秋八年级数学上册双休作业六作业课件新版北师大版

合集下载

2022八年级数学上册第一章勾股定理1探索勾股定理第1课时探索勾股定理作业课件新版北师大版20221

2022八年级数学上册第一章勾股定理1探索勾股定理第1课时探索勾股定理作业课件新版北师大版20221

11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端点A和点B,然后把中点C向 上拉升3 cm至D点,则橡皮筋被拉长了( A)
A.2 cm B.3 cm C.4 cm D.5 cm
二、填空题(每小题6分,共12分) 12.(郑州三中月考)如图,直线l上有三个正方形A,B,C.若A,C的边长分别 为 3 和 4,则正方形B的面积为___2_5.
4.(4分)(宝丰县期末)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC的 长为半径作圆弧交边AB于点D.若 AC=3,BC=4,则BD的长是____2.
5.(4分)(易错题)若一直角三角形的两边长分别为7和24,则它的第三边长的平方为 _____6_2_5_或__5_2_7___.
3.(3分)(平顶山期中)下列说法正确的是( D) A.若a,b,c是△ABC的三边,则a2+b2=c2 B.若a,b,c是Rt△ABC三边,则a2+b2=c2 C.若a,b,c是Rt△ABC的三边,∠A=90°,则a2+b2=c2 D.若a,b,c是Rt△ABC的三边,∠C=90°,则a2+b2=c2
13.在Rt△ABC中,∠C=90°,c为斜边,a,b为直角边,a+b=17,c=13, 则Rt△ABC的面积为_____.30
三、解答题(共36分) 14.(10分)如图是某小区一健身中心的平面图,活动区是面积为200 m2的长方 形,休息区是直角三角形(△ADE),请你计算一下半圆形餐饮区的面积.
【素养提升】 16.(14分)(分类讨论思想)在△ABC中,AB=15 cm,AC=13 cm,AD为BC边 上的高,且AD=12 cm,求△ABC的周长. 解:如图①,当高在△ABC内部时,在Rt△ABD中,BD2=AB2-AD2=81,所 以BD=9 cm,在Rt△ACD中,DC2=AC2-AD2=25,所以DC=5 cm,所以BC= 14(cm),所以C△ABC=15+13+14=42(cm);如图②,当高在△ABC外部时,由(1) 得BD=9 cm,CD=5 cm,所以BC=4 cm,所以C△ABC=15+13+4=32(cm),所 以△ABC的周长为42 cm或32 cm

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

北师大版八年级上册初二数学全册课件(精心整理汇编)

北师大版八年级上册初二数学全册课件(精心整理汇编)

知1-讲
导引:可以以边长为c的正方形为基础,一在形外补拼(不 重叠)成新的正方形;二在形内叠合成新的正方形.
即S:A两+S条B直=S角C边上
的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现? 知1-导
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
知1-讲
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和等于 斜边的平方.
弦c 股b
知1-讲
议一议 观察下图,判断图中三角形的三边长是否满足a2+b2=c2.
知1-讲
例1 如图是用硬纸板做成的四个两直角边长分别是a, b,斜边长为c的全等的直角三角形和一个边长为 c的正方形,请你将它们拼成一个能说明勾股定 理正确性的图形. (1)画出拼成的这个图形的示意图; (2)说明勾股定理的正确性.
新北师大版八年级上册数学
全册课件
交网本 流络课 使只件 用供来
免源 费于
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
1 课堂讲解 勾股定理
勾股定理与图形的面积
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
2

2π,
所以c2=25,a2=16.
根据勾股定理,得
b2=c2-a2=9.
所以
S3

1 2

北师大版八年级上册数学课件.3.1 勾股定理的应用(共19张PPT)

北师大版八年级上册数学课件.3.1 勾股定理的应用(共19张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

怎样计算AB的长?
A’ r
O
B
A’
B
h
侧面展开图
A
A
在Rt△AA’B中,利用勾股定理可得,
AA’2 +A’B2 =AB2
其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)
把空间几何图形转化为平面几何问题的步骤: 1.展开图形 2.找出对应点 3.应用勾股定理
二、利用勾股定理的逆定理判断线段垂直: 用刻度尺量出所构造的三角形的三边的长,看是
否满足两边的平方和等于第三边的平方,满足就有直 角(即线段垂直)。
当堂训练(10分钟)
1.课本第14页随堂练习1; 2 .课本第14页习题1.4的第1、2、4题。 3.课本第15页问题解决的第5题。
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

8.(2020·锦州期末)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车 尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问: 发生火灾的住户窗口距离地面多高?
解:∵AC⊥BC,∴∠ACB=90°.在Rt△ABC中,根据勾股定理,得BC2=AB2 -AC2=152-92=144,∴BC=12米,∴BD=12+2=14(米).答:发生火灾的住户窗 口距离地面14米
A.5≤a≤2 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
11.(2020·迎泽月考)一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形 DEFH的边长为2米,∠B=90°,AB=8米,BC=6米.当正方形DEFH运动到什么 位置,即当AE=( C )米时,有DC2=AE2+BC2.
数学 八年级上册 北师版
第一章 勾股定理
1.3 勾股定理的应用
1.如图,正方体的边长为1,一只蚂蚁从正方体的一个顶点A爬行到另一个顶点B, 则蚂蚁爬行的最短距离的平方是( ) D
A.2 B.3 C.4 D.5
2.(2020·沈河期中)如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿 着圆柱的侧面移动到BC的中点S,则移动的最短距离为( A )
17.为筹备元旦晚会,同学们设计了一个圆筒形灯罩,底色涂成白色,然后缠绕 彩纸(彩纸宽度忽略不计).如图,已知圆筒高108 cm,其截面周长为36 cm,如果在 表面上缠绕彩纸4圈,应剪多长的彩纸?
解:将圆筒展开,可得长方形,整个彩纸也随之分成相等的4段,如图,只需求出 每一段所需的彩纸的长度AC即可,在Rt△ABC中,AB=36 cm,BC=108÷4= 27(cm),由勾股定理,得AC2=AB2+BC2=362+272=2 025,所以AC=45 cm,故 整个彩纸的长为45×4=180(cm)

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 探索勾股定理 第2课时 勾股定理的简单运用

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 探索勾股定理 第2课时 勾股定理的简单运用

10.直角三角形的一条直角边是另一条直角边的13 ,斜边长为 10,它的面积 为( B )
A.10 B.15 C.20 D.30
11.“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的大正
方形.如图,直角三角形的两条直角边的长分别是 2 和 4,则中间小正方形的面积
占整个大正方形面积的( C )
解:100 m2
9.在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周 长为32.
(1)连接BD,求∠ADB的度数; (2)若BD=8,求BC的长.
解:(1)如图,连接 BD,因为 AB=AD=8,∠A=60°,所以∠ADB=21 (180 °-∠A)=60°
(2)因为∠BDC=150°-60°=90°,四边形的周长为 32,所以 DC+BC=32- AB-AD=16,设 BC=x,在 Rt△BCD 中,由勾股定理可得 BC2=CD2+BD2,即 x2=(16-x)2+82,解得 x=10,所以 BC=10
17 . 在 △ ABC 中 , BC = a , AC = b , AB = c , 若 ∠ C = 90° , 如 图 ① , 则 直 角 △ABC的两条直角边的平方和等于斜边的平方,即a2+b2=c2.若△ABC不是直角三角 形,如图②,图③,请你类比直角三角形三边的这一关系式,猜想a2+b2与c2的大小 关系,并证明你的猜想.
16.如图,是用4个全等的直角三角形与1个小正方形拼成的正方形图案,已知大 正方形面积为49,小正方形面积为9,若用x,y表示直角三角形的两直角边(x>y), 下列四个结论:①x2+y2=49;②x-y=3;③2xy+9=49;④x+y=10,其中正确 的是( B )
A.①② B.①②③ C.①②④ D.①②③④

新版北师大版八年级数学上册全册课件共570张PPT

新版北师大版八年级数学上册全册课件共570张PPT
新版北师大版八年级数学上册 全册课件
第一章 勾股定理
1.1 探索勾股定理(第1课时)
一、新课引入
如图,从电线杆离地面8 m处向地面拉一条钢 索,如果这条钢索在地面的固定点距离电线杆底 部6 m,那么需要多长的钢索?
、新课引入
观察下面地板砖示意图:
你发现了什么?
你能发现图中三个正 方形的面积之间存在什么关系
三、归纳小结
你学到了什么?
1、 如果三角形三条边长分别为a,b,c ,且
满足 a 2 b2 c 2,那么这个三角形是直角三角
形. 2、勾股定理判定的应用.
四、强化训练
1、如果三角形的三边长a,b,c满足 _______________,那么这个三角形是直角三角形; 2、写出三组勾股数: _______________________________; 3、一艘帆船在海上航行,由于风向的原因,帆船先 向正东方向航行9千米,然后向正北方向航行40千米, 这时它离开出发点_________千米.
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
二、新课讲解
例 我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧 拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽 车的速度吗?

人教版八年级数学上册作业课件 第十一章 三角形 双休作业(二)(第十一章)

人教版八年级数学上册作业课件 第十一章 三角形 双休作业(二)(第十一章)
8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时, 则∠A与∠1+∠2之间有一种数量关系始终保持不变. 请试着找一找这个规律,你发现的规律是(B ) A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
9.空调外机安装在墙壁上时,一般都会像如图所示的方法固定在墙壁上, 这种方法是利用了三角形的_稳__定__性___.
18.(8分)如图,已知在△ABC中,∠B<∠C,AD平分∠BAC, E是线段AD(除去端点A,D)上的一动点,EF⊥BC于点F. (1)若∠B=40°,∠DEF=10°,求∠C的度数; (2)当点E在AD上移动时,∠B,∠C,∠DEF之间存在怎样的等量关系? 请写出这个等量关系,并说明理由.
解 : (1)∵EF⊥BC , ∠ DEF = 10° , ∴ ∠ EDF = 80°.∵∠B = 40° , ∴ ∠ BAD = ∠EDF-∠B=80°-40°=40°.∵AD平分∠BAC,∴∠BAC=80°.∴∠C=180° -40°-80°=60° (2)∠C-∠B=2∠DEF.理由如下:∵EF⊥BC,∴∠EDF= 90°-∠DEF.∵∠EDF=∠B+∠BAD,∴∠BAD=90°-∠DEF-∠B.∵AD平分 ∠BAC,∴∠BAC=2∠BAD=180°-2∠DEF-2∠B.∵∠B+∠BAC+∠C=180°, 即∠B+180°-2∠DEF-2∠B+∠C=180°.∴∠C-∠B=2∠DEF
10.设△ABC三边为a,b,c,其中a,b满足|a+b-6|+(a-b+4)2=0, 则第三边c的取值范围是___4_<__c_<__6___.
11.已知在Rt△ABC中,∠A-∠B=20°,则∠C的度数是_2_0_°__或__9_0_°____.

北师大版八年级数学上册第六章《平均数》课件

北师大版八年级数学上册第六章《平均数》课件

知识点 2 加权平均数
想一想 小明是这样计算北京金隅队队员的平均年龄的:
年龄/岁 19 22 23 26 27 28 29 35 相应的队员数 1 4 2 2 1 2 2 1
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+ 35×1) ÷(1+4+2+2+1+2+2+1)
导引: 通过观察法确定一个常数(这组数据在这个常数附近波动); 再按新数据法的公式进行计算.
解:(1)将原数据都减去80,得到新数据为7,5,-12,-8, …,-15,-1.
所以新数据的平均数 x=[7+5+(-12)+(-8)+ +
(-15)+(-1)]÷20=-1. 所以原数据的平均数 x x 80 1 80 79, 即这20名学生的平均成绩为79分. (2)这20名学生的合格率为 18 100%=90%.
20
总结
新数据法求平均数的方法: 1. 确定一个常数(这组数据在这个常数附近波动且
较“整”); 2. 用每个数据减去这个常数得到一组新数,并求出
这组新数的平均数; 3. 原数据的平均数等于新数据的平均数加上这个常
数.
1 (中考·武汉)一组数据2,3,6,8,11的平均数是 ____6____.
2 一组数据的和为87,平均数是3,则这组数据的 个数为( C ) A.87 B.3 C.29 D.90
导引:此题只需按照题中所给“记分规则”将两人的最后得分计算 出来,再进行大小比较即可.
解:小菲去掉一个最高分89分,去掉一个最低分75分,最后得分 为 80 77 82 83 78 =8(0 分). 5

【北京课改版】八年级数学上册(全书)课件省优PPT(共427张)(2020年制作)

【北京课改版】八年级数学上册(全书)课件省优PPT(共427张)(2020年制作)

甲:1000m 1000n m n (元 / 千克)
1000 1000
2
乙:800
800
800 m
800 n
2mn mn
(元
/
千克)
比较: m n 2mn 2 mn
(m n)2
2m n
因为m、n是正数,且m≠n,所以 乙的单价较低!
(m n)2 0
2m n
例4
:若
2= x2 1
A x 1
1
b a
d c
bd ac
;
【分数的乘除法法则 】
2
b a
d c
b a
c d
bc ad
.
【分式的乘除法法那么 】
两个分数相乘, 把分子相乘 的积作为积的分子, 把分母相乘的积作为积的分母;
两个分数相除, 把除式的分 子分母颠倒位置后, 再与被除式相乘.
两个分式相乘, 把分子相乘 的积作为积的分子, 把分母相 乘的积作为积的
∴y = - ½
②使得分式有意义,那么4y-1≠0
∴把y = - ½ 代入4y-1= - 3≠0
∴当y = - ½ 时,此分式的值是零。
分式的定义 分式的意义 分式的值为0
整式A、B相除可
写为
A B
的形式,
若分母中含有字
母,那么 A 叫做
分式。 B
分母≠0
①分子=0 ②代入分母≠0 ③最后答案
1 4x
言,彻底约 分后的分数 叫什么?
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
约分
x2 1 (1) x2 2x 1
m2 3m (2) 9 m2

北师大版八年级上册数学全册课件

北师大版八年级上册数学全册课件
北师大版八年级上册 数学全册课件
汇报人: 202X-01-01
contents
目录
• 第一章 勾股定理 • 第二章 实数 • 第三章 分式 • 第四章 平行四边形 • 第五章 一次函数
01
第一章 勾股定理
勾股定理的证明
毕达哥拉斯学派
勾股定理最早由古希腊的毕达哥 拉斯学派证明,他们通过观察直 角三角形的三边关系,发现了勾
平方根与算术平方根的区别
平方根包括正负两个解,而算术平方根只取非负 的那个解。
无理数与实数
01
无理数的定义
无理数是不能表示为两个整数之比的数,常见的无理数有无限不循环小
数和无法精确表示的数(如圆的周长与直径之比π)。
02 03
无理数的性质
无理数具有稠密性和连续性,即任意两个无理数之间都存在其他无理数 。此外,无理数在实数集中占据了“无处不在”的位置,即任意两个不 同的无理数之间都存在其他无理数。
一次函数的性质
一次函数图像的斜率为k,截距为b。 当k>0时,函数为增函数;当k<0时 ,函数为减函数。
一次函数的应用
一次函数在生活中的应用
一次函数可以用于描述生活中的许多问题,如速度与时间的 关系、成本与数量的关系等。
一次函数在实际问题中的应用
通过建立数学模型,将实际问题转化为一次函数问题,可以 方便地解决许多实际问题,如最优解问题、预测问题等。
勾股定理和其逆定理是密切相关的, 它们是互为逆命题的两个命题,具有 等价性。
逆定理的应用
勾股定理的逆定理在判断三角形是否 为直角三角形时非常有用,可以通过 检查三边的平方关系来确定。
02
第二章 实数
实数的定义与性质
实数的定义

北师大版八年级数学上册课件:2.6实数(1)(共18张PPT)

北师大版八年级数学上册课件:2.6实数(1)(共18张PPT)

无理数集合
问题导学:
你能把下(列各2)数0分属别于填正入数相吗应的?集0属合于内吗负?数吗?
3
2,
4, 9
140实,,数(可703.,3以)73分实,77为数352正还7,7实可732数以,、怎(的20样307相、的,进邻个负两行数个实5逐分3,之次数类间加31呢)8,?
3
1
2, 4
,7,
,
2, 20 ,
合作探究:
请各小组研究如何在数轴上画出表示 5 的点, 并在练习本上画出。
巩固练习:
1、判断下列说法是否正确: (1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数. 2、求下列各数的相反数、倒数和绝对值:
(1) 7(; 2)3 8;(3) 49
课堂小结:
谈谈你这节课的 收获吧!
2.6实数(1)
温故互查:(二人小组完成)
1.(1) 整数和分数 统称有理数; (2)有理数分为 有限小数
和 无限循环小数; (3)有理数包括 正有理数 ﹑
零﹑ 负有理数. (4)无___限__不__循__环__小___数___叫做无理数;
温故互查:(二人小组完成)
有理数的分类方法:
整数 1、有理数
3 4
3
的相反数是__4____.
0的相反数是__0___. 2) 5的绝对值是 5 , 43的绝对值是___43___.
0的绝对值是___0__.
3) 5的倒数是
1 5

3 4
的倒数是____34__.
0有倒数吗?
(B)在有理数中,有理数a的的相反数、绝
对值是什么?不为0的数a的倒数是什么?
a的相反数是 -a

2020最新北师大版八年级数学上册全册教学课件

2020最新北师大版八年级数学上册全册教学课件

第一章 勾股定理
2020最新北师大版八年级数学上册 全册教学课件
1. 探索勾股定理
2020最新北师大版八年级数学上册 全册教学课件
2. 一定是直角三角形吗
2020最新北师大版八年级数学上册 全册教学课件
3. 勾股定理的应用
2020最新北师大版八年级数学上 册全册教学课件目录
0002页 0037页 0084页 0103页 0123页 0146页 0178页 0230页 0267页 0317页 0351页 0385页 0420页 0546页 0565页 0581页 0616页
第一章 勾股定理 2. 一定是直角三角形吗 回顾与思考 第二章 实数 2. 平方根 4. 估算 6. 实数 回顾与思考 第三章 位置与坐标 2. 平面直角坐标系 回顾与思考 第四章 一次函数 2. 一次函数与正比例函数 4. 一次函数的应用 复习题 1. 认识二元一次方程组 3. 应用二元一次方程组——鸡兔同笼
2020最新北师大版八年级数学上册 全册教学课件

回顾与思考
2020最新北师大版八年级数学上册 全册教学课件
复习题
2020最新北师大版八年级数学上册 全册教学课件

北师版八年级数学上册作业课件(BS) 第四章 一次函数 一次函数的应用 第2课时 一次函数的简单应用

北师版八年级数学上册作业课件(BS) 第四章 一次函数 一次函数的应用 第2课时 一次函数的简单应用
A.两人出发1小时后相遇 B.赵明阳跑步的速度为8 km/h C.王浩月到达目的地时两人相距10 km D.王浩月比赵明阳提前1.5 h到目的地
15.某单位举行“健康人生”徒步活动,某人从起点体育村沿建设路到市生态 园,再沿原路返回,设此人距离起点的路程s(千米)与徒步时间t(小时)之间的函数 关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,徒步2小时,根 据图象提供信息,解答下列问题.
知识点2:从一次函数图象中获取信息 6.一项工程,甲、乙两人合作5 h后,甲被调走,剩余的部分由乙继续完成, 设这项工程的全部工作量为1,工作量与工作时间之间的函数关系式如图所示,那 么甲的工作效率是( B)
A.110
B.115
C.210
D.310
7.今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一 段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的 函数关系如图所示.下列说法错误的是( C )
A.乙的速度是4米/秒 B.离开起点后,甲、乙两人第一次相遇时,距离起点12米 C.甲从起点到终点共用时83秒 D.乙到达终点时,甲、乙两人相距68米
12.某通讯公司提供了两种移动电话收费方式:方式1:收月基本费20元,再 以每分钟0.1元的价格按通话时间计费;方式2:收月基本费20元,送80分钟通话 时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:
易错点:忽视题中所求问题的关键词“提前”致误 10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如 图所示,如果汽车一直快速行驶,那么可以提前__2_小时到达B地.
11.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑 步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距 离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是( D )
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档