双足机器人平地行走步态规划的研究
双足机器人步行规划与控制方法研究的开题报告
双足机器人步行规划与控制方法研究的开题报告一、选题背景和意义:双足机器人是一种模拟人类步态的机器人,具有广阔的应用前景和研究意义。
随着机器人技术的不断发展,双足机器人在工业生产、服务机器人、救援机器人等领域有着广泛的应用。
然而,双足机器人的步行规划与控制是机器人技术中的难点和热点问题之一。
二、研究内容和目标:本研究将研究双足机器人的步行规划与控制方法,主要包括以下内容:1. 基础理论研究:分析双足机器人步行的动力学特性和控制原理,建立机器人步行控制系统的数学模型;2. 步态生成研究:研究双足机器人的步态生成算法,设计有效的步态规划方法,确保机器人步行平稳性和稳定性;3. 姿态控制研究:研究姿态控制算法,根据机器人的运动轨迹和姿态变化对机器人进行控制,保证机器人稳定运动;4. 实验验证:通过实验验证,检验所提出的步行规划与控制方法的有效性和可行性。
本研究的目标是设计一种高效、稳定的双足机器人步行控制方法,达到机器人行走平稳性、稳定性和自适应性要求,为双足机器人应用领域提供高效的技术支撑。
三、研究方法和步骤:本研究采用理论分析和实验验证相结合的方法,具体步骤如下:1. 基础理论研究:深入理解双足机器人的动力学特性和控制原理,建立机器人步行控制系统的数学模型;2. 步态生成研究:研究双足机器人的步态生成算法,设计有效的步态规划方法;3. 姿态控制研究:研究姿态控制算法,根据机器人的运动轨迹和姿态变化对机器人进行控制;4. 实验验证:通过实验验证,检验所提出的步行规划与控制方法的有效性和可行性。
四、预期成果:通过本研究,预期可以得到以下成果:1. 可以深入理解双足机器人的动力学特性和控制原理,建立机器人步行控制系统的数学模型;2. 提出一种高效、稳定的步行规划方法,确保机器人步行平稳性和稳定性;3. 提出一种有效的姿态控制算法,保证机器人稳定运动;4. 通过实验验证,检验所提出的步行规划与控制方法的有效性和可行性。
双足机器人步态与路径规划研究的开题报告
双足机器人步态与路径规划研究的开题报告1. 研究背景与意义双足机器人是一种拥有双足摆动、稳定步行的机器人系统。
其足底传感器、惯性导航系统等技术可以使其具备复杂环境下高效稳定的行走能力,因此被广泛应用于人形机器人、救援机器人、服务机器人等领域。
双足机器人的步态与路径规划是其行走能力的核心,它们直接影响机器人的稳定性和效率。
因此,对双足机器人的步态与路径规划进行深入研究,对于提高双足机器人的稳定性和智能化水平、拓展其应用领域具有重要意义。
2. 研究目标本研究的目标是,通过理论分析和实验验证,深入研究双足机器人步态与路径规划的关系,探索优化双足机器人步态和路径规划的方法,提高其稳定性和行走效率。
具体而言,本研究将对以下问题进行深入探究:1. 双足机器人的步行模式与路径规划算法;2. 基于视觉传感器的双足机器人姿态估计;3. 双足机器人在复杂地形和障碍物下的路径规划和避障算法;4. 双足机器人步态和路径规划的在线优化算法。
3. 研究内容与方法本研究将结合理论分析和实验验证的方法,对双足机器人步态与路径规划进行深入研究。
具体而言,将从以下几个方面展开研究:1. 双足机器人的步行模式与路径规划算法通过对双足机器人的基础步态进行分析,探究其步行模式,建立数学模型。
基于此,结合路径规划算法,设计双足机器人的运动轨迹,使其能够实现高效稳定的步行。
2. 基于视觉传感器的双足机器人姿态估计利用双足机器人的传感器信息,通过视觉传感器对其姿态进行估计,为后续的路径规划和避障算法提供准确的基础数据。
3. 双足机器人在复杂地形和障碍物下的路径规划和避障算法针对双足机器人在复杂环境下的行走情况,设计相应的路径规划和避障算法,使机器人能够高效、安全地完成任务。
4. 双足机器人步态和路径规划的在线优化算法通过持续的数据采集和分析,设计在线优化算法,对双足机器人的步态和路径规划进行实时优化,提高其运动效率和稳定性。
4. 研究预期成果通过本研究,预期获得以下成果:1. 深入探究双足机器人步态和路径规划的关系,提出一种基于步态的路径规划方法;2. 设计一种基于视觉传感器的双足机器人姿态估计算法;3. 提出一种双足机器人在复杂环境下的路径规划和避障算法;4. 设计一种在线优化算法,能够实现双足机器人的实时优化步态和路径规划;5. 经过实验验证,验证本研究成果的有效性。
双足机器人行走步态平滑切换方法研究的开题报告
双足机器人行走步态平滑切换方法研究的开题报告一、选题背景随着机器人技术的不断发展,双足机器人作为一种具有较高应用价值的机器人被广泛关注和研究。
作为一种仿生机器人,双足机器人的行走步态模仿了人类的行走方式,具有更好的后退、转弯和通过不规则地形等特点。
但是,双足机器人的行走步态平滑切换仍然是一个重要且具有挑战性的问题,对其稳定性和可控性具有重要影响,因此需要进一步研究。
二、选题意义双足机器人的行走步态平滑切换是机器人稳定性和可控性的重要问题。
在实际应用中,双足机器人需要在不同的环境中行走,要求其具有较好的灵活性和适应性。
平滑的步态切换可以最大程度地保证机器人的稳定性和行走效率,因此对于双足机器人的日常应用和进一步发展具有重要意义。
三、研究内容本文旨在研究双足机器人行走步态的平滑切换方法。
具体内容包括:1. 双足机器人步态分析:通过分析双足机器人的步态,确定其步态切换的时机和方式。
2. 双足机器人控制算法研究:基于步态分析,设计双足机器人的控制算法,实现平滑步态切换。
3. 实验验证:使用实际双足机器人平台进行验证,评估所提出的控制算法的有效性和稳定性。
四、研究方法1. 文献综述法:对双足机器人行走步态平滑切换的研究现状进行总结和综述,明确本文的研究内容和问题。
2. 理论分析法:通过数学模型和仿真模拟等方法,对双足机器人步态进行分析,并设计控制算法。
3. 实验验证法:使用实际双足机器人平台进行验证,分析实验结果,评估所提出算法的有效性和稳定性。
五、预期成果本文拟实现双足机器人行走步态的平滑切换,研究成果包括:1. 提出一种基于步态分析的双足机器人控制算法,实现平滑步态切换。
2. 搭建实际双足机器人平台,对所提出算法进行实验验证。
3. 评估所提出算法的有效性和稳定性,为双足机器人的稳定行走提供技术支持。
六、研究计划本研究计划分为以下几个阶段:1. 阶段一(1-2周):文献综述,了解双足机器人步态控制研究现状,明确本文的研究内容和问题。
双足机器人步行原理
双足机器人步行原理双足机器人作为一种具有高度仿生性的机器人,其步行原理是其设计和运动的核心。
双足机器人的步行原理主要包括步态规划、动力学控制和传感器反馈三个方面。
下面将对这三个方面逐一进行介绍。
首先,步态规划是双足机器人步行的基础。
在步态规划中,需要确定双足机器人的步行轨迹、步频和步幅。
通过对双足机器人的步行轨迹进行规划,可以确保机器人在行走过程中保持平衡,避免摔倒和碰撞。
而步频和步幅的规划则可以使机器人在行走过程中保持稳定的速度和节奏。
通过合理的步态规划,双足机器人可以实现稳定、高效的步行运动。
其次,动力学控制是双足机器人步行的关键。
在动力学控制中,需要考虑双足机器人的力学特性和运动学特性,以实现对机器人步行过程中的力和力矩的精确控制。
动力学控制可以通过对双足机器人的关节和驱动器进行精确的控制,使机器人在行走过程中保持平衡和稳定。
同时,动力学控制还可以实现双足机器人在不同地形和环境中的适应性,使其能够应对各种复杂的行走场景。
最后,传感器反馈是双足机器人步行的重要保障。
通过搭载各种传感器,如惯性传感器、视觉传感器、力觉传感器等,可以实时获取双足机器人的姿态、速度、力和力矩等信息,从而为动力学控制提供准确的反馈。
传感器反馈可以使双足机器人实现实时的自适应控制,及时调整步行姿态和步行速度,保证机器人在行走过程中保持稳定和安全。
综上所述,双足机器人的步行原理涉及步态规划、动力学控制和传感器反馈三个方面,通过这三个方面的协同作用,可以实现双足机器人稳定、高效的步行运动。
未来,随着步行机器人技术的不断发展和完善,相信双足机器人将在更广泛的领域发挥重要作用,为人类生活和工作带来更多的便利和可能。
双足机器人步行原理
双足机器人步行原理
双足机器人步行原理基于仿生学和机器人控制理论,旨在模拟人类的步行运动。
它主要基于以下原理和控制策略:
1. 动态平衡控制:双足机器人在行走过程中需要保持动态平衡,这意味着机器人需要时刻根据自身的姿态、行走速度和地面情况来调整步态和控制力矩,以保持机体的稳定。
2. 步态规划:双足机器人的步态规划决定了每一步腿的运动轨迹和步频。
一般来说,机器人上半身的重心会向前倾斜,然后交替迈步。
步态规划需要考虑腿部的受力、身体姿态、地面摩擦力等多个因素。
3. 步态控制:基于步态规划,机器人需要实现对每一步的力矩控制和低级关节控制。
这意味着机器人需要根据颈部、腰部、髋部、膝关节和脚踝关节的传感器反馈信息来调整关节的输出力和控制策略。
4. 感知与反馈:双足机器人需要运用各种传感器来感知自身的状态和周围环境,例如倾斜传感器、压力传感器、陀螺仪等。
这些传感器的数据能够提供给控制系统供其根据需要调整步行姿势和控制力矩。
5. 动力学控制:双足机器人需要考虑自身的动力学特性,以及地面反作用力的影响。
动力学控制通过综合各种传感器信息和动力学模型来计算机器人每一步所需的力矩,以提供足够的力量来维持步行。
综上所述,双足机器人步行的原理涉及动态平衡控制、步态规划、步态控制、感知与反馈以及动力学控制等多个方面。
通过精确的控制策略和高度集成的感知系统,机器人能够模拟人类的步行运动,并具备稳定的步行能力。
双足步行机器人行走控制研究
06
结论与展望
研究成果总结
已实现稳定的步态控制
通过先进的控制算法,双足步行机器人已经能够实现稳定的步态 行走,并在不同地形和环境下展示出良好的适应性。
高度自主导航
机器人已经具备对环境的感知和自主决策能力,可以在未知环境 中自我导航和避障。
强大的负载能力
一些双足机器人已经具备强大的负载能力,可以携带重物进行长 距离行走,这在军事、救援和公共服务等领域具有广泛的应用前 景。
应用前景与展望
军事与救援
双足步行机器人在军事和救援领域具有广泛的应用前景,例如在 复杂地形中执行侦察、搜救和运输任务。
公共服务
双足步行机器人可以用于公共服务领域,如公园、景区和机场等 地的巡逻、安保和导览工作。
家庭与个人助理
随着技术的发展,双足步行机器人将来可能会进入家庭和个人助理 领域,为人们提供各种服务和支持。
双足步行机器人的运动学与动力学
运动学
双足步行机器人的运动学主要研究步行过程中的空间位置、速度、加速度等运动学特性。
动力学
双足步行机器人的动力学主要研究步行过程中的力量、速度、加速度等动力学特性,以及机器人与环 境之间的相互作用。
03
行走控制系统设计
控制系统框架设计
基于动力学模型的控制系统设计
01
动态行走实验
动态行走实验主要测试机器人在运动状态下的稳定性和平衡性 。
障碍物规避实验
障碍物规避实验主要测试机器人对障碍物的识别和规避能力。
结果比较与讨论
结果比较
将不同实验的结果进行比较,分析机器人 在不同环境下的表现。
VS
结果讨论
对实验结果进行深入的讨论,分析机器人 在行走控制方面存在的问题和挑战,提出 改进方案。
双足机器人步态规划及其应用研究
本文以髋关节的X方向轨迹为函数变量对其余各关节轨迹进行相 应表述,并根据ZMP的稳定性约束条件、行走过程中的速度约束 条件采用粒子群(Particle Swarm Optimization,PSO)算法对相 关参数进行了优化。根据优化前后的ZMP数据对比,发现其稳定 裕提高了,步行稳定性增强了,充分证明了该优化方法的有效性。
因此,研究双足机器人的步态规划和应用具有重要的现实意义。 双足机器人的运动学研究,即各关节角变量与其各运动连杆之间 的联系,主要包含基础,在此基础之上,通过 机器人的逆运动学实例推导出各关节的求解过程,并介绍了双足 机器人步行稳定性的中常用的判定依据,即零力矩点(Zero Moment Point,ZMP)。不论是单脚支撑阶段还是双脚支撑阶段只 有当ZMP落在支撑脚的稳定区域,双足机器人才不会发生翻倒情 况。
另一方面根据前文介绍的三维线性倒立摆步态规划和PSO优化算 法并结合DARwin-OP2的相关参数实现了DARwin-OP2机器人的稳 定步行,充分证明了三维线性倒立摆步态规划的可行性。
双足机器人步态规划及其应用研究
双足机器人具有很好的机动性与环境适应能力。然而,双足机器 人的步行系统是一个内在的不稳定系统,该步行系统动力学特性 非常复杂,包含多个变量,存在强耦合、非线性和变结构等特点, 也因此一直是机器人领域研究的热点和难点之一。
又由于双足机器人的研究涉及到机械力学、自动化学、计算机 学、电子信息学、人工智能、材料学等众多领域。所以,双足机 器人的整体研究水平不仅反映了一个国家自动化与智能化的发 展状况,而且还代表着一个国家的综合科技实力。
双足机器人的步态规划研究,即通过特定的方法得出机器人各关 节角度轨迹随着时间变化而呈现规律性。本文采用三维线性倒 立摆的方法从前向和侧向两个维度规划处其质心的运动轨迹,再 利用质心与各关节运动约束条件从而求得各个关节的角度,进而 实现双足机器人的步态规划。
复杂路况下双足机器人稳定行走的设计
02
双足机器人的基本原理
双足机器人的结构与特点
结构
双足机器人通常由腿部、关节、 髋部和躯干等部分组成,具有与 人类相似的双足结构,以便在复 杂路况下稳定行走。
特点
双足机器人具有高度的灵活性和 适应性,能够适应不同地形和环 境,实现复杂动作和姿态的调整 。
双足机器人的运动学与动力学
运动学
研究双足机器人的空间位置和姿态变 化,通过分析机器人的步态和行走轨 迹,实现稳定行走和姿态调整。
实验结果与分析
平坦路面
在平坦路面上,双足机器人能 够稳定行走,步态自然,无明
显晃动。
坡度路面
在坡度路面上,双足机器人能 够根据坡度调整步态,保持稳 定行走。
崎岖路面
在崎岖路面上,双足机器人能 够跨越障碍,保持稳定行走, 但需要更复杂的控制策略。
障碍路面
在存在障碍的路面上,双足机 器人能够绕过障碍,保持稳定 行走,但需要更精确的传感器
国外研究现状
与国内相比,国外在双足机器人稳定 行走方面的研究起步较早,技术相对 成熟。一些国际知名的机器人研究机 构和高校在双足机器人的行走稳定性 、动态适应能力等方面取得了重要突 破。
现状总结
虽然国内外在双足机器人稳定行走方 面都取得了一定的研究成果,但仍存 在许多挑战和问题需要解决。例如, 如何提高机器人在复杂地形、不同路 况下的适应能力和稳定性,如何实现 更加智能的行走控制等。因此,对复 杂路况下双足机器人稳定行走的设计 研究具有重要的现实意义和理论价值 。
动力学
研究双足机器人的力和运动之间的关 系,通过优化机器人的驱动力和关节 角度,提高行走效率和稳定性。
双足机器人的稳定性分析
静态稳定性
指双足机器人在静止状态下保持平衡的能力,通过合理设计机器人的重心位置和 支撑点分布来实现。
双足机器人拟人步态规划与稳定性研究
双足机器人拟人步态规划与稳定性研究一、内容概要本文针对双足机器人的拟人步态规划与稳定性展开深入研究。
文章首先介绍了双足机器人的发展背景与现状,指出了当前双足机器人研究领域中存在的问题与挑战。
在此基础上,文章重点探讨了双足机器人的拟人步态规划原理和稳定性控制方法。
拟人步态规划部分详细阐述了如何根据双足机器人的解剖结构、动力学特性以及运动目标,设计出符合人类行走特性的步态规划算法。
稳定性控制方法则主要研究了在各种行走状态下,如何通过调整双足机器人的肢体姿势和关节角度,以提高其行走稳定性和舒适性。
为实现拟人步态规划的稳定控制,文章提出了一种基于仿生学原理的优化控制策略。
该策略结合了模糊逻辑控制和梯度下降法的思想,能够根据实时采集的双足机器人姿态数据,动态调整控制参数,从而实现步态规划与稳定控制的有效结合。
为了验证所提算法的有效性,文章在仿真环境中进行了大量的实验验证。
实验结果表明,与传统控制方法相比,所提出的仿生优化控制策略在双足机器人的拟人步态规划和稳定性控制方面具有显著的优势。
文章总结了研究成果,并展望了未来双足机器人研究的发展方向。
指出通过进一步研究双足机器人的感知与认知能力,实现更高程度的自主步态规划和适应性操控,将是未来研究的重点和难点。
1. 双足机器人的发展和应用前景随着科技的不断发展,机器人已经逐渐成为我们生活中不可或缺的一部分。
双足机器人作为一种模仿人类行走方式的高科技产品,吸引了广泛关注。
双足机器人的发展可以追溯到上世纪六十年代,但直到近年来,随着控制理论、传感器技术及材料科学等领域的飞速进步,双足机器人才得到了快速发展。
尤其是近年来,一系列突破性的研究成果面世,如Boston Dynamics公司推出的双足机器人“大狗”(BigDog),以及最新的“阿尔法”(Alpha)和“里约”(Rio)双足机器人,充分展示了双足机器人在运动性能、稳定性和自主导航等方面的潜力。
尽管双足机器人在实验室环境中已取得令人瞩目的成果,但其在实际应用中仍面临诸多挑战,特别是在复杂的地形环境下,如何保证双足机器人的稳定性和安全性成为了亟待解决的问题。
双足机器人平衡控制及步态规划研究
摘要摘要驱动技术,人工智能,高性能计算机等最新技术已经使双足机器人有了粗略模拟人体运动的灵巧性,能够进行舞蹈展示,乐器演奏,与人交谈等。
然而这与投入实际应用所需求的能力还有不小差距。
主要体现在缺乏与人类相近的平衡能力和步伐协调能力,对工作环境要求高,在非结构化环境中适应能力差。
因此,本文以自主研制的双足机器人为研究对象,重点研究了双足机器人的平衡控制,阻抗控制以及步态规划等内容。
本文首先简要介绍了自主研制的双足机器人的软硬件构架,建立了ADAMS 和Gazebo仿真来协助对控制算法性能预测和优化并减少对物理机器人的危险操作。
接着分析了双足机器人的正逆运动学并引入运动学库KDL来简化运动学运算。
稳定的平衡控制对于双足机器人而言在目前还是个不小的挑战。
本文就此研究了两种处理平衡的阻抗调节方案。
一种是基于LQR的固定阻抗模型,这种方案简单有效,但存在易产生振动的问题,本文结合滤波改善了平衡控制效果。
另一种是基于增强学习的自适应阻抗模型。
该方法可以在不知道系统内部动态信息的情况下利用迭代策略在线得到最优解,是对前述LQR方法的进一步优化。
随后本文通过仿真和实验进行了验证并分析了优缺点。
步态规划是机器人运动控制中最基础的一环。
本文从五连杆平面机器人入手对其运动控制进行了研究。
首先采用基于ZMP的多项式拟合法实现了机器人平地行走的步态规划。
然后分析其动力学模型并利用PD控制器进行运动仿真,就仿真中出现双腿支撑阶段跟踪误差较大的问题提出了PD与径向基神经网络混合控制的新策略。
再次通过仿真证实该方案能够减小跟踪误差。
最后,本文利用前述多项式拟合法对实验平台的物理机器人进行静态行走和上楼梯的步态规划。
针对上楼梯的步态规划的特殊性,本文提出了分段拟合来实现各关节的协同规划,并引入了躯干前倾角来辅助身体平衡。
由于时间所限,本文实现了双足机器人的稳定步行实验,上楼梯实验还尚缺稳健性,这将作为下一步的工作。
关键词:双足机器人,平衡控制,步态规划,ADAMS仿真,增强学习IABSTRACTDriving technology, artificial intelligence, high-performance computers and other latest technology has enable bipedal robots to roughly emulate the motor dexterity of humans, able to dance show, musical instruments, and talking. However, this ability still have big gap between putting into practical application. Mainly reflected in the lack of the ability of balance, and the coordination of walking. High demands on the working environment, poor adaptability in unstructured environments. In this paper, the self-developed bipedal humanoid robot is researched, and the balance control, impedance control and gait planning are mainly studied.This paper first introduces the hardware and software architecture of the biped robot, and establishes the ADAMS and Gazebo simulation to assist in the prediction and optimization of the performance of the control algorithm, so as to reduce the risk operation of the physical robot and avoiding the potential risks. Then the forward kinematics and inverse kinematics of the biped robot are analyzed and the kinematic library KDL is introduced to simplify the kinematic operation.Stable balance control is still a challenge for biped robots. In this paper, we present two schemes for impedance adjustment when dealing with the balance. One is the fixed impedance model, which is simple and effective, but there is a problem of vibration, a filter is combined in this paper to improve the balance control effect. The other is an adaptive impedance model based on integral reinforcement learning. This method can obtain the optimal solution online by using the policy iteration without knowing the dynamic information of the system. It is a further optimization of the LQR method. Then the scheme is simulated and experimented, and the advantages and disadvantages are analyzed.Gait planning is the most basic part of robot motion control. First, a simplified five-link planar robot model is established to facilitate the study. Then, the ZMP-based polynomial fitting method is used to realize the gait planning of the robot's horizontal walking. Then the dynamic model is analyzed and the PD controller is used to simulate the motion. A new strategy of PD and RBF neural network hybrid control is proposed to reduce the tracking error during DSP. Again, the simulation results show that the scheme can reduce the tracking error.IIFinally, this paper applies the polynomial fitting method to carry on the static walking and the stairway gait planning of the physical robot of the experimental platform. In view of the particularity of the gait planning of the stairs, this paper proposes a partition fitting to realize the cooperative planning of each joint and introduces the trunk leaning forward to assist the body balance. Due to time constraints, this paper has achieved a stable walking experiment of bipedal robots, and the stair experiment is still lacking in robustness, which will be the next step of the work.Keywords: biped robot, balance control, gait planning, ADAMS simulation, reinforcement learningIII目录第一章绪论 (1)1.1 研究工作的背景与意义 (1)1.2 国内外研究历史和发展态势 (2)1.2.1双足机器人的发展现状 (2)1.2.2双足机器人平衡控制概况 (6)1.2.3机器人阻抗控制概况 (7)1.2.4双足机器人步态规划及运动控制概况 (8)1.3 本文的主要工作 (9)1.4 本论文的结构安排 (10)第二章双足机器人控制系统架构与仿真平台设计 (11)2.1 双足机器人机体结构 (11)2.2 双足机器人控制系统框架设计 (13)2.2.1硬件系统设计 (13)2.2.2控制软件设计 (15)2.3 双足机器人仿真平台的设计 (16)2.3.1机器人系统常用仿真软件 (16)2.3.2ADAMS虚拟样机建模 (17)2.3.3G AZEBO模型建立 (18)2.4 本章小结 (19)第三章双足机器人运动学建模分析 (20)3.1 双足机器人位姿的描述 (20)3.2 正向运动学求解 (21)3.3 逆运动学求解 (22)3.4 五连杆平面机器人的运动仿真 (26)3.4.1开源运动学和动力学库KDL (26)3.4.2基于KDL的双足机器人运动学仿真 (26)3.5 本章小结 (27)第四章双足机器人站姿下的平衡控制 (28)4.1 双足机器人的平衡控制策略 (28)4.2 双足机器人的踝关节平衡策略 (30)IV4.2.1基于倒立摆的固定阻抗模型 (31)4.2.2基于增强学习的自适应阻抗模型 (33)4.3 仿真结果 (38)4.3.1固定阻抗与自适应阻抗仿真结果及对比 (38)4.3.2仿真算法的进一步优化 (41)4.4 实验结果 (43)4.4.1实验设计 (43)4.4.2实验结果与分析 (44)4.5 本章小结 (47)第五章五连杆双足机器人行走步态规划及控制 (48)5.1 步态规划依据和方法 (48)5.1.1步态规划的依据 (48)5.1.2离线步态规划的方法 (49)5.2 五连杆平面机器人模型的建立 (49)5.2.1五连杆模型简介 (50)5.2.2五连杆的运动学与动力学模型 (51)5.3 五连杆机器人的步态规划 (53)5.3.1摆动腿的轨迹规划 (53)5.3.2髋关节的轨迹规划 (55)5.3.3轨迹规划展示 (56)5.4 基于PD控制器的五连杆运动控制 (57)5.4.1PD控制器设计 (58)5.4.2仿真实验结果及分析 (59)5.5 基于RBFNN的五连杆运动控制 (61)5.5.1基于动力学模型的控制分析 (61)5.5.2RBF神经网络控制器设计 (62)5.5.3仿真实验结果及分析 (64)5.6 本章小结 (65)第六章双足机器人步态规划与实验 (66)6.1 双足机器人步态规划的约束 (66)6.2 双足机器人静态行走的步态规划 (66)6.2.1步行准备阶段运动规划 (67)6.2.2周期步行阶段运动规划 (69)V6.2.3步态仿真验证 (71)6.2.4双足机器人步行实验 (73)6.3 双足机器人上楼梯的步态规划 (73)6.3.1起步阶段运动规划 (73)6.3.2上楼梯双腿支撑阶段运动规划 (74)6.3.3跨两层台阶运动规划 (75)6.3.4双足机器人上楼梯仿真及实验 (76)6.4 本章小结 (78)第七章全文总结与展望 (79)7.1 全文总结 (79)7.2 后续工作展望 (80)致谢 (81)参考文献 (82)攻读硕士学位期间取得的成果 (87)VI第一章绪论第一章绪论1.1 研究工作的背景与意义上世纪60年代初,工业机器人和自主移动机器人成为现实,为实现大规模自动化生产,降低制造成本提升产品质量做出了巨大贡献。
一种双足机器人的步态规划研究
() 7
逆运动学建模就是给定机器人的上体和摆 动腿 末端 的位置 , 求解 机器 人 的姿态 , 是机 器人
控制 系统 中必不可 少 的一 部分 。 由于机器人 逆 运动 学 规 划 涉 及解 的存 在 性 和 唯一 性 , 相对 比 儿
ca tn
() 8
() 和 的求解 : 和 的几何 约束 2
第3卷 O
21 年 00
第4 期
4月
核电子学与探测技术
Nu l r lcrnc ce eto i a E s& Deet nT c n lg tci eh oo y o
Vo. 0 No 4 I3 .
Ap . 2 1 r 00
一
种 双 足 机 器 人 的步 态 规 划研 究
5 42
正, 左边为负 , 可以得到 :
X 一
一
) 。各个关节角度 的求解方式如下:
() 和 的求解 : 和 的几何约束 1 ,
() 1
+ LliO + LziO n1 s sn 2
L i 一 L5 i0 4 n s sn s
为:
—
=
y + L1i + L s 6 n s 2i n
一
较复杂。针对 5 连杆双足的结构 , 逆运动学规
…
划就是给定摆动腿踝关节和髋关节在固定坐标
系中的运动轨迹 , 反求 出机器人各个关节 的运 动 情况 。 由 5连杆 双 足模 型 可 知 , 确 定 了摆 在
动 腿 踩关 节 和髓 关节 的轨 迹 后 , 根据 机 器 人 的 几 何 约束 , 以求 得 各 个 连 杆 和 竖 直轴 的夹 角 可 (一1 5有 两组 解 , ~ ) 就可 以得 到 唯一 解 。 假设 支 撑腿 的跺 关节 的坐标 为 0( ,) , 0O 点 髋关 节 为 H( , ^ , 动关 节 坐 标 为 E( , X^y )摆
《双足机器人步态规划与控制研究》范文
《双足机器人步态规划与控制研究》篇一一、引言随着科技的飞速发展,双足机器人逐渐成为机器人领域的研究热点。
步态规划与控制作为双足机器人的核心技术,其研究对于提高机器人的运动性能、稳定性和灵活性具有重要意义。
本文将就双足机器人步态规划与控制的研究进行深入探讨,以期为相关领域的研究者提供一定的参考。
二、双足机器人步态规划1. 步态规划的基本概念步态规划是指为双足机器人设计合理的行走方式,使其能够模拟人类行走的姿态和动作。
步态规划的目的是使机器人能够在各种环境下稳定行走,同时保持一定的运动速度和灵活性。
2. 步态规划的方法目前,双足机器人的步态规划方法主要包括基于规则的方法、基于优化的方法和基于学习的方法。
基于规则的方法是通过设定一系列规则来控制机器人的行走,如基于零力矩点的步态规划方法;基于优化的方法是通过优化算法来寻找最优的步态,如基于遗传算法的步态优化;基于学习的方法则是通过机器学习技术来使机器人学习人类的行走方式。
3. 步态规划的挑战与解决方案在步态规划过程中,需要解决的主要问题是机器人的稳定性和灵活性。
为了解决这些问题,研究者们提出了多种方法,如采用多级控制系统、引入力反馈技术、优化机器人的结构等。
此外,还需要考虑机器人的运动范围、能耗等问题,以实现高效的步态规划。
三、双足机器人控制技术1. 控制系统的基本构成双足机器人的控制系统主要包括传感器、控制器和执行器。
传感器用于获取机器人的状态信息,如位置、速度、力等;控制器根据传感器的信息对机器人的运动进行规划和控制;执行器则负责驱动机器人的关节运动。
2. 控制算法的研究与应用常见的双足机器人控制算法包括PID控制、模糊控制、神经网络控制等。
PID控制算法简单易行,适用于大多数情况;模糊控制则能够处理不确定性和非线性问题;神经网络控制则能够模拟人类的思维过程,使机器人具有更高的智能性。
在实际应用中,需要根据机器人的具体需求和环境选择合适的控制算法。
《双足机器人步态规划与控制研究》范文
《双足机器人步态规划与控制研究》篇一一、引言随着科技的不断进步,双足机器人已经成为现代机器人技术研究的热点之一。
双足机器人以其类似人类的行走方式,具有更高的灵活性和适应性,在服务、救援、军事等领域具有广泛的应用前景。
然而,要实现双足机器人的稳定行走,需要进行步态规划和控制研究。
本文旨在探讨双足机器人步态规划与控制的相关问题,以期为双足机器人的研究与应用提供一定的理论依据和技术支持。
二、双足机器人步态规划步态规划是双足机器人行走的基础,它决定了机器人的行走方式、速度和稳定性。
目前,常见的步态规划方法包括基于规则的方法、基于优化的方法和基于学习的方法。
1. 基于规则的步态规划基于规则的步态规划是根据预先设定的规则和逻辑,使机器人按照一定的步态行走。
这种方法简单易行,但需要针对不同的环境和任务进行规则调整,具有一定的局限性。
针对双足机器人的步态规划,需要考虑到机器人的身体结构、关节运动范围、地面情况等因素,制定出合适的步态规划规则。
2. 基于优化的步态规划基于优化的步态规划是通过建立数学模型,利用优化算法求解最优的步态。
这种方法可以根据机器人的任务和环境变化,自动调整步态参数,具有更好的适应性和灵活性。
常见的优化算法包括遗传算法、粒子群算法、动态规划等。
3. 基于学习的步态规划基于学习的步态规划是通过学习人类或其他生物的行走方式,使机器人模仿或自主学习步态。
这种方法需要大量的学习数据和计算资源,但可以使机器人具有更高的智能和灵活性。
常用的学习方法包括深度学习、强化学习等。
三、双足机器人控制研究双足机器人的控制是实现稳定行走的关键。
目前,常见的控制方法包括基于模型的控制、基于学习的控制和混合控制。
1. 基于模型的控制基于模型的控制是根据机器人的运动学和动力学模型,利用控制器对机器人进行控制。
这种方法需要建立准确的模型,并针对不同的任务和环境进行调整。
常见的控制器包括PID控制器、模糊控制器、神经网络控制器等。
机器人双足步态控制方法的研究与实现
机器人双足步态控制方法的研究与实现第一章绪论在过去几年中,机器人技术得到了长足的发展,已经越来越多地应用于制造业、医疗、军事、物流等领域。
与此同时,双足机器人也在逐渐增加相关应用领域。
随着科技的发展,双足机器人已经成为人类研究和开发的核心领域之一。
在人机交互方面,双足机器人可以更好地模仿人类步态,同样双足机器人也可以在危险的环境中或已经不适用于人类的环境中工作,如铁路维护、搜救行动和灾难应对等。
在双足机器人应用领域中,步态控制是一个非常重要的研究方向。
如何建立双足机器人的步态并对其控制,就是该领域的重要研究内容之一,是该领域研究的重点。
本文旨在对双足机器人步态控制方法的研究和实现进行分析和探讨。
第二章双足机器人步态控制的相关研究现状步态控制是双足机器人研究领域的重点,其研究现状主要包括以下方面:2.1 基本控制方法双足机器人的步态控制主要有两种基本方法:一种是基于动力学模型的控制方法,一种是基于模糊理论的控制方法。
基于动力学模型的控制方法,可以通过建立系统的动力学模型、控制器模型和仿真系统模型来实现。
基于模糊理论的控制方法,其主要特点是可以提高系统的自适应性和鲁棒性,从而提高系统的运动稳定性。
这种方法主要应用于模糊控制算法中,可以较好地解决系统中的死区和不确定性问题。
2.2 步态规划方法双足机器人的步态规划方法主要有基于参数曲线、基于较多来源等多种方法。
基于参数曲线的步态规划方法可以将双足机器人的运动轨迹细分为不同的部分并进行分析,从而得到实现步态控制的参数和条件。
基于多方面来源的步态规划方法则可以充分利用不同信息来源,如IMU、视觉甚至声音等,从而达到更为精确的运动控制效果。
2.3 双足机器人的步态仿真和实验研究在步态仿真和实验研究中,通常使用一些经典的运动过程和PID控制,通过建立双足机器人的运动模型,使用MATLAB、Simulink等工具进行建模和仿真,实现对双足机器人的控制和仿真操作。
双足步行机器人步态规划
步态规划是双足步行机器人行走的关键技术之一,合理的 步态规划可以使机器人更加稳定、高效地行走。
研究意义
通过对双足步行机器人步态规划的研究,可以推动机器人 技术的发展,为机器人应用现状
国外研究现状
国外在双足步行机器人的研究方面已经取得了一定的成果,如波士顿动力公司的Atlas机器人、本田公司的 ASIMO机器人等。这些机器人在步态规划方面采用了多种方法,如基于运动学的方法、基于动力学的方法等。
特点
双足步行机器人具有稳定性好、 适应性强、灵活性高等特点,能 够在复杂环境中自主行走或携带 物品。
双足步行机器人发展历程
初期阶段
早期的双足步行机器人主要采用简单 的机械结构和控制算法,行走速度较 慢,稳定性较差。
成熟阶段
现代的双足步行机器人已经具备了较 高的自主行走能力和适应性,能够适 应各种复杂环境。
科研领域
双足步行机器人可以作为 研究人类行走机制和仿生 机器人的重要工具,促进 相关领域的发展。
03
步态规划基本原理
步态定义与分类
步态定义
步态是指机器人行走时,每一步的姿 态、速度和加速度等运动参数。
步态分类
根据机器人行走时支撑腿的数量,可 分为单足步态、双足步态和多足步态 。
步态规划目标与约束条件
结果比较
将实验结果与理论分析结果进 行比较,评估步态生成算法的
性能和优劣。
06
基于混合模型的步态规划方法
混合模型建立与描述
混合模型定义
混合模型是由一系列连续和离散动态 模型构成的模型,用于描述复杂系统 的行为。
双足步行机器人混合模型
针对双足步行机器人的特点,建立由 连续动态模型和离散动态模型组成的 混合模型。
双足机器人设计及步态规划研究
收稿 日期:2 0 1 2 -1 1 -1 2 基金项 目:国家 自然科学基金 ( 5 0 9 7 5 2 0 4 );天津科技大学实验室开放基金 ( 1 1 0 1 A 2 0 2 ) 作者简介:王新亭 ( 1 9 7 8一 ),男,山东武城人 ,讲 师,硕士 ,研究方 向为人机工程学 、计算机辅助工业 。
【 5 O 】 第3 5 卷
第2 期
2 0 1 3 — 0 2 ( 上)
务l 注 訇 似
建模 ,本文 主要讨论 前 向运动 的步态规 划 问题 。 双 足 机 器 人 的一 个 完 整 的 行 走 周 期 可 分 为 双 腿 支 撑 阶 段 和 单 腿 支 撑 相 阶 段 。在 双 腿 支 撑 阶 膝 关 节 运动 角 度 保 持 不 变 ,髋 关 节从 初 始 位 置 开 始 向前 摆 动 到 终 止 位 置 , 运 动 到 图4 ( C )所 示位
务l 匐 似
双足机器人设计 及步态规划研究
Resear ch on desi gn and gai t pl anni ng of bi ped r obot
王新亭。 ,张峻霞‘ ,尹立苹
W ANG Xi n . t i n g。 . ZHANG J u n . x i a。 , Yl N L i - p i n g
D o i : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 9 -0 1 3 4 . 2 0 1 3 . O 2 (E ) . 1 4
0 引言
双 足 机 器 人 采 用 单 、双 足 交 替 支 撑 的 运 动 方
式 ,拥 有 较 好 的 灵 活 性 及地 面 环 境 适 应 能 力 ,具
代 表 性 的 先 进 智 能机 器人 ,其 技 术 是 当今 机 器 人 研 究领域 中的一 个重要 分 支u 。
仿人形机器人双足动态步行研究
仿人机器人两足动态行走研究1.本文概述随着技术的飞速发展,仿人机器人已成为机器人领域的一个重要研究方向。
两足动态行走作为仿人机器人的核心技术之一,不仅影响机器人的稳定性和灵活性,还直接影响其在复杂环境中的适应性。
本文旨在深入探讨仿人机器人的两足动态行走技术,分析现有技术的优缺点,提出一种新的两足动态步行控制策略。
本文将从步态生成、平衡控制、能量优化等方面对目前仿人机器人两足动态行走的研究成果进行详细回顾和总结。
本文将分析现有技术在实际应用中面临的问题和挑战,如对复杂地形的适应性、行走稳定性、能量效率等。
针对这些问题,本文将提出一种基于生物力学原理和先进控制算法的两足动物动态行走控制策略。
该策略旨在提高仿人机器人在不同环境中的行走稳定性和适应性,同时优化能耗。
该研究不仅有助于仿人机器人两足动态行走技术的发展,也为机器人在复杂环境中的应用提供了新的思路和方法。
通过本研究,有望为仿人机器人的发展做出贡献,并为相关研究和实际应用提供参考。
2.仿人机器人两足动态行走的理论基础仿人机器人两足动态行走研究是机器人领域的一个重要分支,涉及机械工程、电子工程、控制理论、计算机科学和生物力学等多个学科的交叉与融合。
本节将详细介绍两足动态行走的理论基础,为后续研究奠定坚实的理论基础。
两足行走的生物力学原理是研究人类行走模式的基础,对仿人机器人行走系统的设计具有重要的指导意义。
人类行走的生物力学特征包括行走周期、步态分析、关节运动学、肌肉动力学等。
通过深入研究这些原理,我们可以更好地理解人类行走的复杂性,并将其应用于机器人设计。
在两足行走过程中,保持动态平衡和稳定性对人形机器人至关重要。
动态平衡涉及机器人在运动过程中对外部干扰的响应能力,而稳定性控制确保机器人在各种行走条件下保持平衡状态。
这需要综合考虑机器人的质量分布、关节刚度和地面条件等因素,并通过先进的控制算法实现。
步态规划是指为机器人设计合适的行走模式,使其高效稳定地行走。
双足溜冰机器人步态规划的研究
设参考系 O Y的平面和机器人的支撑面重合 , X 坐标原点为支 蹬 出 以使前脚 滑 出 。接着 机 器人 进行 单腿 溜 冰运 动 , 冰 运动 示。 当溜 完成时 , 左脚落地准备下一个溜冰运动周期 。 撑脚的中心。根据 DAe b r原理, .l et m 将机器人溜冰运动时所受的 全部作用力和力矩 向P  ̄( M Z P点 ) 简化, : 得
; 位 于两脚 的支 撑 区域 内 , 器人 的运 动 速度 较慢 。机 器 人 的姿 态 平 面 ) 机
稳 定性 分析 和 控制 都 比较简 单 , 不再 加 以分 析 。 本文
( ) 略作用于支撑脚上面的滚动摩擦力 , 3忽 将摆动腿着地时 地面对脚掌的反作用力记为 , 摩擦力记为 , 面反作用力和 地
点) 点来描述两足类机器人的运动稳定性[1 Z 46 MP是指两足步行 1] 5。
机 构在 步行 运 动过程 中 , 面 内支 反力 的作 用 点 , 这一 点 , 支撑 围绕 机构 运动的合 力矩为零 。在两足 步行机构 稳定 的步行 运动 中 ,MP Z 具 有如 下性 质 :MP始终 位于 支撑 脚 掌所组 成 的稳定 区域 内。 Z
开 ( ) 蕊 单溜 溜完 左落 始 调 莲 腿冰 冰成 腿地
∑m r尸x + ) ∑ 一 S Px ̄0 , )( G +一 ∑(k )F - — =
i , k
() 1
式中 : m一质量点 i 的质量 ; E i 一质量点的位置矢量 ; n= xy, ] p=
14 4
李金 良等 : 溜冰机 器人步 态规 划的研 究 双足
第9 期
行了研究 , 同时对规划 的步态做了仿真分析。
溜冰机器人 Z MP点 ,如图 3 所示 。对于两足溜冰机器人来 说,由于其为两足机构 ,因此 Z P理论也适用于姿态稳定性分 M 析, 本文在合理假设的基础上 , 应用 Z P理论来判断溜冰机器人 M 的姿态稳定性 。 借助理论力学工具及稳定步态所需满足的动力学
双足机器人的行走控制与仿真
双足机器人的行走控制与仿真双足机器人是一种复杂的人造机器人,它可以模拟人类的步态进行行走。
在当今科技的发展中,双足机器人的应用越来越广泛,例如在残疾人康复、足球比赛和军事领域等方面都起着重要的作用。
为了实现双足机器人的高效和安全行走,需要进行行走控制和仿真的研究。
一、双足机器人的行走控制在双足机器人的行走控制中,主要有以下几个方面的技术:1. 步态规划步态规划是指为双足机器人规划一套合理的步态方式,让机器人可以稳定地进行行走。
在步态规划中,需要考虑足端和身体的着地位置、步态周期、步幅和步速等因素。
通过这些规划,可以使双足机器人实现更加灵活、平稳的步态。
2. 动力学控制动力学控制是指控制机器人进行行走时,根据机器人当前的状态、环境变化和任务需求,及时调整机器人的姿态,实现稳定的步态。
在动力学控制中,需要考虑机器人的平衡性、稳定性和动态性。
3. 路径跟踪控制路径跟踪控制是指通过计算机控制双足机器人的步伐,由计算机控制机器人按照预设的路径进行行走。
这种控制方法可以更加稳定地控制机器人步态,减少机器人的倒地风险。
二、双足机器人的仿真双足机器人的仿真是指通过计算机模拟实际的机器人操作和环境,以验证双足机器人的行走控制算法和策略。
通过仿真,可以更加准确地评估双足机器人的性能,从而为实际应用提供优秀的参考。
1. 建立仿真模型建立双足机器人的仿真模型是仿真的首要步骤。
在建立仿真模型时,需要考虑双足机器人的几何结构、质量、动力学特性等因素。
通过数学建模和仿真建模软件,可以构建出一个符合实际情况的双足机器人模型,以便进一步进行仿真分析和测试。
2. 仿真分析仿真分析是通过模拟实际情况,测试控制算法和策略的有效性。
在仿真分析中,可以模拟不同的运动状态、环境因素和操作要求,验证不同的控制方案和策略。
仿真分析可以大幅度缩短实际测试时间和成本,并可以重复测试以进行验证。
3. 仿真优化双足机器人的仿真优化是指通过仿真结果分析,改进双足机器人的行走控制算法和策略,提高双足机器人的稳定性、灵活性和交互性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
双足机器人以其优越的越障性和机动性被广泛地应用于各 个领域[1]。而双足机器人研究的难点之一就是如何在行走过程中 保持自身的稳定,以至于在动态行走过程中不会发生倾覆和跌倒 [2]。精确的步态规划直接决定着双足机器人稳定性和各方面的协 调性。文献[3]对机器人的摆动腿踝关节和髋关节进行三次插值获 得了轨迹,再以稳定裕度为目标得到最优步行参数;文献[4]将机器 人行走质心近似为倒立摆模型,利用质心和摆动腿踝关节的轨迹 求出各个关节角的轨迹;文献[5]在传统的三次样条插值方法基础 上利用鱼群算法对髋关节中心到支撑腿踝坐标中心的距离值优 化,以获得稳定裕度大的步态。
摘 要:为了研究双足机器人平地行走过程中的步态规划问题,在二维倒立摆模型的基础上提出了周期、起步和止步三 步规划法,并利用速度和位移约束实现了三个步行阶段的平稳过渡,利用倒立摆简化模型和五次样条多项式插值方法得 到各个阶段质心和摆动腿踝关节的轨迹,再根据腿部关节转角简化模型利用几何法求得双足机器人的 10 个关节角运动 轨迹;最后通过 ZMP 方程检验并在 Matlab 软件中仿真,验证步态规划的合理性并为机器人后续虚拟样机研制和仿真提 供理论依据。 关键词:双足机器人;平地行走;倒立摆;步态规划 中图分类号:TH16 文献标识码:A 文章编号:员园园员-3997(圆园19)04-0230-05
2 双足机器人的设计
双足机器人的模型尺寸设计是步态规划的基础,合理的双 足机器人机构设计直接关系到后续的步态规划的复杂程度和稳
来稿日期:2018-10-27 作者简介:徐历洪,(1991-),男,湖北武汉人,硕士研究生,主要研究方向:双足机器人步态规划;
邹光明,(1970-),男,湖北仙桃人,博士研究生,教授,主要研究方向:机器人、计算机辅助工程、概念设计
粤遭泽贼则葬糟贼:In order to study the gait planning problem of the biped robot in the process of horizontal walking,a three -step planning method of cycle,start and stop is proposed on the basis of the two-dimensional inverted pendulum model,and the smoothness of the three walking stages is realized by velocity and displacement constraints A nd the trajectories of the ankle joint of the stage are obtained by using the inverted pendulum simplification model and the pentagonal spline polynomial interpolation method. The geometric method is used to obtain the 10 joint angular trajectories of the biped robot Finally,the ZMP equation is tested and simulated in Matlab software to verify the rationality of gait planning and provide the theoretical basis for the subsequent development and simulation of robot virtual prototyping. Key Words:Biped Robot;Walk On Flat Ground;Inverted Pendulum;Gait Planning
机械设计与制造
第4期
230
酝葬糟澡蚤灶藻则赠 阅藻泽蚤早灶 驭 酝葬灶怎枣葬糟贼怎则藻
圆园19 年 4 月
双足机器人平地行走步态规划的研究
徐历洪,邹光明,余 祥,王文圣
(1.冶金装备及其控制教育部重点实验室武汉科技大学,湖北 武汉 43大学,湖北 武汉 430081)
The Gait Planning Research of the Biped Robot Walking on Flat Ground
XU Li-hong,ZOU Guang-ming,YU Xiang,WANG Wen-sheng
(1.Key Laboratory of Metallurgical Equipment and Control Technology Wuhan University of Science and Technology,Ministry of Education,Hubei Wuhan 430081,China;2.Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering Wuhan University of Science and Technology,Hubei Wuhan 430081,China)
在对双足机器人步态规划的研究方法中,传统研究方法大
都是采取三次样条插值方法规划,并且只是针对双足机器人的周 期性步态进行规划,对起步和止步的规划研究较少。而倒立摆模 型方法操作容易且与腿部运动有较大相似性。因此在二维倒立摆 模型的基础上对双足机器人起步、周期和止步三个阶段完整的行 走过程进行了详细的规划。把双足机器人步行运动近似为倒立摆 模型[6],利用倒立摆模型的轨迹来近似规划机器人质心的轨迹,而 且充分考虑到三个步行过程的过渡问题,利用速度和位移等约束 条件约束各个过渡时间的关键节点,以得到平滑、稳定性和过渡 性好的步态轨迹曲线。