管道水容量计算
管道水流量计算公式
管道水流量计算公式A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。
压力为城市供水的压力。
计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时:DN=SQRT(4000q/u/3.14)流量q,流速u,管径DN。
开平方SQRT。
其实两个公式是一样的,只是表述不同而已。
另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。
备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。
这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。
1. 以公制(mm)为基准,称 DN (metric unit)2. 以英制(inch)为基准,称NB(inch unit)3. DN (nominal diameter)NB (nominal bore)OD (outside diameter)4. 【例】镀锌钢管DN50,sch 20镀锌钢管NB2”,sch 205. 外径与DN,NB的关系如下:------DN(mm)--------NB(inch)-------OD(mm)15-------------- 1/2--------------21.320--------------3/4 --------------26.725-------------- 1 ----------------33.432-------------- 1 1/4 -----------42.240-------------- 1 1/2 -----------48.350-------------- 2 -----------60.365-------------- 2 1/2 -----------73.080-------------- 3 -----------88.9100-------------- 4 ------------114.3125-------------- 5 ------------139.8B.常用给水管材如下:(1)给水用硬聚氯乙烯(PVC-U)DN100的管子其公称外径de=110,壁厚为e=4.2mm(S12.5,SDR26,PN1.0),则其内径为110-4.2×2=101.6mm;(2)给水用聚乙烯(PE)管材,DN100的管子其公称外径de=110,壁厚为e=8.1mm(PE80级,SDR13.6,PN1.0),则其内径为110-8.1×2=93.8mm;(3)冷水用聚丙烯(PP-R)管,DN100的管子其公称外径de=110,壁厚为e=12.3mm(S4,PN1.0),则其内径为110-12.3×2=85.4mm;(4)镀锌钢管,DN100的镀锌钢管其外径D=114.3,壁厚为S=4.0mm(普通钢管),则其内径为114.3-4.0×2=106.3mm;(5)流体输送用无缝钢管,DN100的无缝钢管其外径D=108,壁厚为S=4.0mm,则其内径为108-4.0×2=100mm。
管道水流量计算公式(精)
管道水流量计算公式A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。
压力为城市供水的压力。
计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)计算公式2:一般取水的流速1--3米/秒,按 1.5米/秒算时:DN=SQRT(4000q/u/3.14 流量q,流速u,管径DN。
开平方SQRT。
其实两个公式是一样的,只是表述不同而已。
另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。
备注:1.DN为Nomial Diameter 公称直径(nominal diameter,又称平均外径(mean outside diameter。
这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
因为单位有公制(mm及英制(inch的区分,所以有下列的称呼方法。
1. 以公制(mm为基准,称DN (metric unit2. 以英制(inch为基准,称NB(inch unit3. DN (nominal diameter NB (nominal bore OD (outside diameter4. 【例】镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 205. 外径与DN,NB的关系如下:------DN(mm--------NB(inch-------OD(mm15-------------- 1/2--------------21.320--------------3/4 --------------26.725-------------- 1 ----------------33.432-------------- 1 1/4 -----------42.240-------------- 1 1/2 -----------48.350-------------- 2 -----------60.365-------------- 2 1/2 -----------73.080-------------- 3 -----------88.9100-------------- 4 ------------114.3125-------------- 5 ------------139.8B.常用给水管材如下:(1)给水用硬聚氯乙烯(PVC-U)DN100的管子其公称外径de=110,壁厚为e=4.2mm(S12.5,SDR26,PN1.0,则其内径为110-4.2×2=101.6mm;(2)给水用聚乙烯(PE)管材,DN100的管子其公称外径de=110,壁厚为e=8.1mm(PE80级,SDR13.6,PN1.0,则其内径为110-8.1×2=93.8mm;(3)冷水用聚丙烯(PP-R)管,DN100的管子其公称外径de=110,壁厚为e=12.3mm(S4,PN1.0,则其内径为110-12.3×2=85.4mm;(4)镀锌钢管,DN100的镀锌钢管其外径D=114.3,壁厚为S=4.0mm(普通钢管,则其内径为114.3-4.0×2=106.3mm;(5)流体输送用无缝钢管,DN100的无缝钢管其外径D=108,壁厚为S=4.0mm,则其内径为108-4.0×2=100mm。
污水管水力计算
第2.2.1条 雨水设计流量按下式计算式中,Q=qψFQ--雨水设计流量(L/s);q--设计暴雨强度(L/s.ha);ψ--径流系数;F--汇水面积(ha)注:当有生产废水排入雨水管道时,应将其水量计算在内。
第2.2.2条 径流系数按下表采用。
平均径流系数可按加权平均计算。
径流系数ψ综合径流系数ψ第2.2.3条 设计暴雨强度(见专用表)第2.2.4条 雨水设计重现期:一般选用0.4~3a,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般选用2~5a.第2.2.5条 设计降雨历时,按下式计算:t=t1+mt2式中,t--降雨历时(min);t1--地面集水时间(min),视距离长短、地形坡度和地面铺盖情况而定,一般采用5~15min;m--折减系数,暗管折减系数m=2,明渠折减系数m=1.2 ;t2--管渠内雨水流行时间(min)注:在陡坡地区,采用暗管时折减系数m=1.2~2.第2.3.1条 合流管道的总设计流量应按下式计算:第2.3.1条 合流管道的雨水重现期可适当高于同一情况下的雨水管道设计重现期。
第3.2.1条 排水管渠的流速,应按下式计算:V=(1/n) R2/3I1/2式中,V--流速 (m/s);R--水力半径(m);I--水力坡降;n--粗糙系数.第3.2.2条 管渠粗糙系数按下表选用:管渠粗糙系数 n第3.2.3条 排水管渠的最大设计充满度和超高,应遵守下列规定:一、污水管道应按不满流计算,其最大设计充满度应按下表采用。
最大设计充满度注:在计算污水管道充满度时,不包括淋浴或短时间内突然增加的污水量,但当管径小于或等于300mm时,应按满流复核.二、雨水管道和合流管道应按满流计算。
三、明渠超高不得小于0.2m。
第3.2.4条 排水管道的最大设计流速应遵守下列规定:一、金属管道为10m/s;二、非金属管道为5m/s;第3.2.6条 排水管渠的最小设计流速应遵守下列规定:一、污水管道在设计充满度下为0.6m/s;二、雨水管道和合流管道在满流时为0.75m/s;三、明渠为0.4m/s。
流量与管径、压力、流速之间关系计算公式
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X 管内径的平方X流速(立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy公式0二U•右賦W这里:Q ------ 断面水流量(m 3/s)C ------ Chezy 糙率系数(m1/2/s)A ------ 断面面积(m2)R ――水力半径(m)S——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy- Weisbach 公式由于这里:hf --- 沿程水头损失(mm 3/s)f -------Darcy-Weisbach 水头损失系数(无量纲)l ――管道长度(m)d -------管道内径(mm )v ------- 管道流速(m/s)g ——重力加速度(m/s 2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5〜10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
1.1管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
管道水力计算(给排水)
第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
储能(缓冲)水箱计算
储能(缓冲)水箱计算为避免压缩机频繁启动、增加系统的热稳定性,应校核系统水容量是否能满足系统热稳定性的要求。
即当系统中(水)所储的能量不足以维持短暂停机(比如说化霜)时水温波动要求(夏季不大于5℃,冬季不大于3℃),应设置缓冲水箱。
1、系统热稳定性要求1)夏季制冷工况:空气源热泵主机停机10min,供水温度允许升高不大于5℃。
2)冬季制热工况:空气源热泵主机除霜时间为3min时,供水温度允许降低不大于3℃。
2、系统水容量计算M2系统水容量=管道水容积+设备水容积=0.15*L (kg),L:系统管路总长(m)。
3、系统要求的最小水容积M1最小水容积m3=(末端总冷热量kw×热泵主机冷热稳定性时间要求s)÷【水定压比热容KJ/(kg.℃)×水温的波动要求温差℃】=主机制冷热量 (kw)×化霜时间(S)÷【水的比热取(kJ/kg℃)×水温的波动要求温差℃】;注1:水温的波动要求温差:夏季取5℃,冬季取3℃。
注2:冬季制热工况,热泵主机热稳定性要求时间=3min=3*60s。
注3:夏季制冷工况,热泵主机冷稳定性要求时间=10min=10*60s。
注4:水定压比热容=4.2*103J/(kg.℃)=4.2KJ/(kg.℃)。
4、系统水容量与最小水容积对比冬、夏季水容积计算结果中,数值最大者为空调系统对水容积的要求值。
如果:M2系统水容量<M1最小水容积,应该设置缓冲水箱,或放大管径重新计算直至满足要求。
储能水箱有效容积M:= M1-M2 (kg)5、设置缓冲水箱的优点1)如果不设置缓冲水箱,将导致主机频繁启停。
特别是当末端系统为暖气片或风机盘管时,环路中的循环水量有限,就会引起主机在很短时间内达到设计温度,主机就会停止工作,然后又会在很短暂的时间内,水温达到主机启动的条件,这样频繁启停会大大减少主机的使用寿命和浪费电能。
加上缓冲水箱就相当于系统能量增加了,系统的温度变化平稳了,主机启动次数也自然减少了,使用寿命也就大大延长了。
给排水管道计算
给排水管道计算随着城市化进程和人口的增加,给排水系统的规划和设计变得越来越重要。
而在给排水系统的设计中,对于管道的计算是其中一个关键的步骤。
本文将介绍一些常见的给排水管道计算方法和原则。
1. 流量计算在给排水系统设计中,首先需要确定管道内流体的流量。
流量是设计过程中的一个基本参数,对于确定管道尺寸和材料的选取都有重要的影响。
流量的计算可以根据目标水流量和系统所需的工作压力来进行。
常见的流量计算方法包括单位时间内的流量计算和单位面积内的流量计算等。
2. 压力损失计算管道中的水流在运动过程中会发生一定的阻力和压力损失。
在给排水系统的设计中,需要计算管道的压力损失,以便确定管道尺寸和材料的选择。
常见的压力损失计算方法包括经验公式法、试验法和数值模拟法等。
3. 管道尺寸计算确定管道尺寸是给排水系统设计中的关键环节之一。
管道尺寸的选择需要考虑流量、压力损失、材料和经济性等因素。
常见的管道尺寸计算方法包括经验公式法、经验系数法和利用流体动力学原理的数值模拟法等。
4. 材料选择在给排水管道的设计中,材料的选择是一个关键的决策。
材料的选择需要考虑到水质、流量、压力和使用寿命等因素。
常见的材料有钢管、铸铁管、铜管、塑料管等。
根据不同的工程要求,选择合适的材料可以提高管道的使用寿命和可靠性。
5. 排水计算在给排水系统设计中,排水计算是其中一个重要的环节。
排水计算主要是为了确定排水管道的尺寸和材料,以保证系统的正常排水。
排水计算需要考虑到排水的流量、排水的速度和管道的坡度等因素。
常见的排水计算方法包括经验公式法、经验系数法和梯度法等。
综上所述,给排水管道计算是给排水系统设计中一个非常重要的环节。
通过合理的流量计算、压力损失计算、管道尺寸计算、材料选择和排水计算等,可以保证给排水系统的正常运行和安全性。
在实际的设计过程中,需要综合考虑各种因素,并根据具体工程情况进行细致的计算和分析。
建筑内部给水管道计算
第四章建筑内部给水管道计算4—1 建筑用水情况和用水定额生活用水在一日内用水量是不均匀的,变化较大。
生活用水量按用水量定额和用水单位数计算确定。
生产用水一般比较均匀,并且具有规律性。
其用水量可按消耗在单位产品上的水量计算,或按单位时间消耗在生产设备上的水量计算。
消防用水量大而集中,并与建筑物的使用性质、规模、耐火等级和火灾危险程度等密切相关。
为保证灭火效果,消防用水量应按需要同时开启的消防灭火设备的用水量之和计算。
用最高日最大时用水量确定水箱、贮水池容积和水泵出水量,以及进行厂区和居住区室外给水管网的设计计算。
4—2 设计秒流量建筑内部给水管道的设计流量不仅是确定各管段管径,同时也是计算管道水头损失,进而确定给水系统所需压力的主要依据。
考虑到建筑内部的生活用水量不仅在一天当中是变化的,而且在每小时里也是变化的。
为了保证用水,建筑内部生活给水管道的设计流量应取建筑内卫生器具最不利组合出流时的最大瞬时流量,该流量称设计秒流量。
由于各种卫生器具配水龙头的出流量和出水特性各不相同,为了便于计算,规定以污水盆用的一个截止阀式配水龙头在流出水压20kPa时全开的出流量0.2L/s作为1个给水当量值,其他卫生器具的给水当量值均以此为标准,折算成相应的当量数值。
给水管道的管径,应根据设计秒流量确定。
生产给水管道的设计秒流量,应根据生产工艺要求确定。
4—3 建筑内部给水管道水力计算一、管径的确定建筑内部给水管道水力计算的目的是求定各计算管段设计秒流量后,正确求定各管段的管径、水压损失,决定建筑内部给水系统所需的水压。
在求得管网中各设计管段的设计流量后,根据水力学中流量公式可知,只需选定了设计流速,便可求得管径D。
1、生活或生产给水管道内的水流速度,不宜大于2.0m/s,干管流速一般采用1.2~2.0m/s。
当有防噪音要求,且管径小于或等于250㎜时,生活给水管道内的水流速度可采用0.8~1.2m/s。
连接卫生器具的支管为0.36~1.2m/s;干管、立管及横管1.0~1.8m/s。
流量和管径、压力、流速之间关系计算公式
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3M/秒,常取1.5M/秒。
流量=管截面积X流速=0.002827X管内径的平方X流速(立方M/小时)。
其中,管内径单位:mm,流速单位:M/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40M/秒。
水头损失计算Chezy公式Q = C-A-^[R~S这里:Q 断面水流量(m3/s)C ----- C hezy糙率系数(m1/2/s)A——断面面积(m2)R——水力半径(m)S 水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach 公式i = /. L—F 畑由于这里:h f 沿程水头损失(mm3/s)f ----- Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ----- 管道内径(mm)v ----- 管道流速(m/s)g ----- 重力加速度(m/£)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5〜10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
1.1管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用2数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
给排水雨水管道设计计算
3雨水管道设计计算3.1雨水排水区域划分及管网布置3.1.1 排水区域划分该区域最北端有京杭大运河,中部有明显分水线。
因此以明远路为分界线,明远路以北雨水排入大运河,以南地区雨水排入中部水体。
这样划分有利于减小雨水管线长度和管道,并且可以缩小管径,提高经济效益。
3.1.2 管线布置根据该地区水体及地势特点,雨水管道为正交式布置,沿水体不设主干管,雨水通过干管直接排入水体。
一些距水体较近的街区的雨水直接以地表径流的方式直接流入水体。
明远路以北区域雨水干管的走向为自南向北;以南地区部分干管走向为自南向北,部分为自北向南,个别自南北汇入中间,具体流向根据水体所在位置确定。
具体如图3所示。
3.2雨水流量计算图3雨水管道平面布置(初步设计)3.2.1 雨量分析要素a)降雨量指一定时段降落在某一点或某一面积上的水层深度,其计量单位以mm 计。
也可用单位面积上的具体及(L/ha)表示[9]。
b)降雨历时指一次连续降雨所经历的时间,可以指全部降雨时间,也可以指其中某个个别的连续时段,其计量以min或h计,可从自记雨量记录纸上读取。
c)暴雨强度指某一连续降雨时段内的平均降雨量,用i表示Hit=(3-1)式中,i——暴雨强度(mm/min);H——某一段时间内的降雨总量(mm);t——降雨时间(min)。
在工程上常用单位时间内单位面积上的降雨体积q表示。
d)降雨面积指降雨所笼罩的面积。
单位为公顷(ha)雨水管渠的收集并不是整个降雨面积上的雨水,雨水管渠汇集雨水的地面面积称为汇水面积。
每根管段的汇水面积如下表所示:表7 汇水面积计算表:管道编号管道长度(m)本段汇水面积编号本段汇水面积(ha)传输汇水面积(ha)总汇水面积(ha)5~4230.7656 6.670 6.67 4~3153.84578 6.6714.67 3~2230.7658、5918.6814.6733.35 2~1153.8466、691233.3545.356~7192.36511.86011.86 9~8230.76538.1508.15 8~7153.84549.788.1517.93 16~10230.7660(3)、61(3)8.1508.15 10~11115.3861(4) 5.938.1514.08 11~12153.8460(4)、6222.9714.0837.05 12~13192.350(2)、52(2)10.6237.0547.67 13~14230.7650(1)、50(2)10.6247.6758.29 14~15230.7646(2)21.3458.2979.63 17~18115.3861(1)、(2)11.86011.86 18~19269.2260(1)、(2) 4.4411.8616.3 19~20230.7647 5.1916.321.49 20~21230.7648、4914.2321.4935.72 21~22230.7645(2)10.2335.7245.95 23~24192.331(2)、329.4909.49 24~25153.8429、3011.129.4920.61 25~26153.8426、2719.3420.6139.95 26~27153.846(2.2)、7(2.2)9.6739.9549.62 27~28173.076(2.1)、7(2.1)9.6749.6259.29 28~29173.076(1.2)、7(1.2)9.6759.2968.96 30~31192.324(2)、31(1)13.34013.34 31~32230.7624(1)、2814.8213.3428.16 32~33153.8422、2517.0428.1645.2 33~34153.844(4.2)、5(4)12.0645.257.26 34~35153.844(4.1)、5(3)12.0657.2669.32 35~36153.844(2.2)、5(2)12.0669.3281.38 37~38230.7620、2331.42031.42 38~39153.8418(2)、2128.2331.4259.65 39~40153.843(2)、4(3.2)13.6459.6573.29 40~41153.843(1)、4(3.1)13.6473.2986.93 41~42153.842(2)、4(1.2)12.5386.9399.46 43~44153.8418(1)12.45012.45 44~45153.841(3)8.8612.4521.31 45~4230.761(2)8.8621.3130.17 47~48269.2237 1.480 1.48 48~49192.335、3611.12 1.4812.6 49~50153.8433、347.4212.620.02 50~51153.849(1.2)、9(2.2) 5.9320.0225.95 51~52192.39(1.1) 2.9725.9528.92 52~53134.619(2.1) 2.9728.9231.89 53~54134.618(2) 4.6731.8936.56 55~56153.8438、3948.91048.91 56~57153.8411(2)、13(2)11.7848.9160.6957~58 134.61 11(1)、13(1)11.78 60.69 72.47 58~59 134.61 10(2)、12(2)12.67 72.47 85.14 60~61230.7640 22.23 0 22.23 61~62 203.838 41、42 31.13 22.23 53.36 62~63 203.838 15(3) 6.72 53.36 60.08 63~64 203.838 15(2) 6.72 60.08 66.8 65~66 203.838 43、44 49.06 0 49.06 66~67 203.83816(3)、17(3)16.85 49.06 65.91 67~68 203.838 16(2)、17(2)16.8565.9182.76e) 暴雨强度频率和重现期 指定暴雨强度出现的可能性一般不是预知的。
给排水专业相关计算
给排水专业相关计算一、水量计算1.1 水消耗量计算在给排水工程设计中,需要计算建筑物的日水消耗量,以便确定给水管道和水箱的尺寸。
水消耗量的计算通常根据建筑物的使用类型和人口数量进行估算。
住宅的用水消耗量与住户人口数量、设备和用水方式有关。
一般而言,根据建筑面积和住户人口数量可以初步计算出住宅的用水消耗量。
例如,以每人每天用水100升为基准,假设一个住宅的建筑面积为120平方米,住户人口为4人,则该住宅的日水消耗量为:日水消耗量 = 人口数量 × 用水量基准 = 4 × 100 = 400升/天商业建筑的用水消耗量一般与业务类型、员工数量、设备和用水方式有关。
根据建筑面积、员工人数和行业标准可以初步估算商业用水消耗量。
例如,以每员工每天用水150升为基准,假设一个商业建筑的建筑面积为1000平方米,员工人数为50人,则该商业建筑的日水消耗量为:日水消耗量 = 员工数量 × 用水量基准 = 50 ×150 = 7500升/天1.2 水压计算为了确保建筑物内外的正常供水和排水,需要对水压进行计算和设计。
水压计算通常分为给水水压和排水水压两部分。
1.2.1 给水水压计算给水水压的计算需要考虑到建筑物的高度、管道阻力和供水压力。
一般而言,给水水压应满足建筑物内外的正常用水需求,并考虑到峰值用水时的压力变化。
根据建筑物的高度和供水压力可以初步计算给水水压。
例如,假设建筑物的高度为20米,供水压力为0.3兆帕,则给水水压为:给水水压 = 高度 × 密度 × 重力加速度 + 供水压力 = 20 × 1000 × 9.8 + 0.3 = 19600帕1.2.2 排水水压计算排水水压的计算需要考虑到建筑物内部的压力变化和管道阻力。
一般而言,排水水压应满足建筑物内部的排水需求,并保持正常的排水速度。
根据建筑物内部管道的高度差和压力变化可以初步计算排水水压。
专业管道水流量计算公式汇总
专业管道水流量计算公式汇总A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。
压力为城市供水的压力。
计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时:DN=SQRT(4000q/u/3.14)流量q,流速u,管径DN。
开平方SQRT。
其实两个公式是一样的,只是表述不同而已。
另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。
备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。
这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。
1. 以公制(mm)为基准,称 DN (metric unit)2. 以英制(inch)为基准,称NB(inch unit)3. DN (nominal diameter)NB (nominal bore)OD (outside diameter)4. 【例】镀锌钢管DN50,sch 20镀锌钢管NB2”,sch 205. 外径与DN,NB的关系如下:------DN(mm)--------NB(inch)-------OD(mm)15-------------- 1/2--------------21.320--------------3/4 --------------26.725-------------- 1 ----------------33.432-------------- 1 1/4 -----------42.240-------------- 1 1/2 -----------48.350-------------- 2 -----------60.365-------------- 2 1/2 -----------73.080-------------- 3 -----------88.9100-------------- 4 ------------114.3125-------------- 5 ------------139.8B.常用给水管材如下:(1)给水用硬聚氯乙烯(PVC-U)DN100的管子其公称外径de=110,壁厚为e=4.2mm(S12.5,SDR26,PN1.0),则其内径为110-4.2×2=101.6mm;(2)给水用聚乙烯(PE)管材,DN100的管子其公称外径de=110,壁厚为e=8.1mm(PE80级,SDR13.6,PN1.0),则其内径为110-8.1×2=93.8mm;(3)冷水用聚丙烯(PP-R)管,DN100的管子其公称外径de=110,壁厚为e=12.3mm(S4,PN1.0),则其内径为110-12.3×2=85.4mm;(4)镀锌钢管,DN100的镀锌钢管其外径D=114.3,壁厚为S=4.0mm(普通钢管),则其内径为114.3-4.0×2=106.3mm;(5)流体输送用无缝钢管,DN100的无缝钢管其外径D=108,壁厚为S=4.0mm,则其内径为108-4.0×2=100mm。
管道水流量计算公式(精)
管道水流量计算公式A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。
压力为城市供水的压力。
计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)计算公式2:一般取水的流速1--3米/秒,按 1.5米/秒算时:DN=SQRT(4000q/u/3.14 流量q,流速u,管径DN。
开平方SQRT。
其实两个公式是一样的,只是表述不同而已。
另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。
备注:1.DN为Nomial Diameter 公称直径(nominal diameter,又称平均外径(mean outside diameter。
这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
因为单位有公制(mm及英制(inch的区分,所以有下列的称呼方法。
1. 以公制(mm为基准,称DN (metric unit2. 以英制(inch为基准,称NB(inch unit3. DN (nominal diameter NB (nominal bore OD (outside diameter4. 【例】镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 205. 外径与DN,NB的关系如下:------DN(mm--------NB(inch-------OD(mm15-------------- 1/2--------------21.320--------------3/4 --------------26.725-------------- 1 ----------------33.432-------------- 1 1/4 -----------42.240-------------- 1 1/2 -----------48.350-------------- 2 -----------60.365-------------- 2 1/2 -----------73.080-------------- 3 -----------88.9100-------------- 4 ------------114.3125-------------- 5 ------------139.8B.常用给水管材如下:(1)给水用硬聚氯乙烯(PVC-U)DN100的管子其公称外径de=110,壁厚为e=4.2mm(S12.5,SDR26,PN1.0,则其内径为110-4.2×2=101.6mm;(2)给水用聚乙烯(PE)管材,DN100的管子其公称外径de=110,壁厚为e=8.1mm(PE80级,SDR13.6,PN1.0,则其内径为110-8.1×2=93.8mm;(3)冷水用聚丙烯(PP-R)管,DN100的管子其公称外径de=110,壁厚为e=12.3mm(S4,PN1.0,则其内径为110-12.3×2=85.4mm;(4)镀锌钢管,DN100的镀锌钢管其外径D=114.3,壁厚为S=4.0mm(普通钢管,则其内径为114.3-4.0×2=106.3mm;(5)流体输送用无缝钢管,DN100的无缝钢管其外径D=108,壁厚为S=4.0mm,则其内径为108-4.0×2=100mm。
管道水容积的计算公式
管道水容积的计算公式在工程领域中,管道水容积的计算是一个非常重要的问题。
管道水容积的计算公式可以帮助工程师和设计师准确地确定管道的容积,从而保证工程的安全和可靠性。
在本文中,我们将介绍管道水容积的计算公式,并探讨其在工程实践中的应用。
管道水容积的计算公式通常是基于管道的几何形状和尺寸来确定的。
一般来说,管道的几何形状可以分为圆形、方形和矩形等多种类型。
不同类型的管道需要采用不同的计算公式来确定其水容积。
首先,我们来看一下圆形管道的水容积计算公式。
对于圆形管道来说,其水容积可以通过以下公式来计算:V = πr^2h。
其中,V表示管道的水容积,π表示圆周率,r表示管道的半径,h表示管道的高度。
通过这个公式,我们可以很容易地计算出圆形管道的水容积。
接下来,我们来看一下方形管道的水容积计算公式。
对于方形管道来说,其水容积可以通过以下公式来计算:V = lwh。
其中,V表示管道的水容积,l表示管道的长度,w表示管道的宽度,h表示管道的高度。
通过这个公式,我们可以很容易地计算出方形管道的水容积。
最后,我们来看一下矩形管道的水容积计算公式。
对于矩形管道来说,其水容积可以通过以下公式来计算:V = (a+b)h/2。
其中,V表示管道的水容积,a和b分别表示矩形管道的两条边的长度,h表示管道的高度。
通过这个公式,我们可以很容易地计算出矩形管道的水容积。
除了上述常见的几何形状外,还有一些特殊形状的管道,其水容积的计算公式可能会更为复杂。
在实际工程中,工程师和设计师需要根据具体情况选择合适的计算公式来确定管道的水容积。
在工程实践中,管道水容积的计算公式具有非常重要的应用价值。
首先,通过水容积的计算,工程师和设计师可以准确地确定管道的容积,从而为工程设计和施工提供重要的参考数据。
其次,水容积的计算还可以帮助工程师和设计师评估管道的承载能力和安全性能,从而保证工程的安全和可靠性。
此外,水容积的计算还可以帮助工程师和设计师优化管道的设计方案,提高工程的经济性和效益。
给水管道支管容量计算公式
给水管道支管容量计算公式在给水管道系统设计中,支管容量的计算是非常重要的一部分。
正确的支管容量计算可以保证给水系统的正常运行和水压稳定,同时也可以减少系统的能耗和维护成本。
在本文中,我们将介绍给水管道支管容量的计算公式,并对其进行详细的解释和应用。
给水管道支管容量的计算公式如下:Q = A V。
其中,Q表示支管的流量(单位,m³/s),A表示支管的横截面积(单位,m ²),V表示支管的流速(单位,m/s)。
在实际应用中,我们可以根据具体的情况来确定支管的横截面积和流速。
支管的横截面积可以通过下面的公式来计算:A = π D² / 4。
其中,A表示支管的横截面积(单位,m²),π表示圆周率(取3.14),D表示支管的直径(单位,m)。
支管的流速可以通过下面的公式来计算:V = Q / A。
其中,V表示支管的流速(单位,m/s),Q表示支管的流量(单位,m³/s),A表示支管的横截面积(单位,m²)。
通过以上的公式,我们可以得出给水管道支管容量的计算结果。
在实际应用中,我们需要根据具体的情况来确定支管的直径、流量和流速,然后通过上述公式来计算支管的容量。
在进行支管容量的计算时,我们需要考虑以下几点:1. 流量的确定,在确定支管的流量时,需要考虑到系统的实际需求和日常用水量。
通常情况下,我们可以根据建筑物的类型、使用人数和设备数量来确定支管的流量。
2. 流速的确定,在确定支管的流速时,需要考虑到系统的水压和管道的材质。
通常情况下,我们可以根据管道的材质和水压来确定支管的流速。
3. 横截面积的确定,在确定支管的横截面积时,需要考虑到系统的流量和流速。
通常情况下,我们可以通过上述的公式来计算支管的横截面积。
通过以上的计算和分析,我们可以得出给水管道支管的容量,并根据实际情况来确定支管的直径、流速和横截面积。
这样可以保证给水系统的正常运行和水压稳定,同时也可以减少系统的能耗和维护成本。
流量与管径、压力、流速之间关系计算公式
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy 公式这里:Q——断面水流量(m3/s)C——Chezy糙率系数(m1/2/s)A——断面面积(m2)R——水力半径(m)S——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l——管道长度(m)d——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
沿程水头损失水力计算公式和摩阻系数表1达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。
消防管道出水量计算公式
第8.3.1条第三款:室外消防给水管道的最小直径不应小于100mm。
这一条的含义是:为保证室外消防给水管道有最低的消防用水量,规定室外消防给水管道的直径不小于100mm。
新设计的消防管网的水压一般均超过20万Pa,则管道的消防流量可按公式(5)计算:
式中:
Q=D2/2·V (6)
Q——管道消防流量,L/S;
D——管道直径,以英寸计,1英寸=25.4mm
V——管道内水流速,m/s,枝状管道,V=1m/s计,环状管道V=1.5m/s计。
室外给水管道直径为100mm,为枝状管道时,流量为Q;为环状管道时,流量Q= D2/2·V(100mm为4英寸,V=1m/s)=
42/2*1=8L/S;为环状管道时,流量Q= D2/2·V(100 mm为4英寸,V=1.5m/s)=42/2*1.5=12L/S
这样的流量(8—12L/S)仅够1支口径19mm水枪用水,远远不能满足扑救初期火灾的要求。
因此,在条件许可时,室外消防给水管道的直径不应小于150mm。
上海市规定设置消火栓的管道直径不应小于150mm。
室外管道直径为150mm时,枝状管道的流量为;Q=D2/2·V=62/2*1=18L/S;环状管道的流量为;Q=D2/2·V =62/2*1.5=27L/S;这样可以满足2支口径
19mm水枪用水或1支口径22mm的带架水枪用水量。
长距离输水管道水力计算
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。