别分析法是一种分类算法,它通过最大化类间距离和最小化类内距离的方式,实现对人脸图像的判别和分类。
3. 非负矩阵分解法(NMF)非负矩阵分解法是一种较新的人脸识别算法,它能够对图像进行非负矩阵分解,提取出图像中的特征子空间,从而实现人脸识别。
4. 深度学习算法深度学习算法,特别是卷积神经网络(CNN),在人脸识别领域取得了显著的成果。
通过多层次的神经网络结构,深度学习算法能够对人脸图像进行准确的特征提取和分类。
四、人脸识别算法的应用场景1. 门禁系统人脸识别技术可以应用于门禁系统,实现对人员出入的自动识别和记录。
通过与数据库中的人脸特征进行匹配,系统能够判断是否授权进入,并实时记录人员信息。
2. 监控系统人脸识别技术在监控系统中起到了重要的作用。
通过对监控视频中的人脸进行实时检测和识别,系统能够迅速发现目标人物,并输出报警信号。
3. 身份认证人脸识别技术可以用于身份认证,取代传统的密码、指纹等方式。
无需物理接触,只需通过摄像头采集人脸图像,系统即可进行快速、准确的身份验证。
4. 人脸分析人脸识别技术可以用于人脸分析,如表情分析、性别识别、年龄估计等。
通过分析人脸图像中的特征,系统能够获取更多的人脸信息,实现个性化服务和广告推荐等功能。
五、人脸识别算法的挑战与未来发展1. 光照变化和姿态变化对算法的影响光照变化和姿态变化是人脸识别算法的两个主要挑战。
人脸识别的算法模型比较与性能分析
人脸识别的算法模型比较与性能分析人脸识别技术近年来得到了广泛应用,涵盖了安防监控、手机解锁、人脸支付等领域。
而作为人脸识别技术重要组成部分的算法模型,其性能直接关系到系统的精确性和鲁棒性。
本文将比较和分析几种常见的人脸识别算法模型,探讨它们的优劣和适用场景。
1. Eigenfaces(特征脸)算法模型Eigenfaces算法是人脸识别算法的开山鼻祖,通过将人脸图像转换成低维度的特征向量,并使用线性判别分析(LDA)进行分类。
该模型在中小规模人脸库上表现良好,但在大规模数据库的性能较差。
此外,对于光照、角度变化较大的人脸,特征脸模型的准确性也会受到影响。
2. Fisherfaces(判别脸)算法模型Fisherfaces算法是对特征脸算法的改进,引入了线性判别分析(LDA)来提高分类性能。
相对于特征脸算法,判别脸算法在光照和角度变化较大的情况下具有更好的鲁棒性。
然而,对于遮挡较多、表情变化较大的人脸,该算法的准确率仍然会有所下降。
3. Local Binary Patterns(局部二值模式)算法模型Local Binary Patterns(LBP)算法是一种基于纹理特征的人脸识别算法,通过计算图像局部区域的纹理信息来描述特征点。
LBP算法具有简单、高效的特点,并对光照和姿态变化较为鲁棒。
然而,LBP算法在人脸成像质量较低或遮挡较多的情况下可能会出现性能下降的问题。
4. SIFT和SURF算法模型SIFT(尺度不变特征变换)和SURF(加速稳健特征)算法是两种基于图像局部特征的人脸识别算法。
它们通过检测和提取图像中的关键点,并利用这些关键点构建特征向量进行匹配。
这些算法对于光照变化较为鲁棒,能够处理一定程度的遮挡和表情变化。
然而,由于这些算法需要计算大量特征点,其速度相对较慢。
5. 神经网络算法模型神经网络算法在深度学习的浪潮下受到广泛应用,也在人脸识别领域取得了显著的成果。
深度神经网络通过构建多个卷积层、池化层和全连接层,能够从原始图像中学习出高级特征,并实现准确的人脸识别。
人脸识别技术的原理分析
人脸识别技术的原理分析人脸识别技术是一种基于人脸图像特征识别与比对的生物识别技术,它可以通过摄像头、照片或视频等方式采集人脸图像,并通过图像处理和模式识别技术来对人脸进行分析和比对,从而实现身份认证、门禁控制、罪犯追踪等多种应用。
人脸识别技术的原理可以分为人脸图像采集、特征提取与模板匹配三个步骤。
一、人脸图像采集人脸图像采集是人脸识别技术中的第一步,也是最关键的一步。
它通过一系列装有高清摄像头和红外传感器的设备来捕捉人脸图像,将人脸图像转化为数字信号,并对其进行精准识别、分析和处理。
在人脸图像采集中需要考虑的因素包括光线、角度、距离、遮挡等,其中光线因素对于人脸识别技术的准确性影响最大。
二、特征提取特征提取是人脸识别技术中的核心环节,该环节通过一系列算法将人脸图像中的特征提取出来,形成一个特征向量,用于后续的比对和匹配。
特征提取的算法主要包括PCA(主成分分析)法、LDA(线性判别分析)法、IJB(人脸识别杂志评估测试)评估方法、深度学习等。
其中,深度学习技术在现代人脸识别技术中占有重要地位,它通过卷积神经网络(CNN)提取人脸图像中的特征,再进行训练和学习,最终形成一个对于该人脸图像的特征向量。
三、模板匹配模板匹配是人脸识别技术中的最后一步,它通过将人脸图像中的特征向量与预先存储的人脸数据库中的特征向量进行比对,从而判断该人脸图像是否属于数据库中的某一人。
在模板匹配中需要考虑的因素主要包括相似度计算方法、训练模型、更新数据库等方面。
总的来说,人脸识别技术的原理主要是通过摄像头、照片或视频采集人脸图像,通过一系列算法和模式匹配技术提取人脸图像的特征向量,并与预先存储的人脸数据库中的特征向量进行比对和匹配,从而实现身份认证、门禁控制、罪犯追踪等多种应用。
虽然人脸识别技术在各个领域中已经逐渐得到广泛应用,但是也存在一些风险和隐患。
例如,人脸识别技术可能会侵犯个人隐私权;人脸识别技术也可能会出现误认等问题。
人脸识别原理及算法
人脸识别的基本原理及算法1. 介绍人脸识别是一种用于识别和验证人脸身份的技术。
它通过分析人脸图像中的特征,比如脸部轮廓、眼睛、鼻子等,来确定一个人的身份。
人脸识别技术在安全领域、社交媒体、身份验证等方面有着广泛的应用。
人脸识别技术主要包括以下几个步骤:人脸检测、人脸对齐、特征提取和特征匹配。
下面将详细介绍每个步骤的原理及相关算法。
2. 人脸检测人脸检测是人脸识别的第一步,它的目标是从图像中准确地找出人脸的位置。
常用的人脸检测算法有Haar特征和卷积神经网络(CNN)。
2.1 Haar特征Haar特征是一种基于图像的局部特征,通过计算图像中不同区域的灰度差异来检测人脸。
Haar特征通过在图像上滑动不同大小的矩形滤波器,计算每个滤波器内部的像素和,然后通过比较不同滤波器的和来判断该区域是否为人脸。
Haar特征的计算速度快,但对光照和角度变化敏感,容易产生误检和漏检。
2.2 卷积神经网络(CNN)卷积神经网络是一种深度学习算法,通过多层卷积和池化操作来提取图像的特征。
在人脸检测中,CNN可以学习到更加复杂的特征表示,具有更好的鲁棒性和准确性。
CNN的训练过程通常需要大量的标注数据,但在人脸检测中,由于已有的人脸数据集较为丰富,因此可以使用预训练的CNN模型来进行人脸检测。
3. 人脸对齐人脸对齐的目标是将检测到的人脸图像中的特征点对齐到一个标准位置,以消除不同人脸之间的差异。
常用的人脸对齐算法有基于特征点的对齐和基于几何变换的对齐。
3.1 基于特征点的对齐基于特征点的对齐算法通过检测人脸图像中的特征点,如眼睛、鼻子、嘴巴等,然后根据这些特征点的位置来对齐人脸。
常用的特征点检测算法有Dlib和MTCNN。
3.2 基于几何变换的对齐基于几何变换的对齐算法通过计算人脸图像中的几何关系来对齐人脸。
常用的几何变换包括平移、旋转、缩放等操作。
这些变换可以通过计算特征点之间的距离和角度来确定。
4. 特征提取特征提取是人脸识别的核心步骤,它的目标是从对齐后的人脸图像中提取出具有区分性的特征,以便进行后续的比对和识别。
人脸识别常用算法
人脸识别常用算法人脸识别是一种通过计算机视觉技术对图像或视频中的人脸进行检测、识别和验证的技术。
它在安防监控、人脸支付、人脸解锁等领域有着广泛的应用。
人脸识别的核心在于算法的设计与优化,下面将介绍几种常用的人脸识别算法。
一、特征提取算法特征提取算法是人脸识别的关键步骤,它通过对人脸图像进行分析和处理,提取出具有代表性的特征信息。
常用的特征提取算法有主成分分析(PCA)算法、线性判别分析(LDA)算法和局部二值模式(LBP)算法。
PCA算法通过对人脸图像进行降维,将高维的图像数据映射到低维的特征空间中,然后利用这些特征进行分类和识别。
LDA算法则是通过最大化类间距离和最小化类内距离的方式,寻找最优的投影方向,以实现人脸的区分和识别。
LBP算法则是一种局部特征描述算法,它通过对图像的每个像素点与其周围像素点进行比较,得到一个二进制编码,从而提取出人脸的纹理信息。
二、人脸检测算法人脸检测算法是人脸识别的前置步骤,它主要用于检测图像或视频中是否存在人脸,并将其位置标记出来。
常用的人脸检测算法有Viola-Jones算法、卷积神经网络(CNN)算法和级联分类器算法。
Viola-Jones算法是一种基于机器学习的人脸检测算法,它通过训练一个级联的强分类器来实现人脸的检测。
CNN算法则是一种深度学习算法,它通过构建多层的卷积神经网络来提取图像的特征,并通过分类器进行人脸检测。
级联分类器算法则是将多个分类器组合在一起,通过级联的方式进行人脸检测,以提高检测的准确率和速度。
三、人脸识别算法人脸识别算法是通过对提取的人脸特征进行匹配和比对,从而实现对人脸的识别和验证。
常用的人脸识别算法有支持向量机(SVM)算法、人工神经网络(ANN)算法和卷积神经网络(CNN)算法。
SVM算法是一种监督学习算法,它通过构建一个超平面来实现对不同类别的人脸进行分类和识别。
ANN算法则是一种模拟人脑神经元工作原理的算法,它通过构建多层的神经网络来实现对人脸的识别。
人脸识别技术的工作原理
人脸识别技术的工作原理人脸识别技术是一种通过计算机程序对人脸特征进行分析和识别的技术。
其工作原理可以分为三个步骤:预处理、特征提取和分类识别。
1. 预处理先通过检测算法将图像中的人脸区域提取出来,去除干扰因素如眼镜、帽子、口罩等的影响。
对获得的人脸图像进行灰度化、尺寸归一化、直方图均衡化等预处理操作,以保证后续处理的准确性和稳定性。
2. 特征提取人脸识别技术主要依赖于对人脸图像中的各种特征进行提取和比较,以区分不同的人脸。
常用的特征提取方法包括基于外观、几何、纹理等的多种方式,其中比较流行的有以下四种:(1)局部二值模式(LBP)LBP是将图像划分为若干个小区域,对每个区域进行二值化处理,以表达像素点在整个区域中的相对位置关系。
将每个小区域的二值模式拼接起来,就得到了一个长向量,代表了整张人脸图像的LBP特征。
(2)主成分分析(PCA)PCA是一种基于数学统计的方法,它通过对所有样本数据进行主成分分析,得到每个样本在PCA空间中的向量表示,称为主成分系数。
每个样本的特征向量都可以被重构为多个主成分系数的线性组合表示。
(3)线性判别分析(LDA)LDA是一种有效的分类模型,在将不同的人脸进行分类时易于区分,能够保留人脸图像中的差异性特征,在图像降维中也有巨大的优势。
(4)小波变换(Wavelet Transform)小波变换是一种基于滤波器组的方法,它对输入的信号进行多尺度分解,并得到信号在不同频率下的系数。
提取人脸特征时则将不同尺度和不同方向的小波系数组成一个向量,形成特征表示。
3. 分类识别将提取的特征向量输入到分类器模型中进行分类。
常用的分类算法有K最近邻算法(K-NN)、支持向量机(SVM)等。
其中,K-NN分类是将每个特征向量与K个最近邻中的每个向量进行比较,将其距离之和作为分类器的最终判定依据。
而SVM分类则是通过分割超平面将不同类别的特征向量进行分类,最终得到一个判别模型。
人脸识别技术的工作原理是通过上述三个步骤对人脸图像进行处理,提取相关特征,最终使用分类器进行分类,以实现对人脸的识别。
人脸识别主要算法原理
人脸识别主要算法原理人脸识别技术是一种通过计算机对人脸图像进行识别和验证的技术,它在安防监控、人脸支付、人脸解锁等领域有着广泛的应用。
人脸识别的主要算法原理包括人脸检测、特征提取和特征匹配三个步骤。
首先,人脸检测是人脸识别的第一步,其目的是在图像中准确地找到人脸的位置和大小。
人脸检测算法通常采用的是基于特征的方法,如Haar特征、LBP特征和HOG特征等。
这些特征可以帮助算法准确地识别人脸区域,并将其与其他图像区域进行区分。
其次,特征提取是人脸识别的关键步骤,它通过对人脸图像进行特征分析和提取,将人脸的信息转化为数字特征向量。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。
这些方法可以有效地提取人脸的特征,使得人脸识别系统能够更好地识别和区分不同的人脸。
最后,特征匹配是人脸识别的最后一步,它通过比对输入的人脸特征向量与数据库中存储的特征向量,来确定输入人脸的身份。
特征匹配算法通常采用的是欧氏距离、余弦相似度和支持向量机等方法。
这些方法可以帮助系统准确地匹配输入人脸的特征向量,并找到最接近的匹配结果。
除了以上的主要算法原理,人脸识别技术还涉及到深度学习、卷积神经网络等先进的技术。
深度学习技术通过构建多层神经网络,可以更加精确地提取人脸特征,从而提高识别的准确率和鲁棒性。
卷积神经网络则可以有效地处理大规模的人脸数据,实现更快速的识别和匹配。
总的来说,人脸识别的主要算法原理包括人脸检测、特征提取和特征匹配三个步骤,以及深度学习、卷积神经网络等先进技术的应用。
这些算法原理和技术的不断进步,使得人脸识别技术在安防监控、金融支付、智能手机等领域有着越来越广泛的应用前景。
随着科技的不断发展,相信人脸识别技术将会在未来发挥更加重要的作用。
人脸识别数学原理
人脸识别数学原理
人脸识别是一种通过数学原理来识别和验证人脸的技术。
它的数学原理主要包括以下几个方面:
1. 特征提取:人脸识别首先需要从人脸图像中提取出有用的特征信息,以便进行后续的分类和识别。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)等。
这些方法
通过对人脸图像中的像素进行处理,提取出最具有识别性的特征。
2. 特征匹配:在识别阶段,人脸图像的特征会与已经存储在系统中的特征进行匹配。
匹配过程通常采用欧氏距离或余弦相似度等方法来度量两个特征向量之间的相似度。
通过比较相似度,系统可以判断人脸是否匹配。
3. 分类器:为了将人脸识别系统应用于实际应用中,通常需要使用分类器来进行最终的识别决策。
常见的分类器有支持向量机(SVM)、人工神经网络等。
这些分类器可以根据提取出
的特征和训练样本进行训练,然后将未知的人脸特征进行分类判别。
4. 数据集和训练:为了构建一个准确可靠的人脸识别系统,需要构建一个足够大且具有代表性的人脸图像数据集,并对这些图像进行标注。
通过将这些图像用于训练分类器,可以学习到人脸的特征模式和识别规律。
综上所述,人脸识别的数学原理主要涉及特征提取、特征匹配、
分类器以及数据集和训练。
这些方法和技术的应用可以实现对人脸图像进行准确和可靠的识别和验证。
人脸识别的特征提取方法简单案例
人脸识别的特征提取方法简单案例人脸识别是一种基于计算机视觉的技术,用于识别和验证人脸的身份。
其中,人脸识别的特征提取是实现人脸识别的关键步骤之一。
本文将列举10个常用的人脸识别特征提取方法,并对每种方法进行简要的介绍。
1. 主成分分析(Principal Component Analysis,PCA)主成分分析是一种常用的特征提取方法,它通过线性变换将原始的高维人脸图像转换为低维的特征向量。
PCA通过对图像协方差矩阵进行特征值分解,得到一组主成分,即特征脸。
每个特征脸都是一个特征向量,可以用来表示人脸图像。
2. 线性判别分析(Linear Discriminant Analysis,LDA)线性判别分析是一种常用的人脸识别方法,它通过最大化类间散布矩阵和最小化类内散布矩阵的比值,来寻找一个投影方向,使得同一类别的人脸图像尽可能接近,不同类别的人脸图像尽可能远离。
这个投影方向可以用来提取人脸的特征。
3. 局部二值模式(Local Binary Patterns,LBP)局部二值模式是一种基于纹理特征的人脸识别方法,它通过比较中心像素与周围像素的灰度值大小,将每个像素点转换为一个二进制数,然后将二进制数串联起来形成一个特征向量。
LBP可以有效地捕捉人脸的纹理信息,对光照变化和表情变化具有较好的鲁棒性。
4. 高斯混合模型(Gaussian Mixture Model,GMM)高斯混合模型是一种常用的概率模型,用于对人脸图像进行建模。
GMM可以将人脸图像表示为一组高斯分布的加权和,每个高斯分布代表一个人脸的特征。
通过对训练样本进行参数估计,可以得到每个人脸的特征向量。
5. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)尺度不变特征变换是一种常用的图像特征提取方法,它可以提取出图像中的尺度不变特征点。
SIFT通过在不同尺度和方向上计算图像的梯度信息,然后对梯度信息进行描述,得到每个特征点的特征描述子。
人脸识别系统及方法与制作流程
人脸识别系统及方法与制作流程1.数据采集:首先,需要采集一定数量的人脸图像作为数据集。
可以通过摄像机、手机或其他设备进行拍摄。
对于每个人脸,最好采集多张不同角度和表情的照片,以增加识别的准确度和鲁棒性。
2.数据预处理:采集到的人脸图像通常需要进行一些预处理,以便更好地提取特征。
例如,可以对图像进行灰度化处理、直方图均衡化、面部对齐等。
3.特征提取:在人脸识别系统中,通常使用特征提取算法来将人脸图像转换为一组有意义且容易比较的特征向量。
常用的特征提取算法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
4.特征匹配和识别:将待识别人脸的特征向量与已知数据库中的特征向量进行比对和匹配。
常用的匹配算法包括欧氏距离、曼哈顿距离、余弦相似度等。
根据匹配结果,系统可以判断待识别人脸是否属于已知数据库中的一些人。
5.系统评估和优化:对于人脸识别系统来说,准确性和鲁棒性是关键指标。
在制作过程中,可以使用一些评估指标来评估系统的性能,如准确率、召回率、误识率等。
根据评估结果,可以优化算法参数和系统流程,以提高识别性能。
6.系统应用和部署:最后,将制作好的人脸识别系统应用到实际场景中。
可以将系统部署在具备计算能力的硬件设备上,如服务器、智能门禁等。
同时,也可以使用软件开发包(SDK)来集成到其他应用程序中,以便更好地实现人脸识别功能。
总的来说,人脸识别系统的制作流程主要包括数据采集、数据预处理、特征提取、特征匹配和识别、系统评估和优化、系统应用和部署等环节。
制作好的人脸识别系统可以在安全门禁、手机解锁等场景中提供高效、准确和便利的人脸识别服务。
人脸识别技术的主要研究方法
人脸识别技术的主要研究方法人脸识别是一种通过计算机技术来识别和验证人脸的身份的技术。
随着计算机视觉和机器学习的发展,人脸识别技术已经取得了很大的进展。
在研究人脸识别技术的过程中,主要有以下几个研究方法:1.图像获取和预处理:人脸识别的第一步是获取人脸图像,并进行预处理,以提高后续的识别准确率。
这包括图像清晰化、对齐、裁剪、尺度归一化等预处理操作。
2.特征提取:特征提取是人脸识别的关键步骤,它的目标是从人脸图像中提取出具有区分度的特征。
传统的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
近年来,深度学习技术的发展,特别是卷积神经网络(CNN)的应用,使得基于深度学习的特征提取方法取得了显著的进展。
3.特征匹配和分类:特征匹配和分类是人脸识别的核心任务。
传统的特征匹配和分类方法包括支持向量机(SVM)、k近邻(KNN)等。
近年来,深度学习技术的发展,特别是深度卷积神经网络的应用,使得基于深度学习的人脸识别方法取得了巨大的突破。
深度学习方法不仅能够提取更具区分度的特征,而且能够自动学习不同类别之间的差异,从而提高人脸识别的准确率。
4.检测和跟踪:检测和跟踪是人脸识别的前提,也是人脸识别技术中一个重要的研究方向。
检测和跟踪的目标是在输入图像中定位和跟踪人脸,以便后续的识别任务。
传统的检测和跟踪方法包括基于特征的方法和基于神经网络的方法。
5. 数据集和评价指标:对于人脸识别技术的研究,选择合适的数据集和评价指标是至关重要的。
常用的人脸识别数据集包括LFW(Labeled Faces in the Wild)、Yale Face Database等。
评价指标主要包括精确率、召回率和F1值等。
总的来说,人脸识别技术的研究方法主要包括图像获取和预处理、特征提取、特征匹配和分类、检测和跟踪、数据集和评价指标等。
随着深度学习技术的发展,基于深度学习的人脸识别方法取得了显著的进展,成为研究人脸识别的重要方向。
人脸识别技术理解人脸检测、识别与表情分析的方法
人脸识别技术理解人脸检测、识别与表情分析的方法在现代科技的发展中,人脸识别技术成为了一个热门话题。
人脸识别技术作为一种生物识别技术,通过分析和识别人脸特征来确认一个人的身份。
人脸识别技术的应用场景非常广泛,包括但不限于安全监控、身份识别、手机解锁、支付验证等。
在实现人脸识别技术的过程中,人脸检测、识别与表情分析是其中重要的组成部分。
一、人脸检测方法人脸检测是指通过计算机算法,在图像或视频中自动检测出人脸的过程。
具体而言,人脸检测技术通常基于两种方法:特征点检测和分类器检测。
特征点检测方法常用的算法有主动形状模型(Active Shape Model,ASM)、主动外观模型(Active Appearance Model,AAM)以及基于特征点的级联回归算法(Cascade regression based on feature)。
ASM算法通过统计模型来建立一个人脸形状变化的模型,进而定位人脸。
而AAM算法则是将表情和三维形状的模型与人脸图像进行匹配,并计算置信度。
级联回归算法是通过多层级分类器来定位人脸,每一层都对最后定位结果进行细化。
分类器检测方法则是利用机器学习算法,将人脸和非人脸进行区分。
常用的分类器包括支持向量机(Support Vector Machine,SVM)、卷积神经网络(Convolutional Neural Network,CNN)等。
这些算法通过学习大量的人脸和非人脸图像,提取特定的特征,然后训练分类器来实现人脸检测。
二、人脸识别方法人脸识别是在人脸检测的基础上,通过比对人脸特征来判定一个人的身份。
人脸识别技术可以分为两大类:基于图像的人脸识别和基于视频的人脸识别。
在基于图像的人脸识别中,最常用的方法是使用特征向量表示人脸,然后通过比对特征向量的相似度来判定两幅图像上的人脸是不是同一个人。
常见的特征向量提取方法包括主成分分析(Principal Component Analysis,PCA)、线性判别分析(Linear Discriminant Analysis,LDA)等。
人脸识别的主要算法以及原理
人脸识别的主要算法以及原理人脸识别是一种通过计算机技术自动对人脸图像进行识别和验证的技术。
目前,人脸识别的主要算法包括特征脸法、小波变换法、主成分分析法、线性判别分析法、支持向量机、深度学习等。
特征脸法是人脸识别中最早被提出并得到广泛应用的一种算法。
其基本原理是将人脸图像转换为特征向量,并通过比较特征向量的欧氏距离来判断两幅图像中的人脸是否相似。
特征脸法的主要步骤包括:首先,收集一组已知身份的人脸图像,然后将这些图像进行预处理,包括灰度化、规范化等操作;接着,通过主成分分析等方法进行降维,提取出特征向量;最后,将待识别的人脸图像转换为特征向量,并与已有的特征向量进行比对判断。
小波变换法是一种基于图像频域分析的人脸识别方法。
其主要原理是将人脸图像通过小波变换将其分解为多个尺度的局部频谱,然后通过对不同频谱的处理获取人脸的特征信息。
在小波变换法中,选择适当的滤波器和尺度,能够对图像的边缘、纹理等特征进行提取,从而实现人脸识别的目的。
主成分分析法是一种经典的降维方法,也是人脸识别中常用的算法之一、其原理是通过线性变换将原始人脸图像的维度降低,提取出最具代表性的主成分。
主成分分析法通过计算协方差矩阵的特征值和特征向量,将图像从高维投影到低维空间,在降维的同时保持人脸图像的主要特征,进而实现人脸识别。
线性判别分析法是一种在特征空间中通过最优判别准则来实现特征提取的方法。
该方法通过在人脸图像的投影空间中寻找最佳投影方向,实现对人脸的有效判别。
在训练阶段,线性判别分析法通过计算类内散度和类间散度来选择最优投影方向,然后将训练样本的投影结果作为训练样本的特征;在识别阶段,将待识别的人脸图像投影到训练样本的特征空间中进行比对判断。
支持向量机是一种统计学习方法,广泛应用于人脸识别领域。
其基本原理是将人脸图像映射到高维空间,并通过构建一个最优超平面来实现人脸的分类和识别。
支持向量机通过经验风险最小化的方法选择最优的分类超平面,并通过所谓的支持向量进行决策。
人脸识别中的特征提取算法
人脸识别中的特征提取算法人脸识别技术作为一项重要的生物识别技术,在多个领域得到广泛应用。
而其中的特征提取算法则是人脸识别中关键的一部分。
本文将介绍几种常用的人脸特征提取算法,并分析其原理和应用。
一、主成分分析(Principal Component Analysis)主成分分析(PCA)是一种常用的特征提取算法,其基本思想是通过降维和去除冗余信息,将高维的人脸图像转换为低维的特征向量。
PCA方法通过计算协方差矩阵的特征值和特征向量,选取最大的特征值对应的特征向量作为主成分,将输入图像投影到主成分上得到特征向量。
该方法具有计算简单、处理速度快等特点,广泛应用于人脸识别领域。
二、线性判别分析(Linear Discriminant Analysis)线性判别分析(LDA)是一种经典的特征提取算法,主要用于分类和降维。
与PCA不同的是,LDA是一种有监督的降维方法,它试图将不同类别之间的距离最大化,同类别之间的距离最小化,从而达到更好的分类效果。
LDA通过求解广义瑞利商来求解线性判别坐标。
该方法在人脸识别中取得了较好的效果,并被广泛应用于实际系统中。
三、小波变换(Wavelet Transform)小波变换是一种时频分析方法,它可以将信号分解为不同的频率成分。
在人脸识别中,小波变换被应用于特征提取,通过对人脸图像进行小波分解,提取不同尺度的特征信息。
小波变换具有多尺度分析能力,能够捕捉到人脸图像的局部特征,对表情、光照等变化具有较强的鲁棒性。
四、局部二值模式(Local Binary Patterns)局部二值模式(LBP)是一种基于纹理特征的特征提取算法,在人脸识别领域具有较好的性能。
LBP方法通过将人脸图像分成不同的区域,计算每个区域中像素与周围像素的差异,然后将差异转换为二进制编码进行特征提取。
LBP方法具有计算简单、不受光照变化影响等优点,被广泛用于人脸识别系统中。
五、深度学习方法(Deep Learning)深度学习方法是近年来人脸识别领域取得突破的重要手段。
人脸识别怎么判定的原理
人脸识别怎么判定的原理人脸识别是一种通过计算机技术识别和验证人脸身份的技术。
它的原理基于人脸的独特性和不可伪造性,通过采集和处理人脸图像,提取并分析人脸的特征信息,最终与已知的人脸库进行比对和识别。
人脸识别的基本流程包括图像采集、人脸检测、人脸对齐、特征提取、特征比对和决策等几个关键步骤。
首先,图像采集阶段。
要进行人脸识别,首先需要采集到人脸图像。
常用的采集设备包括照相机、摄像头等。
采集到的图像可能受到光照、角度等因素的影响,所以在后续的处理中需要进行校正。
其次,人脸检测阶段。
在图像中检测到人脸区域是进行后续处理的前提。
人脸检测采用的方法有很多,常用的有基于Haar特征的级联分类器、基于深度学习的卷积神经网络等。
通过这些方法,可以在图像中准确地定位和标记出人脸区域。
第三,人脸对齐阶段。
由于不同人脸的角度和位置可能存在差异,为了更好地提取人脸的特征,需要将人脸图像进行对齐。
主要通过对眼睛、鼻尖等特征点进行定位和对齐来实现。
对齐后的人脸图像具有统一的尺度和方向,方便后续处理。
然后,特征提取阶段。
特征提取是人脸识别的核心步骤。
该步骤主要通过对对齐后的人脸图像进行处理,提取人脸的特征信息。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
这些方法可以通过对人脸图像进行降维、编码等处理,得到人脸的紧凑的特征向量。
接下来,特征比对阶段。
将提取到的人脸特征与已知的人脸库中的特征进行比对。
一般情况下,采用的是欧氏距离、余弦相似度等指标来度量两个特征向量之间的相似程度。
对于每个特征,可以设置一个阈值来决定是否匹配。
通过比对,可以找到与输入人脸最相似的人脸。
最后,决策阶段。
根据比对结果进行判定,决定输入人脸的身份。
如果与已知人脸特征的相似度超过阈值,可以判定为匹配成功,否则则为匹配失败。
根据具体应用的需求,可以设置不同的阈值,来控制误识率和拒识率。
总的来说,人脸识别的原理是基于人脸的独特性和不可伪造性,通过图像采集、人脸检测、人脸对齐、特征提取、特征比对和决策等几个关键步骤,将人脸图像转化为数学特征,并与已知的人脸库进行比对和识别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005.5计算机工程与应用基金项目:国家自然科学基金重点项目“基于生物特征的身份识别研究”(编号:60332010);国家863高技术研究发展计划项目(编号:2002AA118010)的资助1引言人脸识别技术由于其广泛的应用前景和科学研究价值而日益受到科研工作者们的重视,在过去的几年中也取得了巨大的进步[1]。
然而,现有的大多数系统都严重受图像采集环境及成像条件等诸多外界因素的影响,有些系统甚至要求用户的高度配合。
人脸识别领域中的一些主要问题仍然没能得到解决,尤其是在实际应用中,当成像条件没有限制的情况下,问题变得尤为突出。
这在学术上和应用系统的设计中都是个挑战。
Fisherface [2]是最成功的人脸识别技术之一。
在许多人脸库上对Fisherface 的测试都表明:在面部特征手工精确配准情况下该方法具有优越的识别性能。
但是在实际应用系统中结果则完全不同。
究其原因,发现大多数误识别都来自于眼睛中心点定位时发生的一、两个像素的偏差,即性能的下降源于不精确的特征配准。
因为在实际应用中一、两个像素的误配准几乎是无法避免的,所以急需对算法进行改良。
为强调误配准问题,先前的工作[3]中将这种由人脸特征点定位不准确引起的小的误配准而导致系统性能发生陡降的现象称为“误配准灾难”问题。
解决误配准灾难问题,除可以进一步研究人脸特征的精确配准方法外,还可以从提高人脸表征及分类方法对误配准的鲁棒性入手。
Gabor 小波核非常类似于哺乳动物简单视觉皮层感受野,显示出理想的空间局部性和方向选择性,因此被成功的应用于许多人脸识别系统中。
其中,动态连接结构[4](后发展为弹性图匹配技术[5])、基于Gabor 特征的Fisher 判别分析分类器[6](GFC )以及Gabor 小波网[7](GWN )都是成功的应用系统。
该文进一步从误配准鲁棒性角度评价Gabor 小波表征方法,并揭示Gabor 特征的鲁棒性。
文章对下面要讲述的内容组织如下:第二部分简要介绍基于Gabor 小波的人脸表示方法;第三部分讲述人脸识别算法对误配准问题的鲁棒性评价;接下来详细描述DAGR 和Fisher-face 的鲁棒性对比实验;第五部分给出结论。
2基于Gabor 特征判别分析的人脸识别方法误配准灾难问题的存在促使寻找对误配准问题更鲁棒的特征表示方法。
Gabor 小波特征由于能够反映信号在局部时间范围内和局部频带上的频谱信息,对由不精确定位而产生的误Gabor 特征判别分析人脸识别方法的误配准鲁棒性分析唱轶钲1山世光2高文1,2曹波2杨澎21(哈尔滨工业大学计算机学院,哈尔滨150001)2(中科院计算所ICT-ISVISION 面像识别联合实验室,北京100080)E-mail :1yzchang@摘要人脸识别领域中,Gabor 特征人脸表示方法因其在应用中获得的高首选识别率而被认为是一种理想的人脸特征表示方法。
文章用一种全新的量化评价方法,结合配准精度和识别率,从误配准鲁棒性角度评价Gabor 特征在人脸识别中的优越性。
实验表明,和图像灰度信息特征相比,Gabor 特征不仅在精确配准时具有高识别率,而且对由于人脸特征定位不精确而导致的图像变化的鲁棒性也更强。
关键词人脸识别误配准Gabor 小波特征文章编号1002-8331-(2005)05-0056-04文献标识码A中图分类号TP391Evaluation of Gabor Features for Face Recognition from the Angle of Robustness to Mis-alignmentChang Yizheng 1Shan Shiguang 2Gao Wen 1,2Cao Bo 2Yang Peng 21(School of Computer Science ,Harbin Institute of Technology ,Halrbin 150001)2(Chinese Academy of Sciences ,Beijing 100080)Abstract :Gabor feature has been widely recognized as a desirous representation for face recognition in terms of itshigh recognition rate.This paper evaluates Gabor feature for face recognition from a new angle of its robustness to mis-alignment using a novel quantificational evaluation method which combines the alignment precision with the recognition accuracy.This experiments show that ,compared with the gray-level intensity ,Gabor feature is much more robust to image variation caused by the imprecision of facial feature localization ,which further support the feasibility of Gabor representation.Keywords :face recognition ,mis-alignment ,Gabor feature56计算机工程与应用2005.5算法R 0(%)r *(%)R A 9282.30.895B 10079.50.795C8272.30.895配准显现出更高的鲁棒性。
为证明该观点,笔者实现了一个基于Gabor 特征的判别分析系统(Discriminant Analysis of Gabor Representation-DAGR )。
该系统与刘的GFC 方法非常相似[6],但是我们所用的是标准的Fisher 判别分析,而非增强的Fisher模型。
在系统中,对Gabor 核的描述如下:ψu ,v (z )=‖k u ,v ‖2σ2e(-‖k u ,v ‖2‖z ‖2/2σ2)e ik !u ,vz -e-σ2/2"#(1)其中k u ,v =k v e i Фu,k v =k max fv控制频率,Фu =u π8,Фu ∈[0,π)控制方向,z=(x ,y )。
在公式(1)中,v 控制Gabor 滤波器的尺度,决定Gabor 滤波器在频域的中心位置;u 控制Gabor 滤波器的方向。
这点可以从Gabor 滤波器的实部分布图中看出,如图1(b )所示。
图中Gabor 滤波器的参数分别为:σ=2π,k max =π/2,f=2$,尺度参数v ∈{0,1,2,3,4},方向参数u ∈{0,1,2,3,4,5,6,7}。
这些Gabor 核形成了40个不同的滤波器并表现出理想的空间频率、空间局域性和方向选择性。
将人脸图像与这40个Gabor 核进行卷积,得到该人脸图像的Gabor 特征表示。
然后,将对每个像素计算得到的Gabor 系数依次连接起来得到一个高维特征空间。
为便于后续判别和分类工作,通过4×4窗口求平均的方式对特征空间进行下采样,并忽略边缘点对所得结果作0-均值1-方差处理。
在系统中,标准化人脸图像大小为64×64,下采样后得到的Gabor 特征的维数为225×40=9000,用PCA 方法将其维数降到300,最后用Fisher 判别分析提取识别特征。
(a )归一化人脸图(b )40个Gabor 核(c )人脸图像的Gabor 小波表示图1Gabor 小波的人脸表示3人脸识别算法对误配准鲁棒性度量方法因为在实际应用系统中误配准无法避免,故无误配准发生时的首选识别率便不再适用于对算法的评价和比较。
考虑两个算法A 和B ,图2给出识别率随误配准程度变化而变化的曲线。
由图可知,在配准精确情况下,算法B 的识别率高达100%,而算法A 仅为92%。
习惯上,会得到结论:算法B 的性能优于算法A 。
但是在实际应用中,事实并非如此,因为配准不可能完全准确。
图2算法A 、B 、C 性能随误配准变化图现在考虑将算法A 和B 集成到一个实际人脸识别系统中的情况。
假设A 和B 采用相同的前端特征对齐方法,即此时配准是不可能完全精确的而是满足高斯分布的。
假设配准的错误率满足:p (∂)~N (µ,σ2)(2)此处∂=d (P ,P*)是自动特征定位算法给出的特征点位置P 偏离特征点实际位置P*的程度,则我们按如下方法评价算法的性能[3]:定义1:考虑误配准鲁棒性的识别率定义为:r *=Ω%P (∂)r (∂)d ∂(3)其中∂是误配准程度;Ω限定误配准的可能范围;P (∂)是误配准的概率密度函数;r (∂)代表∂发生时的识别率。
r *实际上是以误配准概率为权值的加权平均识别率,因此比单纯的首选识别率更适于评价集成了配准过程和识别过程的系统的性能。
此外,图2中注意到另一种情况:直觉上算法C 应该具有和算法A 相同的误配准鲁棒性,但算法C 的识别率均低于算法A(算法C 的识别率在各个点均低于算法A 10%)。
为处理这种情况,定义算法的误配准鲁棒性准则:定义2:算法对误配准的鲁棒性定义为:R=Ω%P (∂)r (∂)r 0d ∂=r*r 0(4)此处r 0为算法在精确配准情况下的识别率。
R 反映算法的识别性能受误配准的影响程度,其值域为(0,1)。
R 的值越大表示识别算法对误配准的鲁棒性越强。
r *和R 的提出大大简化了考虑误配准情况下对不同算法的性能评价。
以图2中的三种算法:A 、B 和C 为例,假设p (∂)~N(0,1),它们在考虑误配准情况下的识别率和误配准鲁棒性在表1中列出。
由表可知:在考虑误配准时算法A 的性能优于算法B 。
此外,还可得出结论:虽然算法C 的识别率低于A ,但是算法C 和算法A 具有相同的误配准鲁棒性,即R C =R A 。
表1算法A 、B 、C 的性能比较4DAGR 和Fisherface 的鲁棒性比较为验证DAGR 的鲁棒性,这里选择Fisherface 作为比较基准并将这两种算法在FERET 人脸库和CAS-PEAL 人脸库上分别进行测试。
下面先对要用到的两个数据库进行介绍。
4.1测试数据库介绍FERET 人脸库严格区分训练集合、原型图像集合和测试集合。
其训练集(Training Set )中包含429人的分别来自fa (正常的人脸表情)和fb (变化的人脸表情)集合的1002张照片;原型图像集(Gallery Set )中包含1196个人的1196张照片;测试集(Probe Set )本文选择FERET 人脸库中的FB 测试集。