2017北师版七年级数学教育储蓄.doc
北师大版七年级上册第五章:5.8教育储蓄课程设计
北师大版七年级上册第五章:5.8教育储蓄课程设计
一、课程目标
1.了解教育储蓄的定义及其作用;
2.掌握如何进行教育储蓄;
3.培养理性消费和储蓄的意识。
二、课程内容
1.教育储蓄的概念及其作用;
2.从口袋里的零钱开始,小额储蓄;
3.对于额外的零花钱和节假日礼物,学生如何储蓄;
4.해외留学如何进行教育储蓄。
三、教学重点
1.理解教育储蓄的概念及其原理;
2.掌握小额储蓄的方法;
3.方法的重点在于长期的储蓄;
4.给学生拥有良好的储蓄习惯。
四、教学难点
如何让学生改变他们的消费观念和日常生活习惯。
五、教学方法
通过教师讲解及实例讲解,将理论与实践结合起来。
如何进行小额储蓄并在未来可利用储蓄的难点进行教学。
六、教学过程
1.教师向学生简要介绍教育储蓄的定义及其作用;
2.教师与学生共同探讨小额储蓄的方法;
3.学生根据自己的实际情况,制定储蓄计划;
4.学生根据计划开始进行储蓄;
5.在课程结束时,教师和学生一起对储蓄的结果进行评估,并共同分享
储蓄的体会。
七、教学资源
教师将在课堂上给学生提供一些有关小额储蓄的书籍和网站,学生也可以在家
自行查找相关的材料。
八、教学评价
在课程结束时,教师将对学生的储蓄计划及实施情况进行评估,评估内容包括
储蓄计划的合理性、储蓄效果、以及学生的储蓄习惯是否得到改善等方面。
九、课后作业
1.学生根据自己的储蓄习惯和实际情况,继续完善自己的储蓄计划;
2.学生需要记录自己的储蓄情况,并在下次课堂上与教师进行共同探讨。
北师大版数学七年级上册《教育储蓄》优秀教案附设计说明教学反思
(义务教育课程标准北师大版数学七年级上册第五章第8节)一、教材分析●教学内容本节是义务教育课程标准北师大版数学七年级(上册)第五章《一元一次方程》第8节的教学内容,课时安排为一课时完成。
●教材编写特点从教材作用上看:初中阶段方程问题共出现了三次,一元一次方程、二元一次方程组、一元二次方程。
本节是在学习了列一元一次方程解决实际问题的基础上展开的,既是对一元一次方程内容的充实与提高,又为以后学习一次函数、一元一次不等式组和一般线性方程组做必要的准备。
同时由于储蓄问题与生活联系紧密,从而激发了学生的兴趣;又由于其涉及到一些专业术语,可通过提供素材和简要介绍以形成对此的感性认识。
从本节教材编写背景看:从现实问题出发,创设了具有现实性的问题情境以引出教育储蓄的课题;利用“列表”、知识逐步递进,分步分解难度等方式引发学生自主探究,利用“随堂练习”巩固知识理解、迁移知识,体会用方程解决实际问题的一般步骤,建立方程的数学模型。
本节教材的最大特点便是将学生不熟悉的实际问题抽象到数学学习中,让学生从“现实的、有意义的、富有挑战性的”问题中去自主探索数学知识,激发学生对方程数学模型的深入理解。
●对教材的理解与思考:在对教学内容的分析基础上,制订学习目标中的知识技能和教学思考目标。
将知识分解在教学活动的7个环节中。
活动1、2:以小组方式汇报调查结果,让学生通过相互交流,认识体会完成对本节基础知识的了解过程,教师提出“帮小颖解决难题”,作情境导入。
活动3:学生通过“我当银行职员”活动,使学生达成基础知识的简单运用、能够据等量关系列简单一元一次方程。
活动4:通过“我当理财师”,在教师引导下解决教育储蓄问题,突出重点,突破难点。
活动5:巩固提高—“我办助学贷款”活动,进行知识的迁移,运用一元一次方程解决实际问题。
活动6:反思小结,学生将本节学习内容自我总结,教师可借此发现学生对本节学习内容的掌握情况。
活动7:思维发散,通过“合理利用压岁钱”与“实践报告”来提高学生用数学的能力。
北师大版课标初中数学七年级上《一元一次方程教育储蓄》教学设计
北师大版课标初中数学七年级七年级上一元一次方程教育储蓄一、教学设计学科名称:教育储蓄(初中数学七年级)二、所在班级情况,学生特点分析:我所任课的班级有118名学生都来自农村,对储蓄的知识了解甚少。
由于学生已经运用方程解决了一些实际问题,因此在了解了储蓄知识后,可以运用方程来解决本节课的问题。
三、教学内容分析:本节课通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型,并能运用计算器处理实际问题中的复杂数据。
四、教学目标:知识和技能(1)通过分析教育储蓄中的数量关系,能运用方程解决实际问题。
(2)能运用计算器处理实际问题中的复杂数据。
情感与态度体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领悟学习数学与个人成长之间的关系,感受成功,增进自信。
五、教学难点分析:难点是利用相等关系,列本节例中第二个问题的方程,解决问题。
六、教学课时:1课时七、教学过程:一)创设问题情境1.提出问题师:(出示一张取款单)这是老师昨天在银行取款时得到的,谁能给同学们讲一讲每一项的含义。
(从生活中引入问题,激发学生学习兴趣,自发地启动思维机制,快速地进入问题情境。
)生:本金就是老师开始存入银行的钱,利息是银行给的,本息和是本金和利息的总和。
利率是利息与本金的比,利息税不知道。
师:我国从1999年11月1日起开始对储蓄存款利息征收个人所得税,即征收存款所产生利息的20%,但教育储蓄和购买国库券暂不征收利息税。
每个期数内的利息与本金的比叫利率。
(根据学生情况讲解有关储蓄的知识。
)2.点题师:根据存款的方式、时间不同,银行所给的利率也不同。
今天我们就一起来学习一下哪种储蓄方式好。
(二)自主探究过程师:我们大家都是七年级同学,六年后将要走进大学校门,假设上大学需要5000元学费,你的爸爸妈妈现在就参加教育储蓄。
下面有两种储蓄方式:(1)先存一个3年期的,年利率为2??7%,3年后将本息和自动转存一个3年期;(2)直接存入一个6年期的,年利率为2??88%。
北师版初一数学教育储蓄
03
储蓄在实际生活中应用举例
家庭理财规划
1 2 3
储蓄作为家庭理财的基础
通过储蓄,家庭可以积累一定的资金,为未来的 消费和投资打下基础。
储蓄在家庭资产配置中的作用
家庭可以将储蓄用于购买房产、车辆等大额资产, 也可以将储蓄投资于股票、基金等金融产品,实 现资产的多元化配置。
储蓄与家庭风险管理
家庭可以通过储蓄来应对突发事件和意外风险, 如失业、疾病等,保障家庭的基本生活需求。
复利计算
复利是指将本金和之前产生的利息合并作为新的本 金,再计算下一期的利息,俗称“利滚利”。
存款期限与收益关系
80%
存款期限
存款期限是指从存入银行到取出 的时间长度,通常以年为单位。
100%
收益与期限关系
一般来说,存款期限越长,银行 支付的利率越高,因此收益也越 多。
80%
提前支取与收益损失
如果存款未到期而需要提前支取ቤተ መጻሕፍቲ ባይዱ,银行通常会按照活期利率计算 利息,导致收益减少。
教育投资计划
储蓄用于子女教育投资
家庭可以通过储蓄为子女未来 的教育费用做好准备,包括学 费、书本费、生活费等。
储蓄与教育贷款
对于高额的教育费用,家庭可 以通过储蓄和贷款相结合的方 式支付,减轻经济压力。
储蓄与教育投资回报
通过储蓄投资于子女的教育, 可以提高子女的知识水平和综 合素质,为未来的职业发展打 下基础。
不等式模型
描述数量之间的不等关系, 解决比较大小、范围确定 等问题。
函数模型
通过解析式、图像等方式 表达变量间的依赖关系, 解决变化规律探索等问题。
利用图表辅助分析
示意图
通过绘制简单的图形或符号,直 观展示问题中的条件与关系,帮
北师大版数学七上5.8教育储蓄word教案
5.8教育储蓄教学目标:1、通过分析对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:建立一元一次方程的概念教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。
教学过程:一、情景导入:1.你们了解教育储蓄吗?了解储蓄存款征收利息的情况吗?我国从1999年11月1月起开始对储蓄存款利息征收个人所得税,即征收存款所产生利息的20%,但教育储蓄和购买国库券暂不征收利息税。
2.教育储蓄特点(1)积零成整。
每月起存金额50元,聚少成多;(2)存期灵活。
可选择一年、三年、六年三种存期;(3)总额控制。
每一账户最高可存2万元;(4)利率优惠。
零存整取享受整存整取利率;(5)利息免税。
到期所得的利息免征205利息所得税;(6)贷款优先。
参加教育储蓄的储户,如申请助学金贷款,在同等条件下,信用社(营业部)可优先解决。
3教育储蓄对象在校小学四年级(含四年级)以上学生。
本息和=本金+利息利息=本金×利率×期数存入的时间叫期数每个期数内的利息与本金的比叫利率一、讲授新课:1.为了准备小敏6年后上大学的学费5000元,她的父母现在就参加了教育储蓄.下面有两种储蓄方式:(1)直接存一个6年期;(2)先存一个3年期的,3年后将本息和自动转存一个3年期.你认为哪种储蓄方式开始存入的本金比较少?为了准备小敏6年后上大学的学费5000元,她的父母现子就参加了教育储蓄.(2)先存一个3年期的,3年后将本息和自动转存一个3年期.本金利息本息和第一个3年期x X×2.7%×3X(1+2.7%×3)=1.081x第二个3年期 1.081x 1.081X×2.7%×3 1.081X×(1+2.7%×3)2.随堂练习:(1)为了使贫困学生能够顺利地完成大学学业,国家设立了助学贷款,助学贷款分0.5~1年期、1~3年期、3~5年期、5~8年期四种,贷款利率分别为5.85%,5.95%,6.03%,6.21%,贷款利息的50%由政府补贴.某大学一为新生准备贷6年期,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元?(可借助计算器)(2)爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%).3年后能取5405元,他开始存入了多少元?(3)《中华人民共和国个人所得税法》规定,公民月工资、薪金所得不超过800元(人民币)的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分项累加计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%超过5000元至20000元的部分20%…………3.试一试:国家规定存款利息的纳税方法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%.今小王取出一年到期的本金及利息时,交纳了利息税4.5元,则小王一年前存入银行的钱为元.4.小结(1)你现在对储蓄了解多少?(2)对教育储蓄又知道多少呢?(3)你还知道哪些关于储蓄的问题?5.作业:见作业本.。
七年级数学上册 教育储蓄教案 北师大版
教学设计思想本节课是在学习了列一元一次方程解生活问题的基础上展开的,是一元一次方程的另一种应用。
由于储蓄问题与生活联系紧密,从而激发了学生的兴趣;又由于其涉及到一些专业术语,可通过提供素材和简要介绍已形成对此的感性认识。
在课前组织学生到银行了解有关利息、教育储蓄等知识,并留给学生“教育储蓄问题”,课堂上以小组交流的形式,探索解决方法,并在教师的启发诱导下填写课本中的表格。
进而解决问题。
教学目标知识与技能1.能熟练地按解一元一次方程解应用题的步骤解题.2.利用本金、利息、利率、期数之间的关系列方程解应用题.过程与方法1.通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型.2.能利用计算器处理实际问题中的复杂数据.情感态度价值观在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,提高应用数学的意识.教学重点1.利用本金、利息、利率、期数等数量关系运用方程解决实际问题;2.进一步体会方程是刻画现实世界的有效数学模型;3.运用计算器处理复杂的数据.教学难点利用本金、利息、利率、期数等数量关系,经历列出方程解决实际问题的过程.教学方法合作交流讨论探究通过课前组织学生到银行了解有关信息、教育储蓄等知识,引导学生弄清楚本金、利息、利率、期数的概念及它们之间的关系,在教师的启发下解决教育储蓄问题.教具准备投影片两张第一张:记作§5.8 A 储蓄问题中的术语第二张:记作§5.8B 教育储蓄例题教学过程Ⅰ.创设情景、提出问题、引入新课[师]昨天,我们组织去银行了解有关利息,教育储蓄等知识,谁能把了解到的情况为大家汇报一下.[生]经了解,我国从1999年11月1日起开始对储蓄存款利息征收个人所得税,即征收存款所产生的利息的20%,但教育储蓄和购买国库券暂不征收利息.还有关于利率…….[师]大家有没有注意到,在这个同学叙述了解到的情况时,用了很多储蓄的专业术语,如利息、利率、还有国家对储蓄存款利息征收的个人所得税即利息税等.我们要想真正地了解有关储蓄的知识,必须先弄清楚这些有关储蓄的术语,及它们之间的关系.Ⅱ.讲授新课[师]下面我们就这些术语来真正地了解储蓄问题.这里我只对几个术语作文字解释,请同学们根据文字解释及自己到银行了解到的情况举例说明每个术语的含义.出示投影片(§5.8A)[生]例如:某段时间,银行一年定期存款的年利率为2.25%.向国家交纳利息税,一储户取一年到期的本金及利息时,交纳了利息税4.5元,问这储户一年前存入多少钱?从这个问题中可看出:所求的一年前存入多少钱是本金.4.5元是利息税即利息×20%=本金×利率×期数×20%.其中期数=1年.年利率=2.25%.所以,这个问题可利用本金、利息、利率、期数、利息税之间的关系列出一元一次求解.[师]很好.说明你对储蓄的这几个术语及它们之间的关系,已了解的较清楚.不妨我们大家一块来解答刚才的问题.解:设这储户一年前存入银行x元钱,根据题意,列出方程x×2.25%×1×20%=4.5 解,得x=1000所以这个储户存入银行1000元钱.我们再来看一个例题一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税.例如,存入一年期100元,到期储户纳税后所得的利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%),已知某储户有一笔一年期定期储蓄到期纳税后得到的利息450元,问该储户存入多少本金?分析:由题意可知本金×年利率×(1-20%)=450元,利用这个等量关系,设出未知数就可列出一元一次方程.解:设存入本金x元,根据题意,得2.25%(1-20%)x=450解这个方程,得x=25000所以该储户存入25000元本金.[师]大家在到银行做调查时,已经注意到教育储蓄到期后是不用交纳利息税的.什么是教育储蓄呢?教育储蓄是为促进国家教育事业的健康发展,鼓励城乡居民以储蓄形式,为其子女接受非义务教育开支节省资金,而开办的一项专项储蓄.凡在校中小学生、为筹备将来上高中、大中专、大学本科、硕士和博士研究生等非义务教育开支的需要,都可以在家长的帮助下办理教育储蓄.我们了解了教育储蓄,接下来,我们就来看投影片(§5.8B)[师生共析]要想知道哪一种方式存入的本金少,就需按每一种储蓄方式去求一下需存入多少本金,才可以6年后取到的本息和是5000元.设开始存入x元钱.(1)如果按照第一种储蓄方式,就可找到等量关系:本金×年利率×期数+本金=5000,从而列出方程:x×2.88%×6+x=5000,用计算器求得x≈4263.所以第一种储蓄方式需存入约4263元钱,才可以6年后取得本息和5000元.(2)如果按照第二种储蓄方式,就需分两个时间段:第一个3年期;第二个3年期.这时,我们将每一个阶段的本金、利息、本息和列出一个表格分别表示出来,可以使等量关系一目了然.列表如下:(可鼓励学生自己建立表格,然后填表.适当的时候加以引导,对有困难的学生要由浅入深,帮助他们填写表格)所以第一个3年期后,本息和为x(1+2.7%×3)=1.081x.第二个3年期后,本息和为1.081x(1+2.7%×3)要达到5000元.由此可得1.081x(1+2.7%×3)=5000(这个方程未知数的系数较烦,可借助于计算来处理),解,得1.168561x=5000x≈4279就是说,第二种储蓄方式:开始大约存4280元,3年期满后,将本息和再存一个3年期,6年后本息和能达到5000元.两种储蓄方式比较可知:按第一种储蓄方式开始存入的本金少.评述:我们在解决储蓄这样的问题时,要注意以下关系:(1)对于教育储蓄这样的不纳利息税的储蓄,利息=本金×利率×期数;本息和=本金+利息=本金(1+利率×期数);(2)对于需纳20%的利息税的储蓄,利息=本金×利率×期数×(1-20%);本息和=本金+利息=本金+本金×利率×期数×(1-20%).只要很好地利用好这几个关系,储蓄的问题就可很容易地变成刻画储蓄问题的一元一次方程.Ⅲ.课堂练习1.课本P175.为了使贫困学生能够顺利完成大学学业,国家设立了助学贷款.助学贷款分0.5~1年期、1~3年期、3~5年期、5~8年期四种,贷款利率分别为5.85%,5.95%,6.03%,6.21%,贷款利息的50%由政府补贴,某大学生刚入学准备贷6年期的款,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元?(可借助计算器)分析:贷款和储蓄是两个正好相反的过程,这位大学生6年后最多能够一次还清20000元,这就意味着他现在贷的款到6年后的本息和为20000元,要注意这里有国家的优惠政策:贷款利息的50%都由政府补贴,于是此题的等量关系为贷款(相当于本金)+贷款×6.21%×6×50%=20000元.解:设现在至多可以贷x元,根据题意,得:x(1+6.21%×6×50%)=20000借助于计算器,算得x≈16859元.所以该大学生至多可贷16859元.2.补充练习王叔叔想用一笔钱买年利率为2.89%的3年期国库券,如果他想3年后的本息和为2万元,现在应买这种国库券多少?分析:购买国库券是为了支援国家建设,因此也无需纳利息税.2万元=20000元是3年后的本息和,因此等量关系为:现在买的国库券×(1+2.89%×3)=20000.解:设应买这种国库券x元,则(1+2.89%×3)x=20000利用计算器,解得x=18404.34342;根据实际意义x≈18405.所以王叔叔现在应买这种国库券18405元.Ⅳ.课时小结这节课我们主要研究储蓄问题中的几个术语和基本关系,特别是教育储蓄.基本关系有(1)本息和=本金+利息=本金(1+利率×期数).(2)利息=本金×利率×期数.Ⅴ.课后作业1.课本P175、习题5.11.2.预习课本P176回顾与思考.3.做复习题A组1~6题.Ⅵ.活动与探究亚洲某国家规定工资收入的个人所得税计算方法是:(1)月收入不超过1200元的部分不纳税;(2)收入超过1200元至1700元的部分按税率5%(这部分收入的5%,下同)征税;(3)收入超过1700元至3000元的部分按税率10%征税……已知某人本月缴纳个人所得税65元,问此人本月收入多少元?过程:由题意可知:不超过1200元,不纳税;1200元~1700元,按超过1200元的部分5%纳税.1700元~3000元,按超过1700元的部分10%纳税.……于是,我们得出:如果这个人的工资是1700元,则需纳税(1700-1200)×5%=25元;如果这个人的工资是3000元,则需纳税(1700-1200)×5%+(3000-1700)×10%=25+130=155元.所以这个人的收入在1700~3000元之间.结果:解:根据题意设这个人本月的收入是x元,则1700<x<3000,列方程:(1700-1200)×5%+(x-1700)×10%=65解,得x=2100所以这个人本月收入是2100元.板书设计。
北师大版七年级数学上---【教育储蓄】节--课件
小 结
这一节课我们主要研究了什么问 题? 涉及到哪些等量关系? 涉及到哪些等量关系? 你认为解决这类问题应注意什么? 你认为解决这类问题应注意什么?
P.175习题5.11 P.175习题5.11 习题
1,2 1,
�
3.某企业向银行申请了甲,乙Fra bibliotek种贷款,共35万元, 每年需付利息2.25万元,甲种贷款每年的利率是7%, 乙种贷款每年的利率是6%,求甲,乙两种贷款的数 额是多少? 解:设甲种贷款x万元,则乙种贷款(35-x)万元, 根据题意列方程得 7%x+(35-x)6%=2.25 解得 x=15 答:甲种贷款的数额是15万元,乙种 贷款的数额是20万元.
如果按照第二种储蓄方式, 如果按照第二种储蓄方式,那么
本金 第一个 3年期 第二个 3年期 利息 本息和
x
1.081×(1+2.7%×3)= 5000 1.168561x = 5000 X≈4279
【随堂练习】 随堂练习】 1.张先生到银行存了2000元,存期为2年,已知年 利率为2.25%,则两年后,扣除20%的利息税之后 所得的本息和是多少? 利息是2000×2.25%×2=90元 利息税是90×20%=18元 本息和=2000+90-18=2072元
教育储蓄利率 2.25 一年 2.70 三年 六年 2.88
1000+1000×2.70%×3=1081元 或:1000(1+2.70%×3)=1081元
为了准备小颖6年后上大学的费用5000元,她的父 母现在就参加了教育储蓄.下面有两种储蓄方式: (1)直接存入一个6年期; (2)先存一个3年期的,3年后将本息和自动转存一 个3年期. 你认为那种储蓄方式开始存入的本金少? 设开始存入x元,列出方程: (1+2.88%×6)x=5000元 解得 x=4263.3元
北师版初一数学教育储蓄1
爸爸为小米存了一个3年期的教 育储蓄(3年期的年利率为2.70%), 3年后能取出5405元,请问开始时爸 爸存入了多少钱?
银行定期储蓄种类有一年定期、 二年定期、三年定期和六年定期几种。 请问如果要把一笔钱存入银行六年, 共有几种储蓄方法?
某大学新生准备贷6年期的款,他 预计6年后最多能够一次性还贷20000 元,他现在最多可以贷多少钱?
外链代发/
低沉古怪的轰响,绿宝石色的大地开始抖动摇晃起来,一种怪怪的惨窜骷髅味在加速的空气中跳跃。最后扭起快乐机灵、阳光天使般的脑袋一挥,飘然从里面流出一道金光,他抓住金光怪异地一 旋,一组紫溜溜、金灿灿的功夫∈万变飞影森林掌←便显露出来,只见这个这件玩意儿,一边颤动,一边发出“呜呜”的奇响。……悠然间蘑菇王子全速地颤起神奇的星光肚脐,只见他天使般的 黑色神童眉中,突然弹出五十团转舞着∈追云赶天鞭←的酱缸状的飞沫,随着蘑菇王子的颤动,酱缸状的飞沫像病床一样在拇指神秘地搞出飘飘光烟……紧接着蘑菇王子又用自己挺拔威风的淡蓝 色雪峰牛仔裤秀出紫葡萄色闪电般跳跃的铁锹,只见他潇洒飘逸的、像勇士一样的海蓝色星光牛仔服中,变态地跳出五十组甩舞着∈追云赶天鞭←的仙翅枕头叉状的鸭掌,随着蘑菇王子的摇动, 仙翅枕头叉状的鸭掌像熊胆一样,朝着妃赫瓜中士飘浮的嘴唇怪踢过去!紧跟着蘑菇王子也转耍着功夫像细竹般的怪影一样朝妃赫瓜中士怪踢过去随着两条怪异光影的瞬间碰撞,半空顿时出现一 道淡绿色的闪光,地面变成了雪白色、景物变成了深蓝色、天空变成了灰蓝色、四周发出了奇特的巨响……蘑菇王子淡红色的古树般的嘴唇受到震颤,但精神感觉很爽!再看妃赫瓜中士老态的脖 子,此时正惨碎成手镯样的亮黑色飞光,全速射向远方,妃赫瓜中士猛咆着发疯般地跳出界外,疾速将老态的脖子复原,但元气和体力已经大伤神怪蘑菇王子:“你的业务怎么越来越差,还是先 回去修炼几千年再出来混吧……”妃赫瓜中士:“这次让你看看我的真功夫。”蘑菇王子:“你的假功夫都不怎么样,真功夫也好不到哪去!你的创意实在太垃圾了!”妃赫瓜中士:“等你体验 一下我的『蓝银缸圣耳塞爪』就知道谁是真拉极了……”妃赫瓜中士忽然跳动的手掌连续膨胀疯耍起来……凸凹的活似樱桃形态的脚透出深灰色的阵阵幽雾……平常的暗黑色脸盆耳朵跃出水蓝色 的隐约幽音。接着扭动纯白色灯泡模样的脑袋一吼,露出一副古怪的神色,接着晃动敦实的屁股,像墨灰色的六眼荒原蝶般的一扭,斑点的纯灰色瓦刀形态的鼻子立刻伸长了九十倍,紧缩的身材 也突然膨胀了一百倍!紧接着淡紫色肥肠般的身材闪眼间流出暗黄色的豹鬼残隐味……不大的的紫红色熊猫一样的皮鞭雪晓围腰透出残嗥坟茔声和咻咻声……圆圆的雪白色怪石似的猪精星怪盔忽 亮忽暗穿出妖精魂哼般的晃动!最后转起暗黑色脸盆耳朵一吼,变态地从里面喷出一道金辉,他抓住金辉残暴地一摆,一套黑森森、黄澄澄的兵器『紫鸟蚌精病床钩』便显露出来,只见这个这件 宝器儿,一边蠕动,一边
教育储蓄
教育储蓄
教育储蓄
(义务教育课程标准北师大版数学七年级上册第五章第8节)
一、教材分析
●教学内容
本节是义务教育课程标准北师大版数学七年级(上册)第五章《一元一次方程》第8节的教学内容,课时安排为一课时完成。
●教材编写特点
从教材作用上看:初中阶段方程问题共出现了三次,一元一次方程、二元一次方程组、一元二次方程。
本节是在学习了列一元一次方程解决实际问题的基础上展开的,既是对一元一次方程内容的充实与提高,又为以后学习一次函数、一元一次不等式组和一般线性方程组做必要的准备。
同时由于储蓄问题与生活联系紧密,从而激发了学生的兴趣;又由于其涉及到一些专业术语,可通过提供素材和简要介绍以形成对此的感性认识。
从本节教材编写背景看:从现实问题出发,创设了具有现实性的问题情境以引出教育储蓄的课题;利用“列表”、知识逐步递进,分步分解难度等方式引发学生自主探究,利用“随堂练习”巩固知识理解、迁移知识,体会用方程解决实际问题的一般步骤,建立方程的数学模型。
本节教材的最大特点便是将学生不熟悉的实际问题抽象到数学学习中,让学生从“现实的、有意义的、富有挑战性的”问题中去自主探索数学知识,激发学生对方程数学模型的深入理解。
●对教材的理解与思考:
在对教学内容的分析基础上,制订学习目标中的知识技能和教学思考目。
北师大版七年级上册数学第五章一元一次方程5. 8教育储蓄WORD教案
第五章一元一次方程8.教育储蓄新干四中龙燕一、学生起点分析:有关储蓄的实际应用问题使学生小学阶段就接触到的,只是在解法上仅限制用算术方法解,如已知本金求利息或本息和等。
对于运用方程解这类问题还是第一次。
因为教育储蓄是新教材在一元一次方程的应用中新增加的内容,是发生在学生身边的事情,相信学生也会对此感兴趣的。
但亲自经历储蓄的往往是少数学生,因此,本节课可以提前让学生进行调查,然后给他们一定的时间和空间进行讨论、交流、质疑,从而达到提前预习的目的。
二、教学任务分析:本节课以“教育储蓄问题”为例展开探索,关键在于搞清利息、教育储蓄等知识的生活背景。
分析“教育储蓄问题”中的数量关系,建立数学模型,并用方程最终解决实际问题。
使学生进一步领悟到方程解实际问题的关键是找到“等量关系”。
由于储蓄问题是学生日常生活中常见的问题,可以在课前安排学生进行一次社会调查,让学生深入银行,感受有关储蓄的现实情景,了解本金、利息、本息和、利率、利率之间的关系.同时由于此类问题所涉及的数量关系及数据较复杂,在讨论数量关系的过程中,学生可能会遇到困难,教师可以列出表格,帮助学生分析,首先鼓励学生自己填表,对学有困难的学生教师要通过举具体事例说明关系:本息和=本金+利息,利息=本金×期数×利率的合理性,然后引导学生填写表格.鼓励学生应用计算器处理实际问题中的复杂数据。
要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系,感受成功,增强自信。
三、教学目标:1. 知识技能:⑴通过分析教育储蓄中数量关系,经历应用方程解决实际问题的过程;能应用计算器处理实际问题中的复杂数据。
⑵通过分析教育储蓄中的数量关系,利用本金、利息、利率、期数之间的关系,列方程解决实际问题。
2. 过程与方法⑴通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型.⑵能利用计算器处理实际问题中的复杂数据.3 情感、态度与价值观在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学生热爱数学的热情,实事求是的态度及与人合作、交流的能力。
初中数学七年级上册《58教育储蓄》4页word
北师大版初中数学七年级上册《5.8教育储蓄》精品教案教学目标:(一)教学知识点1.熟练地按解一元一次方程解应用题的步骤解题.2.利用本金、利息、利率、期数之间的关系列方程解应用题.(二)能力训练要求1.通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型.2.能利用计算器处理实际问题中的复杂数据.(三)情感与价值观要求在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学习数学的兴趣,应用数学的意识.教学重点:利用本金、利息、利率、期数等数量关系运用方程解决实际问题。
教学难点:利用本金、利息、利率、期数等数量关系,经历列出方程解决实际问题的过程.教学方法:引导启发式。
教具准备::(1)课件(2.)表格纸课前互动:同学们,在上课前我想先问大家一个问题:你有压岁钱吗?(指名一生)你可不可以告诉我你一年大约会收到多少压岁钱?哇!那么多!你是怎样支配这些钱的呢?总结:真不错,同学们这么小的年龄就具有理财意识。
时代发展的今天,“理财”是我们生活中不可或缺的内容,“理财”有智慧有学问,今天我们就一起从数学的角度来探究一下这方面的学问。
(上课,师生问好)一、创设情景,提出问题。
1、了解概念,初步体会等量关系。
(有一位叫小颖的同学,她也很会理财,她每年都会让妈妈帮助她把压岁钱寸入银行,请大家看大屏幕)小颖把过年时得到的500元压岁钱存入银行,两年到期后支取本息和526.4元。
这种存款的年利率是多少?(1)要解决这个问题,首先要弄懂题意,仔细读题,看一下题目中有没有不十分理解的词语?(生提出本息和年利率)师板书:本息和、年利率[这样的问题虽然和我们的生活息息相关,但由于平时接触的比较少,我们对其中的一些专业术语并不熟悉]我们先来看“本息和”,谁能谈一下你对它的理解?板书:本金利息(本→指本金;息→利息)再来看“年利率”,我首先给大家解释一下“年利率就是指每个期数内利息与本金的比。
北师大版七年级上册 5.8 教育储蓄3
小结
这一节课我们主要研究 了什么问题?
涉及到哪些等量关系?
你认为解决这类问题应 注意什么?
2.为了使贫困学生能够顺利完成大 学学业,国家设立了助学贷款.助学 贷款分0.5~1年期、1~3年期、 3~5年期、5~8年期四种,贷款利 率分别为5.85%,5.95%,6.03%, 6.21%,贷款利息的50%由政府补 贴。某大学一位新生准备贷6年期 的款,他预计6年后最多能够一次 性还清20 000元,他现在至多可以 贷多少元?
本金 利息 本息和
x(1 2.7%3) x 2.7%3 x
第一个
3年期1x 2.7%3
1.081x (1 2.7% 3)
随堂练习
1.张先生到银行存了2000 元,存期为2年,已知年 利率为2.25%,则两年后, 扣除20%的利息税之后所 得的本息和是多少?
教育储蓄利率
一年 2.25 三年 2.70 六年 2.88
例1
为了准备小颖6年后上大学的费用 5000元,她的父母现在就参加了 教育储蓄。下面有两种储蓄方式: (1)直接存入一个6年期; (2)先存一个3年期的,3年后将本
息和自动转存一个3年期。 你认为那种储蓄方式开始存入的 本金少?
如果按照第二种储蓄方式,那么
教育储蓄
— 一元一次方程 的应用之六
储蓄
谈谈你对“储蓄”的理 解. 什么是教育储蓄?
引例
1.小颖的父母给 她存了一个三 年期的教育储 蓄,起初存入 1000元。那么 三年后能取出 多少钱?
教育储蓄利率
一年 2.25 三年 2.70 六年 2.88
2.如果小颖的 父母三年后 取出了5000 元钱,你能 求出本金是 多少吗?
5.8教育储蓄说课稿
5.8教育储蓄说课稿§5.8《教育储蓄》说课稿教材:北师大版《数学》七年级上册尊敬的各位评委,各位老师:你们好!我是曾靓,将从以下五个方面对北师大版七年级上册第五章一元一次方程第8节《教育储蓄》进行说课.一、说教材荷兰著名数学教育家弗赖登塔尔曾说:与其说学习数学,倒不如说学习“数学化”,而方程就是将实际问题数学化以刻画现实世界的有效模型.北师大版本教材在本章以一元一次方程为载体,让学生比较完整的经历从情境中抽象问题,对问题进行研究和解决,再利用数学知识解释实际问题的全过程来理解数学与现实世界的联系,培养应用数学化思想解决实际问题的意识.本节以生活中常见的“教育储蓄问题”为例展开探索,分析其数量关系,建立模型,并用方程思想解决实际问题.它是本章最后一节新授课,是在学生有一定的用方程解决实际问题的能力基础上进行的.其教学目标是:知识与技能目标:分析教育储蓄中本金、利息、利率、期数之间的数量关系,并利用其列方程解决实际问题.过程与方法目标:通过分析、比较不同储蓄方案,做出决策的过程,培养学生提出问题、分析问题、解决问题的意识.情感态度价值观:增强合作交流意识,促进正确价值观的形成,培养学生的爱心意识、感恩意识以及爱国情操.教学重点是:利用本金、利息、利率之间的数量关系建立方程模型;初步体会用数学的方法解决实际问题.难点是:从实际问题中寻找等量关系列出方程.二、说学情本次教学对象是十一、二岁的初一学生,其思维模式正由可逆的具体运算思维向形式运算思维转变;由形象思维向抽象思维过渡.我们通过这些思维成分的相互渗透,才能更有效的帮助学生理解新知识而又能促进学生思维的发展.所以本节课一方面通过贴近生活的具体情境使抽象的内容具体化,另一方面引导学生提炼具体问题背后的数学方法与思想,使问题抽象化.这个年龄段的儿童,除了认知上的阶段性特点,他们自我意识,独立意识增强;同伴关系在人际交往中的影响越来越明显,又由于这个班级的学生接受信息,理解知识的能力差异较大,所以本节课我采用“兵”助“兵”策略,努力营造民主,和谐,自主的氛围.三、说方法为了增加课堂的感情色彩,幽默成分,将教的过程变为学生思的过程,我采用了以下的教法:情境串联法:“助”作为教学情境的辅助线始终贯穿于教学始终.这不仅增加了本节课清晰的逻辑元素,也赋予了每一道数学题丰富的感情色彩.直观演示法:利用货币等实物,引导学生抽象出相关储蓄概念;利用存款凭条,激发学生求知欲望.这既增添了课堂的幽默成分,同时也通过直观化,可视化,帮助学生理解概念,提高课堂效率.启发引导法:通过问题引导,合理启发,将教的过程变为学生思的过程,让教师成为课堂的组织者、引导者、合作者.学法指导:为了适应学生个性化的思维方式与能力,独立思考成为了本节课的主旋律,而合作互助是其优美的和音,让学生在感受思维的发散与收敛相得益彰的过程中,同时去追求自知、自省、自悟.四、说过程本节课一共分为7个环节:教学过程教学环节教学内容设计意图情境引入活动1教学内容的情境化情境:刘阿姨的女儿小颖再过几年就要上大学了,刘阿姨想为女儿的学费提前做一些储蓄准备,让我们一起来帮一帮刘阿姨.1.提出问题:知道什么是教育储蓄么?老师为什么推荐刘阿姨选择教育储蓄呢?把帮助刘阿姨作为一条教学导火线,使“助”贯穿于教学始终.教学内容情境化,让学生领悟到数学源于生活,以‘助’为情境又为数学进行了情感升温.情境引入 2.简单介绍教育储蓄①优点:利率优惠,利息免税②用途:非义务教育开支需要③储户:在校四年级以上学生④存期:一年、三年、六年让学生感受父母对他们学习的重视,了解国家对教育事业的支持,培养学生的爱国情操.旧知回顾活动2抽象概念的直观化1.由算式100+100×5%×3=115中的具体数字引导学生复习本金、利率、期数、利息、本息和及它们之间的关系公式.2.教师板书:本息和=本金+利息=本金+本金利率期数通过人民币的展示,使枯燥的数学算式增添了生活色彩,也使抽象的概念直观、具体、易接受.让学生通过旧知的再建构(储蓄中数量关系),感受新知识的萌发(利用数量关系建立方程解决实际问题). 合作互助活动3策略选择的过程化之方案设计情境:刘阿姨感受到了教育储蓄的价值,为了给女儿小颖准备6年后上大学的入学学费6650元,她决定参加教育储蓄.发散:你能帮忙想出哪些储蓄方案?归纳:不管储蓄方案怎么变,由于储蓄的总年数是一样的,因此学生想出来的方案其实就是1年,3年,6年的组合,只不过要使总年数和为6. 设置了比教科书更开放的问题,鼓励学生独立思考,组内交流,全班分享,让学生通过提出自己的方案获得了精神上的成功;分享别人的方案,获得了思想上的升华.帮助学生学会抓住问题的本质,更深层次地理解问题.活动3策略选择的过程化之方案分析发散:这么多的储蓄方案,怎么评判哪个方案比较好呢?情境:为了获得入学学费6650元,刘阿姨打算选择以下两种储蓄方案:方案①直接存入一个6年期(年利率为5.50%)方案②先存一个3年期的,3年后将本息和自动转存一个3年期(年利率为5.00%)发散:哪种储蓄方案开始存入的本金更少?这里并没有直接呈现书本问题,而是引学生挖掘问题背后的思维过程.通过对这两种方案本金的分析与对比,进一步培养学生用方程解决实际问题的意识.合作互助1.分析第一种储蓄方案.解:设开始存入本金元,则故如果选第一种方案开始需存入本金5000元.培养学生独立思考的思维品质;通过发现学生计算出现的错误及时引导学生重视百分数的运算方法与技巧,为方案二的分析埋下了伏笔.2.分析第二种储蓄方案.①由于此类问题所涉及的未知量太多且数据较复杂,先引导学生分析第一个3年期的本金、利息、本息和,并用代数式表示出来.第一个3年期的本金是元,利息是元故第一个3年期的本息和是元.②引导学生学会用表格的形式呈现各个量之间的关系,让学生通过自己的实践切身感受到列表分析问题的方便,简洁.本金利息本息和第一个第二个③列出方程并求解:因为5028>5000,答:第一种储蓄方案开始存入的本金更少.3.对多种储蓄方案进行分析对比6需本金5000元33需本金5028元1113需本金5216元111111需本金5410元归纳:通过数据引导学生得出一次性存6年比分散存6年需要的本金更少.站在银行或者储户的角度,这样的结果也确实符合生活实际. 通过化多为少化繁为简,将方案二变成了具有梯度和逻辑的问题串,使目标具体化,知识层次化,思路清晰化,得以顺利突出重点,突破难点.学生通过表格梳理已知未知量之间的关系时,进一步感受到了在这里等量关系的作用有两种:①用代数式来表示其他的未知量.②以方程模型的形式来呈现若干个量之间的关系,构建起未知与已知之间的桥梁,从而促成问题得到解决.帮助学生通过对数据分析对比,总结出一般性的结论;同时通过理论联系现实,让学生感受到现实的情境能进一步验证理论,而正确的理论又能反过来指导现实的选择. 合作互助活动3策略选择的过程化之方案决策①发散:你会给刘阿姨推荐哪种储蓄方案?②鼓励学生发言分享自己的想法和认识.③归纳:客观公正的数据是进行分析比较的强有力武器,但只能起着帮助作用,不能成为我们决策的全部依据.让学生感受到了生活问题数学化的意义,但有些时候只考虑理想模型,在实际生活问题中,我们不能忽略那些无法量化的因素. 巩固练习活动4方程应用的广泛化①情境:李叔叔的儿子准备贷6年期的款(年利率约为7.00%),假如贷款利息的50%由政府补贴,而他预计6年后最多只能一次性还清12100元,那他现在至多可以贷多少元?②学生上黑板解答,老师点评.解:设他现在至多可以贷元,则答:他现在至多可以贷10000元.通过贷款问题复习与巩固所学的知识与方法.通过助学贷款的介绍,再次渗透感恩意识与爱国主义意识.为学生类比解决含利息税的理财问题做好知识储备,使人人都获得了必需的数学. 课堂小结活动5知识梳理的系统化情境:赠人玫瑰,手留余香.虽然今天我们是为了帮助别人,但是同时我们也收获到了很多知识与方法,让我们一起回顾一下!1.鼓励学生畅所欲言.2.引导学生回顾以下内容:①学习了有关储蓄知识与方法.②初步体会用数学的思想方法,思维过程去研究问题,解决问题.③进一步体验建立方程模型去解决实际问题的过程. 通过师生的总结和互相补充,把本节所学的内容进行归纳梳理,使得学生所学的知识条理化,概括化,系统化.同时也培养了学生的总结归纳能力,进一步帮助学生从局部到整体重构其知识体系,在自我的认知基础上去建构新的知识体系. 课后作业情境:村里的其他叔叔阿姨们也想请同学们帮忙理财:助人的情境,让冰冷的数学题多了一份温暖的情意,而这份情意也温暖了大家的心灵. 课后作业 1.张阿姨购买了5000元3年期的国库券,3年后将得到本息和为5750元,这种国库券3年期的年利率是多少?2.王叔叔想替儿子存一个2年期的教育储蓄(年利率约为4.5%),他希望2年后能取21800元,现在王叔叔应一次性存入多少元?通过习题一方面复习旧知,反馈课堂学习效果;另一方面也鼓励学生多关注生活常识,培养学生的理财意识. 课外拓展活动6数学回归的生活化互助倡议马上就要过年了,长辈们每年会给我们压岁钱,我们不妨办一个“爱心小银行”,毕业后本金还给同学们,利息捐助给经济有困难的同学或灾区.若我们平均每人按照100元存入银行,按顺德农商银行现在的利率表,你会选择什么储蓄方案?三年后你可以从银行里领取多少利息去献爱心?全班呢?整个七年级呢?全校呢?(七年级有学生约800人,全校有学生约1800人,教师约200人)2.填写爱心计划书联系生活,让学生将所学知识在生活中加以运用,使他们的知识与思维不仅仅拘泥于课本,同时也能紧跟发展的脚步,带有时代的气息.在这节课里,帮助刘阿姨是课堂上老师的教学导火线;在这节课外,互助倡议与爱心计划书将是课堂后学生们的自主学习导火线,这种化被动为主动,变课堂学为课外学才是学生学习的真正开始,才是我们老师的真正期盼.五、板书设计六、说评价教学内容的情境化,抽象概念的直观化,策略选择的过程化,方程应用的广泛化,知识梳理的系统化,数学回归的生活化6个活动,让学生感知学习数学,即学习“数学化”的思想,从中体会与享受了“数学化”所蕴藏的价值与魅力,顺利达成了本节课的知识与技能目标.遗憾的是:给予学生的语言表现空间不足.教之道在于度,学之道在于悟,本节课以引导性问题普“度”学生,以发散性问题促学生思,以收敛性问题让学生悟,有助于学生追求形散而神不散的思维深度;而思维的散-敛相得益彰的过程也让学生比较完整的经历了从情境中抽象问题,对问题进行研究和解决,再利用数学知识解释实际问题的全过程,培养了学生应用数学知识解决实际问题的意识,达成了本节课的过程与方法目标.遗憾的是:有些问题的切入没有从学生的思维起点出发.课堂教学的艺术不在于传授,而在于激励,唤醒,鼓舞,这节课从“助”的期望中引入新知,在“助”的过程中让学生感受新知,以“助”为手段巩固新知,让“助”为方向拓展新知;从“助”中开始,在“助“中成长,从“助”中享受,在“助”中求知.“助”作为情感的辅助线始终指引着学生,成为学生学会“渔”的动力,达成了本节课的情感态度价值观目标.遗憾的是:小组合作互助机制不够完善.以上为我对本节课的理解与设计,请各位专家批评指正,谢谢您们.第7页共7页。
北师版初一数学教育储蓄
元。
3、试一试:
为了给你准备6年后上大学的费用10000元,你的父母 现在就想参加教育储蓄。下面有两种储蓄方式:
Ⅰ、直接存一个6年期; Ⅱ、先存一个3年期的,3年后将本息和自动转存一个
3年期。 求:(1)第一种储蓄方式开始存入的本金;
解:(1)设开始存入x元,如果按照第一种储蓄方式, 那么列方程: x(1+2.88%×6)=10000 解得: x≈8527
(2)设开始存入x元,如果按照第二种储蓄方
式,可列得方程:
x ×(1+2.7% ×3) ×(1+2.7%2 ×3 )=10000 x ×(1+2.7% ×3) =10000
1.168561x =10000
(2)第二种储蓄方式开始存入的本金; (3)你会帮父母选择哪种方式?为什么?
时间 1年 年利率 2.25%
3年 2.70%
6年 2.88%
解:设开始存入x元,如果按照第一种储 蓄方式,那么列方程:
x(1+2.88%×6)=10000
解得x≈8527
如果按照第二种储蓄方式,那么
本金
利息
本息和
第一 个
3年期
第二 个 3年期
x
新本金
x×2.7%×3
x+x×2.7%×3 新本金 = x×(1+2.7%×3)
新本金
新本金+ 新本金×2.7% ×3
×2.7% ×3 = 新本金 ×(1+2.7% ×3 )
由此可得方程:
x ×(1+2.7% ×3) ×(1+2.7% ×3 )=10000
§5.8《教育储蓄》教案说明
§5.8《教育储蓄》教案说明
教材:北师大版《数学》七年级上册
北师大版教材在本章中,以一元一次方程为载体,培养学生应用数学化思想解决实际问题的意识,让学生比较完整的经历从情境中抽象问题,对问题进行研究和解决,再利用数学知识解释实际问题的全过程来理解数学与现实世界的联系.而本节课以生活中常见的“教育储蓄问题”为例展开探索,分析其数量关系,并用方程思想解决实际问题,使学生进一步体会了方程就是将实际问题数学化以刻画现实世界的有效模型.
笔者通过教学内容的情境化,抽象概念的直观化,策略选择的过程化,方程应用的广泛化,知识梳理的系统化,数学回归的生活化6个活动,让学生感知荷兰著名数学家弗赖登塔尔的“与其说学习数学,倒不如说学习“数学化”的思想;通过思维的散-敛相得益彰的过程让学生初步感受方案设计,方案分析,方案决策的思维过程,并从中体会与享受“数学化”所蕴藏的价值与魅力. 这作为本节课的教学暗线促成着教学目标的达成.
笔者以为“授之以‘鱼’不如授之以‘渔’”固然值得我们重视,然而带着什么样的心态去“渔”、为什么而“渔”是不是也应该得到我们的关注呢?
故这节课以“助”作为教学明线贯穿于教学始终,作为情感的辅助线始终指引着学生.从“助”的期望中引入新知,在“助”的过程中让学生感受新知,以“助”为手段巩固新知,让“助”为方向拓展新知;从“助”中开始,在“助“中成长,从“助”中享受,在“助”中求知.“助”成为学生学会“渔”的动力,变被助为自助-互助-助人,变被动学为主动学,变课堂学为课外学,这才是学生学习的真正开始,才是我们老师的真正期盼.
数学是理性的,与感性的融合能表达更多的真诚;数学是冰冷的,添上情感的外衣能散发更多的光热,当学生心中有爱,有能力给爱,用行动去爱时,爱自会洒满天下!。
七年级数学 教育储蓄 导学教北师大版
1 / 3课题:教育储蓄【教学目标】:1.知识技能:⑴通过分析教育储蓄中数量关系,经历应用方程解决实际问题的过程;能应用计算器处理实际问题中的复杂数据。
⑵通过分析教育储蓄中的数量关系,利用本金、利息、利率、期数之间关系,列方程解决实际问题。
【教学重难点】:⑴通过分析储蓄中数量关系经历运用方程解决实际过程进一步体会方程刻画现实世界有效模型.⑵能利用计算器处理实际中复杂数据.教学过程设计:一 教学准备布置社会调查任务:同学们已经是七年级的学生了,六年后将会走入大学校门,如果你的父母将为你准备上大学的学费20000元,请到银行调查,运用那种方式储蓄更合算?二: 情境引入(汇报结果,获取信息)问题1:有关储蓄的知识你了解到多少?请有收获的同学与大家交流一下。
计算公式: 如利率=本金利息,本息和=本金+利息,利息=本金×利率×期数,从1999年11月1日起国家对个人在存款征得利息:利息=利息×20%,后利息=利息×80%等等。
三:活动探究了解了有关储蓄的知识,接下来利用有关知识帮小颖的父母算笔帐(改编教材中的问题): 国从1999年11月1日起开始对储蓄存款利息征收个人所得即征收存款所产生利息20%但储蓄和购买国库券暂不征收利息税。
小颖父母为了准备小颖6年后上大学学费5000元现在就参加了储蓄. 请你帮助他们设计储蓄方式?设开始存入x元钱.(1)如果按照第一种储蓄方式就可找到等量关系:本金×年利率×期数+本金=5000从而列出方程:解得:x=所以第一种储蓄方式需存入约元钱才可以6年后取得本息和5000元.(2)如果按照第二种储蓄方式就需分六个时间段:第一个1年期第二个1年期…. 第六个1年期。
六个阶段本金、利息、本息和列出一个表格分别表示出来:由此可得解得: X=(3)如果按照第三种储蓄方式就需分两个时间段:第一个3年期第二个3年期.将每一个阶段本金、利息、本息和列出一个表格分别表示出来:由此可得:解得:x=就说第一种储蓄方式:开始大约存4264元;第二种储蓄方式:开始大约存4376元6年后本息和都能达到5000元.几种储蓄方式比较可知:按第一种储蓄方式开始存入本金少.四:课堂小结这节课我们学习了有关储蓄的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一课时教育储蓄
教学目标
知识与能力
通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程;能运用计算器处理实际问题中的复杂数据。
教学思考
领悟到方程解实际问题的关键是找到“等量关系”。
解决问题
进一步体会方程是刻画现实世界的有效数学模型。
情感态度与价值观
培养学生热爱数学的热情,实事求是的态度及与人合作、交流的能力。
教学重点难点:找等量关系,列出方程,解决实际问题;找等量关系。
教学过程
知识和能力训练要求
1、通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
2、能利用计算器处理实际问题中的复杂数据。
情感与价值观要求
在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学习数学的兴趣,应用数学的意识。
教学重点
1、利用本金、利息、利率、期数等数量关系运用方程解决实际问题;
2、进一步体会方程是刻画现实世界的有效数学模型;
3、运用计算器处理复杂的数据。
教学难点
利用本金、利息、利率、期数等数量关系,经历列出方程解决实际问题的过程。
教学方法
引导启发式。
创设情景、提出问题、引入新课
储蓄用到了很多的专业术语,如利息、利率、还有国家对储蓄存款利息征收的个人所得税即利息税等。
我们要想真正地了解有关储蓄的知识,必须先弄清楚这些有关储蓄的术语,及它们之间的关系。
探究新知,学习新课
储蓄问题中的术语
(1)本金:顾客存入银行的钱;
(2)利息:银行付给顾客的酬金;
(3)本息和:本金与利息的和;
(4)期数:存入的时间;
(5)利率:每个期数内的利息与本金的比;
(6)年利率:一年的利息与本金的比;
(7)月利率:一个月的利息与本金的比;
(8)从1999年11月1日起,国家对个人在银行的存款征得利息税:利息税=利息×20%
(9)计算公式:利息=本金×利率×期数。
一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税。
例如,存入一年期100元,到期储户纳税后所得的利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%),已知某储户有一笔一年期定期储蓄到期纳税后得到的利息450元,问该储户存入多少本金?
分析:由题意可知本金×年利率×(1-20%)=450元,利用这个等量关系,设出未知数就可列出一元一次方程。
教育储蓄到期后是不用交纳利息税的。
什么是教育储蓄呢?教育储蓄是为促进国家教育事业的健康发展,鼓励城乡居民以储蓄形式,为其子女接受非义务教育开支节省资金,而开办的一项专项储蓄。
凡在校中小学生、为筹备将来上高中、大中专、大学本科、硕士和博士研究生等非义务教育开支的需要,都可以在家长的帮助下办理教育储蓄。
例1:小颖的妈妈为了准备小颖6年后上大学的学费5000元,她的
父母现在就参加了教育储蓄。
下面有两种储蓄方式:
(1)直接存一个6年期,年利率为2.88%
(2)先存一个3年期的,3年后将本息和自动转存一个3年期 你认为哪种储蓄方式开始存入的本金比较少?
设开始存入x 元钱。
(1)如果按照第一种储蓄方式,就可找到等量关系:本金×年利率×期数×本金=5000,从而列出方程50006%882=+⨯⋅⨯x x ,用计算器求得4263≈x
所以第一种储蓄方式需存入约4263元钱,才可以6年后取得本息和5000元。
(2)如果按照第二种储蓄方式,就需分两个时间段:第一个3年期;第二个3年期。
这时,我们将每一个阶段的本金、利息、本息和列出一个
由此可得
1.081x ×(1+
2.7%×3)=5000
4279≈x
就是说,第二种储蓄方式:开始大约存4280元,3年期满后,将本息和再存一个3年期,6年后本息和能达到5000元。
两种储蓄方式比较可知:按第一种储蓄方式开始存入的本金少。
评述:我们在解决储蓄这样的问题时,要注意以下关系:(1)对于教育储蓄这样的不纳利息税的储蓄,利息=本金×利率×期数;本息和=本金+利息=本金(1+利率×期数);
(2)对于需纳20%的利息税的储蓄,利息=本金×利率×期数×(1-20%);本息和=本金+利息=本金+本金×利率×期数×(1-20%)。
只要很好地利用好这几个关系,储蓄的问题就可很容易地变成刻画储蓄问题的一元一次方程。
课堂练习
补充练习
王叔叔想用一笔钱买年利率为2.89%的3年期车库券,如果他想3年后的本息和为2万元,现在应买这种车库券多少?
课时小结
这节课我们主要研究储蓄问题中的几个术语和基本关系,特别是教育
储蓄,基本关系有(1)本息和=本金+利息=本金(1+利率×期数);(2)利息=本金×利率×期数。
课后作业
1、课本习题
P、5.11
175
活动与探究
亚洲某国家规定工资收入的个人所得税计算方法是:(1)月收入不超过1200元的部分不纳税;(2)收入超过1200元至1700元的部分按税率5%(这部分收入的5%,下同)征税;(3)收入超过1700元至3000元的部分按税率10%征税……已知某人本月缴纳个人所得税65元,问此人本月收入多少元?
结果:根据题意设这个人本月的收入是x元,则1700<x<3000,列方程:
(1700-1200)×5%+(x-1700)×10%=65
解,得x=2100
所以这个人本月收入是2100元。
备课资料
(一)参考例题
[例1]李明以两种形式储蓄了500元钱,一种储蓄年利率是5%,另一种是4%,一年后共得利息23元5角,两种储蓄各存了多少钱?(不用纳利息税)。
[例2]我国股市交易中每买卖一次需交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利多少元?
[例3]水源泉透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每3
m水费2.9
m水费1.3元,超标部分每3
m,交水费22元.
元,某住楼房的三口之家七月份用水123
(1)请你通过列方程求出北京市规定的三口之家楼房每月标准用水量
m?
为多少3
(2)若某住楼房的三口之家每月用水a3
m,应交水费为b元,用含a的代数式表示b.
(二)参考练习
1、将6500元存入银行,年利率为2.2%,一年到期可得利息多少元?扣除利息税后实得多少元?
答案:143元 144.14元
2、为了准备小颖6年后上大学的学费20000元,她父母现在就参加了6年期的教育储蓄,6年期的教育储蓄年利率为2.88%,问她父母应存入银行多少元?
答案:约17100元
3、把100元钱按照国际惯例年定期储蓄存入银行,如果到期可以得到本息共102.25元,那么这种储蓄的年息是存款的百分之几?月息是存款的百分之几?
答案:2.25% 0.1875%
4、国家规定个人发表文章,出版图书所得的稿费的个人所得税的计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元的应缴纳全部稿费的11%的税。
今知王老师获得一笔稿费(不超过4000元),并缴纳个人所得税420元。
问王老师的这笔稿费有多少元?
答案:3800元。