高三一轮复习学案——电场中的偏转
带电粒子在电场中的偏转
2
tan
eU 2l U 2l 2 mv0 d 2U 1d
2. 两个结论:
3.两种方法:
C
eU L h 2 md v0
2
先找到物理量表达式
h eL 2 U 2mdv0
2
先看常量后看变量
强化练习
qUl tan 2 mv0 d
2、质量为m、带电量为q的粒子以初速度v从中线垂
直进入偏转电场,刚好离开电场,它在离开电 场后偏转角正切为0.5,则下列说法中正确的是 A、如果偏转电场的电压为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 B、如果带电粒子的比荷为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 C、如果带电粒子的初速度为原来的2倍,则粒子 离开电场后的偏转角正切为0.25 D、如果带电粒子的初动能为原来的2倍,则粒子 √ 离开电场后的偏转角正切为0.25
二、加速和偏转一体 _ + + + + + -q m
U1
vy
+
+
y
φ
v0
U2
析与解
对加速过程由动能定理: qU1 2 mv0 qUl 2 2 U 2l 2 mv0 2qU1 y 2 2mv0 d 4U 1d eU 2l U 2l tan 2 2U 1d mv0 d
第二个结 - - - - - 论 L 1
侧移
U F
v0 v
l
试根据类平抛运动的知识,推导: 偏移量 y和偏转角θ
vy
偏转角
带电粒子的偏转——类平抛运动 1.加速度:
2.飞行时间:
3.侧移距离: 4.偏转角:
2025届高考物理一轮复习资料 第八章 静电场 第4讲 带电粒子在电场中的运动
第4讲带电粒子在电场中的运动学习目标 1.会利用动力学、功能关系分析带电粒子在电场中的直线运动。
2.掌握带电粒子在电场中的偏转规律,会分析带电粒子在电场中偏转的功能关系。
3.会分析、计算带电粒子在交变电场中的直线运动和偏转问题。
1.思考判断(1)带电粒子在匀强电场中只能做类平抛运动。
(×)(2)带电粒子在电场中,只受静电力时,也可以做匀速圆周运动。
(√)2.带电粒子沿水平方向射入竖直向下的匀强电场中,运动轨迹如图所示,粒子在相同的时间内()A.位置变化相同B.速度变化相同C.速度偏转的角度相同D.动能变化相同答案 B考点一 带电粒子(带电体)在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子做匀速直线运动。
(2)粒子所受合外力F 合≠0且与初速度共线,带电粒子将做加速直线运动或减速直线运动。
2.用动力学观点分析a =qE m ,E =U d ,v 2-v 20=2ad 。
3.用功能观点分析匀强电场中:W =qEd =qU =12m v 2-12m v 20非匀强电场中:W =qU =12m v 2-12m v 20角度 带电粒子在电场中的直线运动例1 (多选)(2022·福建卷,8)我国霍尔推进器技术世界领先,其简化的工作原理如图1所示。
放电通道两端电极间存在一加速电场,该区域内有一与电场近似垂直的约束磁场(未画出)用于提高工作物质被电离的比例。
工作时,工作物质氙气进入放电通道后被电离为氙离子,再经电场加速喷出,形成推力。
某次测试中,氙气被电离的比例为95%,氙离子喷射速度为1.6×104 m/s ,推进器产生的推力为80 mN 。
已知氙离子的比荷为7.3×105 C/kg ;计算时,取氙离子的初速度为零,忽略磁场对离子的作用力及粒子之间的相互作用,则( )图1A.氙离子的加速电压约为175 VB.氙离子的加速电压约为700 VC.氙离子向外喷射形成的电流约为37 AD.每秒进入放电通道的氙气质量约为5.3×10-6 kg答案 AD解析 设一个氙离子所带电荷量为q 0,质量为m 0,由动能定理得q 0U =12m 0v 2,解得氙离子的加速电压为U =m 0v 22q 0≈175 V ,A 正确,B 错误;设1 s 内进入放电通道的氙气质量为m ,由动量定理得Ft =95%m v ,解得m ≈5.3×10-6 kg ,D 正确;氙离子向外喷射形成的电流I =q t =95%m m 0t ·q 0≈3.7 A ,C 错误。
高考专题27 带电粒子在电场中的加速和偏转-高考物理一轮复习专题详解 Word版含解析
高考物理热点快速突破知识回顾 1.带电粒子在电场中的加速(1)匀强电场中,v 0与E 平行时,优先用功能关系求解,若不行,则用牛顿第二定律和运动学公式.(2)非匀强电场中,只能用功能关系求解.2.带电粒子在匀强电场中的偏转(v 0垂直于E 的方向),如图所示(1)沿v 0方向的匀速直线运动. (2)垂直于v 0方向的匀加速直线运动. ①加速度a =qE m =qUmd; ②偏转距离y =12at 2=qU 2md x v 02y =qUL22mdv 20;③速度偏向角 tan φ=v y v 0=qUx mdv 20tan φ=qUL mdv 20;④位移偏向角tan θ=y x =qUx 2mdv 20tan θ=qUL2mdv 20; ⑤两个重要的结论a .位移偏向角θ和速度偏向角φ满足tan φ=2tan θ;b .射出极板时粒子的速度反向延长线过粒子水平位移的中点.规律方法带电粒子在电场中运动的解题方法(1)求解带电粒子在匀强电场中的运动时,运动和力、功能关系两个途径都适用,选择依据是题给条件,当不涉及时间时选择功能关系,否则必须选择运动和力.(2)带电粒子在非匀强电场中运动时,加速度不断变化,只能选择功能关系求解. 例题分析【例1】 (2017年高考·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点 【答案】 A【例2】 如图所示,两平行金属板A 、B 长l =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,即U AB =300 V .一带正电的粒子电量为q =10-10C ,质量为m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为L =12 cm ,粒子穿过界面PS 后被点电荷Q 施加的电场力俘获,从而以O 点为圆心做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏EF 上静电力常量k =9×109N·m 2/C 2,粒子重力不计,tan37°=34,tan53°=43.求:(1)粒子穿过界面MN 时偏离中心线RO 的距离h ; (2)粒子穿过界面MN 时的速度v ;(3)粒子穿过界面PS 时偏离中心线RO 的距离Y ; (4)点电荷的电荷量Q (该小题结果保留一位有效数字).(2)粒子的运动轨迹如图8-6-4所示设粒子从电场中飞出时沿电场方向的速度为v y ,则:v y =at =qU AB lmdv 0解得:v y =1.5×106m/s所以粒子从电场中飞出时的速度为:v =v 20+v 2y =2.5×106m/s设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:tan θ=v y v 0=34解得:θ=37°【例3】 如图甲所示,真空中两水平放置的平行金属板A 、B 相距为d ,板长为L ,今在A 、B 两板间加一如图乙所示的周期性变化的交变电压.从t =0时刻开始,一束初速度均为v 0的电子流沿A 、B 两板间的中线从左端连续不断地水平射入板间的电场,要想使电子束都能从A 、B 右端水平射出,则所加交变电压的周期T 和所加电压的大小应满足什么条件?【解析】 根据题意可知,电子在水平方向上做匀速直线运动,在竖直方向上做变速直线运动,可画出t =0时刻射入板间的电子在竖直方向上的速度-时间(v y -t )图象,如图8-6-6所示,因电子进入板间电场和离开板间电场时,其竖直分速度均为零,所以电子在电场中的运动时间t 必为交变电压周期T 的整数倍:t =nT (n =1、2、3、…)而t =l v 0故T =lnv 0(n =1、2、3…)规律总结“两个分运动、三个一”求解粒子偏转问题 带电粒子在匀强电场中偏转的基本模型如图所示.(1)分解为两个独立的分运动——平行极板的匀速直线运动,L =v 0t ;垂直极板的匀加速直线运动,y =12at 2,v y =at ,a =qUmd .(2)一个偏转角:tan θ=v yv 0;一个几何关系:y =L2tan θ;一个功能关系:ΔE k =qUy d. 专题练习1.如图,在P 板附近有一电子由静止开始向Q 板运动.已知两极板间电势差为U ,板间距为d ,电子质量为m ,电量为e.则关于电子在两板间的运动情况,下列叙述正确的是( )A .若将板间距d 增大一倍,则电子到达Q 板的速率保持不变B .若将板间距d 增大一倍,则电子到达Q 板的速率也增大一倍C .若将两极板间电势差U 增大一倍,则电子到达Q 板的时间保持不变D .若将两极板间电势差U 增大一倍,则电子到达Q 板的时间减为一半 【答案】 A2.(2017·洛阳联考)如图所示,平行金属板A 、B 水平正对放置,虚线为中心线,A 、B 板间加上稳定的电压,有三个带电微粒a 、b 、c 从靠近A 板边缘处以相同的水平初速度射入板间,a 从中心线上M 点飞出板间区域,b 从B 板右侧边缘飞出,c 落在B 板的中点N 处,不计微粒的重力,则带电微粒a 、b 、c 的比荷关系为( )A.q c m c =4q b m b =8q a m aB.q a m a =q b m b =4q c m cC.q a m a =2q b m b =4q c m cD.q c m c =2q b m b =4q a m a 【答案】 A【解析】根据平抛运动的知识可知,微粒在竖直方向上的偏转距离y =12at 2=qU 2dmt 2,t a =t b=2t c ,解得q c m c =4q b m b =8q am a,故A 项正确.3.(2017·临沂二模)(多选)有一种电荷控制式喷墨打印机的打印头的结构简图如图所示.其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.不考虑墨汁的重力,为了使打在纸上的字迹缩小,下列措施可行的是( )A .减小墨汁微粒的质量B .减小墨汁微粒所带的电荷量C .增大偏转电场的电压D .增大墨汁微粒喷入偏转场的速度 【答案】 BD4.(2017·衡阳质检)(多选)如图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(不计P 、Q 的重力以及它们间的相互作用),则从开始射入到打到上极板的过程,下列说法中正确的是( )A .它们运动的时间相等B .它们所带的电荷量之比q P :q Q =1∶2C .它们的电势能减小量之比ΔE P :ΔE Q =1∶2D .它们的电场力做功之比W P :W Q =2∶1 【答案】 AB【解析】设两板间的距离为d ,带电粒子的质量为m ,带电粒子射入电场的初速度为v 0.垂直电场方向P 、Q 粒子都做匀速直线运动,则有v 0t P =v 0t Q ,解得t P =t Q ,A 项正确;两粒子在垂直初速度方向都做初速度为零的匀加速直线运动,对两粒子分别应用牛顿第二定律和运动学公式得,P 粒子,q P E =ma P ,12d =12a P t P 2;Q 粒子,q Q E =ma Q ,d =12a Q t Q 2,联立解得q P ∶q Q =1∶2,B 项正确;两粒子的电势能减少量分别为ΔE P =q P E ×12d ,ΔE Q =q Q Ed ,解得ΔE P ∶ΔE Q =1∶4,C 项错误;两粒子的动能增量分别为ΔE kP =q P E ×12d ,ΔE kQ =q Q Ed ,解得ΔE kP ∶ΔE kQ =1∶4,D 项错误.5.(2017·广州综合测试)如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置.为使同样的带电粒子,从同样的初始位置由静止加速、偏转后能穿出平行板电容器,下列措施可行的是( )A .保持U 2和平行板间距不变,减小U 1B .保持U 1和平行板间距不变,增大U 2C .保持U 1、U 2和下板位置不变,向下平移上板D .保持U 1、U 2和下板位置不变,向上平移上板 【答案】 D6.(2016·海南)如图,平行板电容器两极板的间距为d ,极板与水平面成45°角,上极板带正电.一电荷量为q(q>0)的粒子在电容器中靠近下极板处.以初动能E k0竖直向上射出.不计重力,极板尺寸足够大,若粒子能打到上极板,则两极板间电场强度的最大值为( )A.E k04qdB.E k02qd C.2E k02qdD.2E k0qd【答案】 B【解析】根据电荷受力可以知道,粒子在电场中做曲线运动,如图所示:当电场足够大时,粒子到达上极板时速度恰好与上极板平行,如图,将粒子初速度v 0分解为垂直极板的v y 和平行极板的v x ,根据运动的合成与分解,当分速度v y =0时,则粒子的速度正好平行上极板,则根据运动学公式:-v y 2=-2Eqmd ,由于v y =v 0cos45°,E k0=12mv 02,联立整理得到E =E k02qd,故B 项正确.7.(2017·青岛一模)(多选)如图所示为匀强电场的电场强度E 随时间t 变化的图像.当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度为零D .0~3 s 内,电场力做的总功为零 【答案】 CD8.(多选)(2017·山东淄博市模拟卷)(多选)如图所示,平行板电容器两极板水平放置,一电容为C.电容器与一直流电源相连,初始时开关闭合,极板间电压为U ,两极板间距为d ,电容器储存的能量E =12CU 2.一电荷量为q 的带电油滴以初动能E k 从平行板电容器的轴线水平射入(极板足够长),恰能沿图中所示水平虚线匀速通过电容器,则( )A .保持开关闭合,只将上极板下移了d3,带电油滴仍能沿水平线运动B .保持开关闭合,只将上极板下移d3,带电油滴将撞击上极板,撞击上极板时的动能为E k+qU 12C .断开开关后,将上极板上移d3,若不考虑电容器极板的重力势能变化,外力对极板做功至少为23CU 2D .断开开关后,将上极板上移d3,若不考虑电容器极板的重力势能变化,外力对极板做功至少为16CU 2【答案】 BD9.如图,与水平方向成45°角的直线MN 处于竖直向下的匀强电场E 中.带电粒子从直线MN 上的P 点以速度v 0水平向右抛出,经过时间t 到达直线MN 上的Q 点.带正电的粒子质量为m ,带电粒子的重力可以忽略.则下列正确的是( )A .粒子在Q 点的速度大小为2v 0B .P 、Q 两点距离5v 0tC .粒子运动时的加速度大小为2v 0t D .P 、Q 两点间的电势差2Etv 0【答案】 C10.(2017·河南天一大联考)如图所示,以直线AB 为边界,上下存在场强大小相等、方向相反的匀强电场.在P 点由静止释放一质量为m 、电荷量为q 的带电小球,小球穿过AB 边界时速度为υ0,到达M 点速度恰好减为零.此过程中小球在AB 上方电场中运动的时间是在下方电场中运动时间的12.已知重力加速度为g ,不计空气阻力,则下列说法正确的是( )A .小球带正电B .电场强度大小是3mgqC .P 点距边界线AB 的距离为3v 028gD .若边界线AB 电势为零,则M 点电势为3mv 028g【答案】 B【解析】小球先做匀加速运动,后做匀减速运动,可知电场力大于重力;结合牛顿运动定律求电场强度,P 点距边界的距离;通过动能定理求出M 的电势.根据题意,小球先做匀加速运动,后做匀减速运动,可知电场力大于重力,且直线AB 下方区域的场强方向向下,故电荷带负电,故A 项错误;在上方电场,根据牛顿第二定律得:a 1=mg +qEm ,在下方电场中,根据牛顿第二定律得,加速度大小为:a 2=qE -mg m ,因为a 1t 1=a 2t 2,由题意可知:t 1=12t 2,解得:E =3mg q ,故B 项正确;设P 点距边界的距离为h ,则h =v 022a 1=v 028g ,故C 项错误;对边界到M 的过程运用动能定理得:qU +mgh ′=0-12mv 02,h ′=v 024g ,解得:U =-3mv 024q ,若边界线AB 电势为零,则M 点电势为-3mv 024q,故D 项错误.11.(2016·秋·宝安区校级期末)示波管的内部结构如图1所示,如果在电极YY ′之间加上图2(a)所示的电压,在XX ′之间加上图2(b)所示电压,荧光屏上会出现的波形是( )【答案】 C12.(2017·江西红色七校联考)如图所示,空间存在一匀强电场,其方向与水平方向间的夹角为30°,AB 与电场垂直,一质量为m ,电荷量为q 的带正电小球以初速度v 0从A 点水平向右抛出,经过时间t 小球最终落在C 点,速度大小仍是v 0,且AB =BC ,则下列说法中错误的是( )A .AC 满足AC =32v 0·t B .电场力和重力的合力方向垂直于AC 方向 C .此过程增加的电势能等于12mg 2t 2D .电场强度大小为E =mgq【答案】 AC13.(2017年江西赣中南五校联考)如图所示,a 、b 两个带正电的粒子,电荷量分别为q 1和q 2,质量分别为m 1和m 2.它们以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a 粒子打在B 板的a ′点,b 粒子打在B 板的b ′点,若不计重力,则( )A .电荷量q 1大于q 2B .质量m 1小于m 2C .粒子的电荷量与质量之比q 1m 1>q 2m 2D .粒子的电荷量与质量之比q 1m 1<q 2m 2【答案】:C【解析】:设任一粒子的速度为v ,电量为q ,质量为m ,加速度为a ,运动的时间为t ,则加速度:a =qE m① 时间t =x v② 偏转量y =12at 2③因为两个粒子的初速度相等,由②得t ∝x ,则a 粒子的运动时间短,由③得a 的加速度大,由①得a 粒子的比荷q m就一定大,但a 的电荷量不一定大,质量也不一定小,故C 正确,A 、B 、D 错误,故选C.14.(多选)(2017年潍坊高三调研)如图所示,水平面MN 的下方存在竖直向下的匀强电场,一带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平.由此可知( )A .从B 到C ,小球的动能减小 B .从B 到C ,小球的电势能减小C .从A 到B 与从B 到C 小球的运动时间一定相等D .从A 到B 与从B 到C 小球的速度变化量大小一定相等 【答案】:AD15. (2017年汕头模拟)如图所示,M 和N 是两个带等量异种电荷的平行正对金属板,两板与水平方向的夹角为60°.将一个质量为m 、电荷量为q 的带正电小球从靠近N 板的位置由静止释放,释放后,小球开始做匀加速直线运动,运动方向与竖直方向成30°角,已知两金属板间的距离为d ,重力加速度为g ,则( )A .N 板带负电B .M 、N 板之间的场强大小为3mgqC .小球从静止到与M 板接触前的瞬间,合力对小球做的功为3mgdD .M 、N 板之间的电势差为-mgdq【答案】:D16.(2017·浙江测试)如图所示,在区域Ⅰ(0≤x≤L)和区域Ⅱ内分别存在匀强电场,电场强度大小均为E ,但方向不同.在区域Ⅰ内场强方向沿y 轴正方向,区域Ⅱ内场强方向未标明,都处在xOy 平面内,一质量为m ,电量为q 的正粒子从坐标原点O 以某一初速度沿x 轴正方向射入电场区域Ⅰ,从P 点进入电场区域Ⅱ,到达Ⅱ区域右边界Q 处时速度恰好为零.P 点的坐标为(L ,L2).不计粒子所受重力,求:(1)带电粒子射入电场区域Ⅰ时的初速度; (2)电场区域Ⅱ的宽度.【答案】 (1)qEL m (2)22L 【解析】(1)设带电粒子射入电场区域Ⅰ时的初速度为v 0, 在x 方向:粒子做匀速直线运动,有L =v 0t 在y 方向:粒子做初速度为零的匀加速直线运动, 有L 2=12at 2,且a =qEm 解得:v 0=qELm. (2)粒子在区域Ⅱ做匀减速直线运动,设粒子在P 处的速度为v P ,在x 方向的分速度为v Px ,在y 方向的分速度为v Py ,电场区域Ⅱ的宽度为Δx 2,则 v Px =v 0=qELmv Py 2=2×qE m ×L 2即:v Px =v Py 故:v P =2qELm设粒子在P 处的速度方向与水平方向的夹角为θ, 则tan θ=v Py v Px ,∴θ=π4.设粒子从P 做直线运动到Q 所通过的位移为x , 因有:0-v P 2=-2·qE m ·x解得:x =L ,Δx 2=xcos45° 得Δx 2=22L. 17.(2017·江苏模拟)如图所示,在正交坐标系xOy 的第一、四象限内分别存在两个大小相等、方向不同的匀强电场,两组平行且等间距的实线分别表示两个电场的电场线,每条电场线与x 轴所夹的锐角均为60°.一质子从y 轴上某点A 沿着垂直于电场线的方向射入第一象限,仅在电场力的作用下第一次到达x 轴上的B 点时速度方向正好垂直于第四象限内的电场线,之后第二次到达x 轴上的C 点.求:(1)质子在A 点和B 点的速度之比; (2)OB 与BC 长度的比值. 【答案】 (1)12 (2)2764设质子从B 到C 经历时间为t 2,作如图辅助线,沿CP 方向:BCsin60°=vt 2 沿BP 方向:BCcos60°=12at 22联立求解:BC =16v 023a所以:OB BC =2764.。
一轮复习:带电粒子在电场中的偏转
6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强
带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)
第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。
M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。
高三一轮带电粒子或微粒在电场中的偏转
带电粒子或微粒在电场中的偏转 班级: 姓名: 课堂例题:1.如图所示,水平放置的平行金属板A 、B 间距为d ,带电微粒的电荷量为q ,质量为m ,微粒以速度v 从两极板中央处水平飞入两极板间;当两板上不加电压时,微粒恰从下板的边缘飞出;现给AB 加上一电压,微粒从离上极板d /4的M 点飞出,已知地球重力加速度为g ,求:(1)金属板的长度L ?(2)两极板间所加电压U ?2.竖直平面xoy 内有一半径为R=2m ,圆心O 与坐标系的原点重合的圆形区域,如图所示,在圆心O 有一喷枪可在xoy 平面内沿各个方向喷出初速度为v0=1m /s ,质量为m=1×10-6kg ,带电量为q = -1×10-8 C 的油滴 。
圆形区域内的匀强电场方向沿-y 方向,电场强度E = 8×102 N /C 。
(不考虑油滴间的相互作用,g 取10m/s2 )(1)由坐标原点O 沿x 轴正方向喷出的油滴,在电场中运动的时间 (2)射出圆形电场油滴的最大动能,并说明其粒子喷射的方向。
3.如图所示,在竖直平面内,光滑的绝缘细杆AC 与半径为R 的圆交于B 、C 两点, B 为AC 的中点,C 位于圆周的最低点,在圆心O 处固定一正点电荷。
现有一质量为m 、电荷量为-q 、套在杆上的带负电小球(可视为质点)从A 点由静止开始沿杆下滑。
已知重力加速度为g ,A 、C 两点的竖直距离为3R ,小球滑到B 点时的速度大小为。
求:(1)小球滑至C 点时的速度大小;(2)A 、B 两点间的电势差U AB 。
课后作业:1.如右图所示,水平放置的平行板电容器,上板带负电,下板带正电,带电小球以速度v0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,小球仍以相同的速度v0从原处飞入,则带电小球()A.将打在下板中央B.仍沿原轨迹由下板边缘飞出C.不发生偏转,沿直线运动D.若上板不动,将下板上移一段距离,小球一定打不到下板的中央2.如下图所示,水平放置的平行板电容器,与某一电源相连,它的极板长L = 0.4m,两板间距离d = 4×10―3m,有一束由相同带电微粒组成的粒子流,以相同的速度v从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下板的正中央,已知微粒质量为m = 4×10―5kg,电量q = +1×10―8 C。
第九章 第5课时 带电粒子在电场中的偏转-2025物理大一轮复习讲义人教版
第5课时带电粒子在电场中的偏转目标要求1.掌握带电粒子在电场中偏转的规律。
2.理解带电粒子在示波管中的运动。
3.掌握带电粒子在电场和重力场的叠加场中的运动规律。
考点一带电粒子在匀强电场中的偏转1.运动规律(1)沿初速度方向做匀速直线运动,t =lv 0(如图)。
(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd;②离开电场时的偏移量:y =12at 2=qUl 22md v 02;③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02。
2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Udy ,指初、末位置间的电势差。
3.粒子经电场偏转后射出时,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半。
思考不同的带电粒子(带同种电性)在加速电场的同一位置由静止开始加速后再进入同一偏转电场,带电粒子的轨迹是重合的吗?答案由qU 0=12m v 02y =12at 2=12·qU 1md·tan θ=v y v 0=qU 1l md v 02得y =U 1l 24U 0d ,tan θ=U 1l 2U 0d,y 、θ均与m 、q 无关。
即偏移量和偏转角总是相同的,所以它们的轨迹是重合的。
例1(多选)(2023·河北唐山市模拟)如图所示,空间存在竖直向上的匀强电场,一个带电粒子电荷量为q ,以一定的水平初速度由P 点射入匀强电场,当粒子从Q 点射出电场时,其速度方向与竖直方向成30°角。
已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,不计粒子重力,设Q 点的电势为零。
则下列说法正确的是()A .带电粒子在P 点的电势能为UqB .带电粒子带负电C .匀强电场电场强度大小为E =3U3dD .匀强电场电场强度大小为E =23U3d 答案AD解析粒子的轨迹向上,则所受的静电力向上,与电场方向相同,所以该粒子带正电。
高中物理 带电粒子在电场中的偏转 学案 新人教版选修
高中物理带电粒子在电场中的偏转学案新人教版选修思考3:当带电粒子运动的速度方向与匀强电场的方向垂直时,粒子将如何运动?带电粒子的偏转V0如图所示,设正电荷带电量为q,质量为m,平行板长为L,两板间距为d,电势差为U,粒子以初速度为V0射入电场且可以射出电场,试求:问题1:如何求带电粒子在电场中运动的时间?问题2:如何求带电粒子的加速度?问题3:求带电粒子在竖直方向上的偏转位移?问题4:求带电粒子在离开电场时竖直方向分速度?问题5:粒子离开电场时的速度大小?问题6:求离开电场时速度偏转角的正切值ab练1 :如图所示,两个电子a和b先后以大小不同的速度,从同一位置沿垂直于电场的方向射入匀强电场中,其运动轨迹如图所示,那么( )A、b电子在电场中运动的时间比a长B、b电子初速度比a大C、b电子离开电场时速度比a大D、两电子离开电场时的速度大小关系不确定加速和偏转结合++++++------+_L加速偏转如图所示,初速度为零电子经加速电场加速后进入偏转电场,电子能射出偏转电场。
设电子电量为-q,质量为m,平行板长为L,两板间距为d。
试推导在加速电场加速的末速度,偏转位移和速度偏转角的正切值练2:如图所示,初速度为零的电子在电势差为的电场中加速后,垂直进入电势差为的偏转电场,在满足电子能射出偏转电场的条件下,下列四种情况中,一定能使电子的偏转角度变大的是( )A、变大, 变大B、变小, 变大C、变大, 变小D、变小, 变小练3:如上图所示,初速度为零的α粒子和电子在电势差为的电场中加速后,垂直进入电势差为的偏转电场,在满足电子能射出偏转电场的条件下,正确的说法是( )A、α粒子的偏转量大于电子的偏转量B、α粒子的偏转量小于电子的偏转量C、α粒子的偏转角大于电子的偏转角D、α粒子的偏转角等于电子的偏转角学习收获:。
高三物理带电粒子在匀强电场中的偏转
d 当 y 2
A L θ d/2 d ( L 2b ) Y' θ y0 解得 2L d ( L 2b ) 则粒子可能到达屏上区域的长度为 L
y0
040.江苏淮安市07—08学年度第一次调查测试15 15.(12分)现代科学实验中常用的一种电子仪器叫 示波器,它的核心部件是示波管,其工作原理如图所 示,电量大小为 e 的电子在电势差为 U1 的加速电场中 由静止开始运动,然后射入电势差为U2的两块平行极 板间的偏转电场中,入射方向跟极板平行,偏转电场 的极板间距离为d,板长为L,整个装置处在真空中, 电子重力可忽略,电子能射出平行板区. ( 1 )偏转电场中,若单位偏转电压引起的偏移距离 叫示波管的灵敏度,请通过计算说明提高示波管的灵 敏度的办法; (2)求电子离开偏转电场 U2 U1 θ
043.南通、扬州、泰州三市08届第二次调研测试6 6.如图所示,两种不同的正离子(不计重力)垂直射人 偏转电场,从偏转电场射出时具有相同的偏转距离 y
和偏转角θ(偏转电压U保持不变),则两种离子进入偏
转电场前只要满足 A.速度相同 B.动能相同 C.比荷和速度都相同 ( C D)
L d
v0 y θ
⑥ ⑦
A板电势突然变为-U后,质点所受电场力与重力平衡, 做匀速直线运动,经过时间t′恰好射出极板, 则
x2' l x2 v0 t'
d y2' y2 v y t' 2
⑧
⑨
⑩
d 由以上各式解得 t ( 2 3) 2g
/ 时彩后二计划软件
eU 2 eU1 y Ek 0 d
将②③式代入⑤,得
2 2 eU2 L Ek eU1 4U1d 2
2020_2021学年高三物理一轮复习综合训练 带电粒子电场中偏转问题
2020——2021学年高三物理一轮复习综合训练 带电粒子电场中偏转问题1.在直角坐标系中,三个边长都为2m l =的正方形的排列如图所示,第一象限正方形ABOC 区域中有水平向左的匀强电场,电场强度的大小为0E ,在第二象限三角形CED 区域内有竖直向下的匀强电场,三角形OEC 区域内无电场,正方形DENM 区域内无电场。
(1)现有一带电荷量为q +、质量为m 的带电粒子(重力不计)从A 点由静止释放,恰好能通过E 点。
求三角形CED 区域内匀强电场的电场强度1E 。
(2)保持(1)问中电场强度不变,若在正方形ABOC 区域中某些点由静止释放与(1)问中相同的带电粒子,要使所有的粒子都经过E 点,则释放点的坐标值x y 、间应满足什么关系?(3)若三角形CED 区域内的电场强度大小变为2043E E =,其他条件都不变,则在正方形ABOC 区域中某些点由静止释放与(1)问中相同的带电粒子,要使所有粒子都经过N 点,则释放点的坐标值x y 、间又应满足什么关系?2.如图,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场。
自该区域上方的A 点将质量均为m 、电荷量分别为q 和(0)q q ->的带电小球M N 、先后以相同的初速度沿平行于电场的方向射出。
小球在重力作用下进入电场区域,并从该区域的下边界离开。
已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时动能的1.5倍。
不计空气阻力,重力加速度大小为g 。
求(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小。
3.如图所示,在绝缘水平面上方有两个衔接的边长为0.2m d =的正方形区域I 、Ⅱ,区域I 中存在水平向右的大小为130N/C E =的匀强电场,区域Ⅱ中存在竖直向上的大小为2150N/C E =的匀强电场。
2023届高考物理一轮复习学案 8.3 电容器带电粒子在电场中的运动
第3节电容器带电粒子在电场中的运动学案基础知识:一、电容器及电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成。
(2)带电荷量:一个极板所带电荷量的绝对值。
(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能。
放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能。
2.电容(1)定义:电容器所带的电荷量与电容器两极板间的电势差的比值。
(2)定义式:C=Q U。
(3)物理意义:表示电容器容纳电荷本领大小的物理量。
(4)单位:法拉(F),1 F=106μF=1012 pF。
3.平行板电容器的电容(1)影响因素:平行板电容器的电容与极板的正对面积成正比,与电介质的相对介电常数成正比,与极板间距离成反比。
(2)决定式:C=εr S4πkd,k为静电力常量。
二、带电粒子在匀强电场中的运动1.做直线运动的条件(1)初速度v0≠0粒子所受合外力F合=0,粒子做匀速直线运动。
(2)初速度v0≠0粒子所受合外力F合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。
2.偏转(1)运动情况:如果带电粒子以初速度v0垂直场强方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图所示。
(2)处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。
根据运动的合成与分解的知识解决有关问题。
(3)基本关系式:运动时间t=lv0,加速度a=Fm=qEm=qUmd,偏转量y=12at2=qUl22md v 20,偏转角θ的正切值:tan θ=v yv0=atv0=qUlmd v 20。
三、示波管1.示波管的构造①电子枪,②偏转电极,③荧光屏。
(如图所示)2.示波管的工作原理(1)YY′偏转电极上加的是待显示的信号电压,XX′偏转电极上是仪器自身产生的锯齿形电压,叫作扫描电压。
(2)观察到的现象①如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子沿直线运动,打在荧光屏中心,产生一个亮斑。
2021届高考物理一轮复习考点强化:带电粒子在电场中的偏转运动
设粒子第一次到达 G 时所用的时间为 t,粒子在水平方向的位移大小为 l,则 有 h=21at2④,l=v0t⑤
联立①②③④⑤式解得 Ek=12mv20+2dφqh⑥,l=v0 mqdφh。⑦ (2)若粒子穿过 G 一次就从电场的右侧飞出,则金属板的长度最短。由对称性
(1)电场强度的大小; (2)B 运动到 P 点时的动能。
答案
3mg (1) q
(2)2m(v20+g2t2)
小球做什么运动? 一般怎么处理? 还有其它方法吗?
转到解析
课堂互动
解析 (1)设电场强度的大小为 E,小球 B 运动的加速度为 a。根据牛顿第二定律、
运动学公式和题给条件,有 mg+qE=ma①
(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大 小;
(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多 少?
答案 (1)21mv20+2dφqh v0
mdh qφ (2)2v0
mdh qφ
粒子做什么运动? 一般用什么方法?
转到解析
多维训练
解析 (1)PG、QG 间场强大小相等,设均为 E。粒子在 PG 间所受电场力 F 的方向竖直向下,设粒子的加速度大小为 a,有 E=2dφ①,F=qE=ma②
C.减小偏转板与承印材料的距离
D.增大偏转板间的电压
转到解析
科学态度与责任系列——电场中的STSE问题
应用5 电子束熔炼 【典例6】(多选) (2019·山西太原模拟)电子束熔炼是指高真空下,将高速电子束的 动能转换为热能作为热源来进行金属熔炼的一种熔炼方法。如图所示,阴极灯丝被 加热后产生初速度为0的电子,在3×104 V加速电压的作用下,以极高的速度向阳极 运动;穿过阳极后,在金属电极A1、A2间1×103 V电压形成的聚焦电场作用下,轰击 到物料上,其动能全部转换为热能,使物料不断熔炼。已知某电子在熔炼炉中的轨 迹如图中虚线OPO′所示,P是轨迹上的一点,聚焦电场过P点的一条电场线如图,则 () A.电极A1的电势高于电极A2的电势 B.电子在P点时速度方向与聚焦电场强度方向夹角大于90° C.聚焦电场只改变电子速度的方向,不改变电子速度的大小 D.电子轰击到物料上时的动能大于3×104 eV
2024高考物理一轮复习--带电粒子在电场中的运动(三)--等效重力场、交变电场中的运动
等效重力场、交变电场、力电综合问题一、带电粒子在力电等效场中的圆周运动1.等效重力场物体仅在重力场中的运动是最常见、最基本的运动,但是对于处在匀强电场和重力场中物体的运动问题就会变得复杂一些.此时可以将重力场与电场合二为一,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.2.3.举例二、带电粒子在交变电场中的运动1.此类题型一般有三种情况:一是粒子做单向直线运动(一般用牛顿运动定律求解);二是粒子做往返运动(一般分段研究);三是粒子做偏转运动(一般根据交变电场的特点分段研究)。
2.分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系。
3.注重全面分析(分析受力特点和运动特点),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件。
4.交变电场中的直线运动(方法实操展示)5.交变电场中的偏转(带电粒子重力不计,方法实操展示)U -t 图轨迹图v y -t 图三、电场中的力、电综合问题1.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
2.处理带电粒子(带电体)运动的方法(1)结合牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)用包括电势能和内能在内的能量守恒定律处理思路 ①利用初、末状态的能量相等(即E 1=E 2)列方程。
①利用某些能量的减少等于另一些能量的增加列方程。
(3)常用的两个结论①若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变。
2024届高考一轮复习物理教案(新教材鲁科版):带电粒子在电场中的偏转
第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.3.掌握带电粒子在电场和重力场的复合场中的运动规律.4.会分析、计算带电粒子在交变电场中的偏转问题.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿电场力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd.②离开电场时的偏移量:y =12at 2=qUl 22md v 02.③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02.1.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 (2023·广东佛山市模拟)如图所示,正方形ABCD 区域内存在竖直向上的匀强电场,质子(11H)和α粒子(42He)先后从A 点垂直射入匀强电场,粒子重力不计,质子从BC 边中点射出,则( )A .若初速度相同,α粒子从CD 边离开B .若初速度相同,质子和α粒子经过电场的过程中速度增量之比为1∶2C .若初动能相同,质子和α粒子经过电场的时间相同D .若初动能相同,质子和α粒子经过电场的过程中动能增量之比为1∶4 答案 D解析 对任一粒子,设其电荷量为q ,质量为m ,粒子在电场中做类平抛运动,水平方向有 x =v 0t ,竖直方向有y =12at 2=12·qE m ·x 2v 02,若初速度相同,水平位移x 相同时,由于α粒子的比荷比质子的小,则α粒子的偏转距离y 较小,所以α粒子从BC 边离开,由t =xv 0知两个粒子在电场中的运动时间相等,由Δv =at =qE m t ,知Δv ∝qm ,则质子和α粒子经过电场的过程中速度增量之比为2∶1,故A 、B 错误;粒子经过电场的时间为t =xv 0,若初动能相同,质子的初速度较大,则质子的运动时间较短,故C 错误;由y =12·qE m ·x 2v 02,E k =12m v 02得y =qEx 24E k ,若初动能相同,已知x 相同,则y ∝q ,根据动能定理知:经过电场的过程中动能增量ΔE k =qEy ,E 相同,则ΔE k ∝q 2,则质子和α粒子经过电场的过程中动能增量之比为1∶4,故D正确.例2 (2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受电场力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x =v 0t ,竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2,yx =tan 45°,联立解得t =2m v 0qE,故A 错误;v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =x cos 45°=22m v 02qE ,故C 正确.考向2 带电粒子在组合场中的运动例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX ′和YY ′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案 A解析U XX′和U YY′均为正值,两偏转电极的电场强度方向分别由X指向X′,Y指向Y′,电子带负电,所受电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.例4(多选)(2023·福建福州市模拟)如图所示是一个示波器工作的原理图,电子经过电压为U1的电场加速后垂直进入偏转电场,离开偏转电场时偏转位移是y,两平行板间的距离为d,电压为U2,板长为L,每单位电压引起的偏移yU2叫作示波管的灵敏度,为了提高示波管的灵敏度.下列方法可行的是()A.增大U2B.增大LC.减小d D.增大U1答案BC解析 电子在加速电场中运动,根据动能定理有qU 1=12m v 2,电子在偏转电场中运动时有y=12at 2=12·U 2q dm ⎝⎛⎭⎫L v 2,联立解得y U 2=L 24U 1d ,增大U 2,灵敏度不变,A 错误;增大L 或者减小d ,灵敏度都增大,B 、C 正确;增大U 1,灵敏度减小,D 错误.考点二 带电粒子在重力场和电场复合场中的偏转例5 (多选)(2023·福建龙岩市第一中学模拟)如图所示,在竖直平面内xOy 坐标系中分布着与水平方向成45°角的匀强电场,将一质量为m 、带电荷量为q 的小球,以某一初速度从O 点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,且小球通过点P ⎝⎛⎭⎫1k ,1k ,已知重力加速度为g ,则( )A .电场强度的大小为mg qB .小球初速度的大小为g 2kC .小球通过点P 时的动能为5mg4kD .小球从O 点运动到P 点的过程中,电势能减少2mgk答案 BC解析 小球做类平抛运动,则电场力与重力的合力沿x 轴正方向,可知qE =2mg ,电场强度的大小为E =2mg q ,选项A 错误;因为F 合=mg =ma ,所以a =g ,由类平抛运动规律有1k=v 0t ,1k =12gt 2,得小球初速度大小为v 0=g2k ,选项B 正确;由P 点的坐标分析可知v 0v x =12,所以小球通过点P 时的动能为12m v 2=12m (v 02+v x 2)=5mg4k ,选项C 正确;小球从O 到P 过程中电势能减少,且减少的电势能等于电场力做的功,即W =qE ·1k ·1cos 45°=2mgk ,选项D 错误.例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1·t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).考点三 带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等. 3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例7 在如图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m 、电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能沿OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子沿OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,减速到零后反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k T2(k=0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d4,解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 例8 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器极板长L =10 cm ,极板间距d =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,荧光屏足够长,在电容器两极板间接一交变电压,上极板与下极板的电势差随时间变化的图像如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t =0.06 s 时刻,电子打在荧光屏上的位置到O 点的距离; (2)荧光屏上有电子打到的区间长度. 答案 (1)13.5 cm (2)30 cm解析 (1)设电子经电压U 0加速后的速度为v 0,根据动能定理得eU 0=12m v 02,设电容器间偏转电场的场强为E ,则有E =Ud,设电子经时间t 通过偏转电场,偏离轴线的侧向位移为y ,则沿中心轴线方向有t =Lv 0,垂直中心轴线方向有a =eE m ,联立解得y =12at 2=eUL 22md v 02=UL 24U 0d,设电子通过偏转电场过程中产生的侧向速度为v y ,偏转角为θ,则电子通过偏转电场时有v y =at ,tan θ=v y v 0,则电子在荧光屏上偏离O 点的距离为Y =y +L tan θ=3UL 24U 0d ,由题图乙知t=0.06 s 时刻,U =1.8U 0,解得Y =13.5 cm.(2)由题知电子偏移量y 的最大值为d 2,根据y =UL 24U 0d 可得,当偏转电压超过2U 0时,电子就打不到荧光屏上了,所以代入得Y max =3L2,所以荧光屏上电子能打到的区间长度为2Y max =3L =30 cm.课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小答案BC解析对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A错误,B正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C正确,D错误.2.(多选)(2023·辽宁葫芦岛市高三检测)如图所示,在竖直向上的匀强电场中,A球位于B球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断正确的是()A.如果A球带电,则A球一定带负电B.如果A球带电,则A球的电势能一定增加C.如果B球带电,则B球一定带负电D.如果B球带电,则B球的电势能一定增加答案AD解析平抛时的初速度相同,在水平方向通过的位移相同,故下落时间相同,A球在上方,竖直位移较大,由h=12可知,A球下落的加速度较大,所受合外力较大,如果A球带电,2at则A球受到向下的电场力,一定带负电,电场力做正功,电势能减小,故A正确,B错误;如果B球带电,由于B球的竖直位移较小,加速度较小,所受合外力较小,则B球受到的电场力向上,应带正电,电场力对B球做负功,电势能增加,故C错误,D正确.3.(多选)(2023·福建省福州第十五中学月考)如图所示,a、b两个不同的带电粒子,从同一点平行于极板方向射入电场,a粒子打在B板的a′点,b粒子打在B板的b′点,不计重力,下列判断正确的是( )A .若粒子比荷相同,则初速度一定是b 粒子大B .若粒子比荷相同,则初速度一定是a 粒子大C .两粒子在电场中运动的时间一定相同D .若粒子初动能相同,则带电荷量一定是a 粒子大 答案 AD解析 对每个粒子,水平方向有s =v t ,竖直方向有h =12·qE m t 2=qEs 22m v 2.若粒子比荷相同,因b粒子的水平位移大,则初速度一定较大,选项A 正确,B 错误;由h =12·qEm t 2可知,因两粒子的比荷不确定,则时间关系不能确定,选项C 错误;由h =12·qE m t 2=qEs 22m v 2=qEs 24E k ,则若粒子初动能相同,因a 粒子的水平位移较小,则带电荷量一定较大,选项D 正确.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm ,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,3m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A .增大偏转电压UB .增大加速电压U 0C .增大偏转极板间距离D .将发射电子改成发射负离子 答案 A解析 设偏转极板长为l ,极板间距为d ,由eU 0=12m v 02,t =l v 0,a =eU md ,y =12at 2,联立得偏转位移y =Ul 24U 0d ,增大偏转电压U ,减小加速电压U 0,减小偏转极板间距离,都可使偏转位移增大,选项A 正确,B 、C 错误;由于偏转位移y =Ul 24U 0d 与粒子质量、带电荷量无关,故将发射电子改成发射负离子,偏转位移不变,选项D 错误.6.(多选)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0且周期性变化的电压,在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0、方向平行于金属板的相同带电粒子,t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场,已知电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力及相互间的作用力,则( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场答案 AD解析 粒子进入电场后,水平方向做匀速运动,则t =0时刻进入电场的粒子在电场中运动时间t =2dv 0,此时间正好是交变电压的一个周期,粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;在竖直方向,t =0时刻进入电场的粒子在T 2时间内的位移为d 2,则d 2=12a ·(T 2)2=U 0q 2dm (d v 0)2,计算得出q =m v 02U 0,选项B 错误;在t =T8时刻进入电场的粒子,离开电场时在竖直方向上的位移为d =2×12a (38T )2-2×12a (T 8)2=d 2,故电场力做功为W =U 0q d ×12d =12U 0q =12m v 02,电势能减少了12m v 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T4,然后向下减速运动T 4,再向上加速T 4,然后再向上减速T4,由对称可以知道,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.7.(2023·重庆市高三模拟)如图所示,一圆形区域有竖直向上的匀强电场,O 为圆心,两个质量相等、电荷量大小分别为q 1、q 2的带电粒子甲、乙,以不同的速率v 1、v 2从A 点沿AO 方向垂直射入匀强电场,甲从C 点飞出电场,乙从D 点飞出,它们在圆形区域中运动的时间相同,已知∠AOC =45°,∠AOD =120°,不计粒子的重力,下列说法正确的是( )A.v 1v 2=2-22+3B.v 1v 2=2-23 C.q 1q 2=32 D.q 1q 2= 2 答案 B解析 甲、乙在电场中均做类平抛运动,沿初速度方向做匀速直线运动,它们在圆形区域中运动时间t 相同,在水平方向上,根据题图中几何关系可得x AC =v 1t =R -R cos 45°,x AD =v 2t =R +R cos 60°,联立可得v 1v 2=1-221+12=2-23,A 错误,B 正确;甲、乙在电场中沿电场力方向均做初速度为零的匀加速直线运动,则有y AC =12·q 1E m t 2=R sin 45°,y AD =12·q 2Em t 2=R sin 60°,联立可得q 1q 2=sin 45°sin 60°=23,C 、D 错误.8.(2022·浙江6月选考·9)如图所示,带等量异种电荷的两正对平行金属板M 、N 间存在匀强电场,板长为L (不考虑边界效应).t =0时刻,M 板中点处的粒子源发射两个速度大小为v 0的相同粒子,垂直M 板向右的粒子,到达N 板时速度大小为2v 0;平行M 板向下的粒子,刚好从N 板下端射出.不计重力和粒子间的相互作用,则( )A .M 板电势高于N 板电势B .两个粒子的电势能都增加C .粒子在两板间的加速度为a =2v 02LD .粒子从N 板下端射出的时间t =(2-1)L2v 0答案 C解析 由于不知道两粒子的电性,故不能确定M 板和N 板的电势高低,故A 错误;根据题意垂直M 板向右的粒子到达N 板时速度增加,动能增加,则电场力做正功,电势能减小,则平行M 板向下的粒子到达N 板时电场力也做正功,电势能同样减小,故B 错误;设两板间距离为d ,对于平行M 板向下的粒子刚好从N 板下端射出,在两板间做类平抛运动,有L2=v 0t ,d =12at 2,对于垂直M 板向右的粒子,在板间做匀加速直线运动,因两粒子相同,则在电场中加速度相同,有(2v 0)2-v 02=2ad ,联立解得t =L2v 0,a =2v 02L,故C 正确,D 错误. 9.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示,可知两次偏转的加速度大小相等,对两次偏转分别由牛顿第二定律得qE -mg =ma ,mg =ma ,解得a =g ,E =2mg q ,由U =Ed 得两极板间电压为U =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间电场强度不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误. 10.(2023·黑龙江佳木斯市第八中学调研)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一个不计重力的带正电的粒子电荷量q =10-10C 、质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后,可进入界面MN 和光屏PS 间的无电场的真空区域,最后打在光屏PS 上的D 点(未画出).已知界面MN 与光屏PS 相距12 cm ,O 是中心线RO 与光屏PS 的交点.sin 37°=0.6,cos 37°=0.8,求:(1)粒子穿过界面MN 时偏离中心线RO 的距离; (2)粒子射出平行板电容器时偏转角; (3)OD 两点之间的距离.答案 (1)0.03 m (2)37° (3)0.12 m解析 (1)带电粒子垂直进入匀强电场后做类平抛运动,加速度为a =F m =qU md水平方向有L =v 0t 竖直方向有y =12at 2联立解得y =qUL 22md v 02=0.03 m(2)设粒子射出平行板电容器时偏转角为θ,v y =at tan θ=v y v 0=at v 0=qUL md v 02=34,故偏转角为37°.(3)带电粒子离开电场时速度的反向延长线与初速度延长线的交点为水平位移的中点,设两界面MN 、PS 相距为L ′,由相似三角形得L2L 2+L ′=yY ,解得Y =4y =0.12 m.11.(2023·辽宁大连市第八中学高三检测)如图甲所示,真空中的电极可连续不断均匀地逸出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 的中线射入偏转电场,A 、B 两板距离为d ,A 、B 板长为L ,AB 两板间加周期性变化的电场U AB ,如图乙所示,周期为T ,加速电压U 1=2mL 2eT 2,其中m 为电子质量、e 为电子电荷量,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:(1)电子从加速电场U 1飞出后的水平速度v 0的大小;(2)t =0时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;(3)在0~T2内射入偏转电场的电子中从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比.答案 (1)2L T (2) eU 0T 28md (3)50%解析 (1)电子在加速电场中加速, 由动能定理得eU 1=12m v 02-0解得v 0=2LT(2) 电子在偏转电场中做类平抛运动,水平方向L =v 0t ,解得t =T2,t =0时刻进入偏转电场的电子加速度a =eE m =eU 0md ,电子离开电场时距离A 、B 中心线的距离y =12at 2,解得y =eU 0T 28md(3)在0~T2内射入偏转电场的电子,设向上的方向为正方向,设电子恰在A 、B 间中线离开偏转电场,则电子先向上做初速度为零、加速度大小为a 的匀加速直线运动,经过时间t ′后速度v =at ′,此后两板间电压大小变为3U 0,加速度大小变为a ′=eE ′m =3eU 0md =3a电子向上做加速度大小为3a 的匀减速直线运动,速度减为零后,向下做初速度为零、加速度大小为3a 的匀加速直线运动,最后回到A 、B 间的中线,经历的时间为T 2,则12at ′2+v (T2-t ′)-12×3a (T 2-t ′)2=0,解得t ′=T4,则能够从中线上方向离开偏转电场的电子的发射时间为t ″=T 4,则在0~T2时间内,从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比η=T 4T 2×100%=50%.12.(多选)如图,质量为m 、带电荷量为q 的质子(不计重力)在匀强电场中运动,先后经过水平虚线上A 、B 两点时的速度大小分别为v a =v 、v b =3v ,方向分别与AB 成α=60°角斜向上、θ=30°角斜向下,已知AB =L ,则( )A .质子从A 到B 的运动为匀变速运动 B .电场强度大小为2m v 2qLC .质子从A 点运动到B 点所用的时间为2Lv D .质子的最小速度为32v 答案 ABD解析 质子在匀强电场中受力恒定,故加速度恒定,则质子从A 到B 的运动为匀变速运动,A 正确;质子在匀强电场中做抛体运动,在与电场垂直的方向上分速度相等,设v a 与电场线的夹角为β,如图所示.则有v a sin β=v b cos β,解得β=60°,根据动能定理有qEL cos 60°=12m v b 2-12m v a 2,解得E =2m v 2qL ,B 正确;根据几何关系可得,AC 的长度为L sin 60°=32L ,则质子从A 点运动到B 点所用的时间为t =32L v a sin β=Lv ,C 错误;在匀变速运动过程中,当速度方向与电场力方向垂直时,质子的速度最小,有v min =v a sin β=32v ,D 正确.。
教案 电场中的偏转问题
教案:电场中的偏转问题一、教学目标1. 让学生理解电场中的偏转现象,掌握偏转规律。
2. 培养学生运用物理知识解决实际问题的能力。
3. 引导学生运用控制变量法进行科学探究。
二、教学内容1. 电场偏转现象的定义2. 偏转规律的探究3. 电场力与电荷运动的关系4. 电场偏转问题的实际应用三、教学重点与难点1. 教学重点:电场偏转现象的理解和偏转规律的掌握。
2. 教学难点:电场力与电荷运动的关系,以及实际应用的解决。
四、教学方法1. 采用问题驱动法,引导学生主动探究电场偏转规律。
2. 利用实验演示,让学生直观地理解电场偏转现象。
3. 运用控制变量法,分析电场力与电荷运动的关系。
4. 结合实际案例,培养学生解决实际问题的能力。
五、教学过程1. 导入:通过提问方式引导学生回顾电场的基本概念,为新课的学习做好铺垫。
2. 电场偏转现象的定义:介绍电场中的偏转现象,让学生理解偏转的概念。
4. 电场力与电荷运动的关系:通过控制变量法,分析电场力与电荷运动的关系。
5. 实际应用:结合实际案例,让学生运用所学知识解决实际问题。
7. 布置作业:布置一些有关电场偏转问题的练习题,巩固所学知识。
六、教学评价1. 评价目标:通过课堂表现、作业完成情况和实验报告,评价学生对电场偏转问题的理解程度和实际应用能力。
2. 评价方法:课堂表现:观察学生在课堂上的参与程度、提问回答情况和小组讨论表现。
作业完成情况:评估学生作业的准确性、完整性和创造性。
实验报告:评价学生在实验中的观察能力、数据分析能力和问题解决能力。
七、教学资源1. 实验器材:电荷发生器、电场演示板、偏转盘等。
2. 教学软件:用于展示电场图像和模拟电场偏转的软件。
3. 参考资料:相关领域的学术论文、教科书和在线资源。
八、教学拓展1. 电场偏转现象在现代科技中的应用,如粒子加速器、静电除尘等。
2. 电场与其他物理现象的结合,如电磁波、量子电动力学等。
3. 开展课外实践活动,如设计电场偏转实验,探究不同电荷在电场中的运动规律。
带电粒子在电场中的偏转上
U1
L1
L2
P
M
N
O
K
A
能从极板间射出:x=L,y≤d/2 不能从极板间射出:x<L,y=d/2
(7)如其它条件不变电子不能从M、N极板射出U2取值范围?
6.图为示波管原理图,电子枪炽热的金属丝可以发射电子,初速度很小,可以视为零,电子枪的加速电压为U0,紧接着是偏转电极YY’和XX’。设偏转电极的极板长均为l1,板间距离均为d,偏转电极XX’的右端到荧光屏的距离为l2,电子的电荷量为e,质量为m(不计偏转电极YY’和XX’二者之间的距离),在YY’和XX’偏转电极不加电压时,电子恰能打在荧光屏上坐标的原点,求:1)若只在YY’偏转电极上加电压U1(U1>0),则电子到达荧光屏上的速度是多大?2)在第(1)问中,若再在XX’偏转电极上加电压U2(U2>0),求出亮点在荧光屏上坐标系中的坐标值。
U1
L1
L2
P
M
N
O
K
A
能从极板间射出:x=L,y≤d/2 不能从极板间射出:x<L,y=d/2
(1)电子穿过A板时的速度大小?
例2:在如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点。已知加速电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L1,板右端到荧光屏的距离为L2,电子的质量为m,电荷量为e。求:
B
静电透镜是利用静电场使电子束会聚或发散的一种装置,其中某部分静电场的分布如图所示。虚线表示这个静电场在xoy平面内的一簇等势线,等势线形状相对于Ox轴、Oy轴对称。等势线的电势沿 x 轴正向增加,且相邻两等势线的电势差相等。一个电子经过P点(其横坐标为-x0)时速度与x轴平行。适当控制实验条件,使该电子通过电场区域时仅在Ox轴上方运动。在通过电场区域过程中,该电子沿y方向的分速度vy随位置坐标 x 变化的示意图是( )
2019高考物理一轮复习微专题系列之热点专题突破专题43带电粒子在匀强电场中的偏转学案
突破43带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。
【答案】 (1)3mLeE(2)2 (3)3L【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。
(3)如图,设电子在电场E 2中的偏转距离为x 1x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。
【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数(2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝ ⎛⎭⎪⎫14T 2所以粒子的周期应满足的条件为T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…).【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围;(3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t=0.06 s时刻,电子打在荧光屏上的何处.(2)荧光屏上有电子打到的区间有多长?【答案】(1)打在屏上的点位于O点上方,距O点13.5 cm (2)30 cm【解析】(1)电子经电场加速满足qU0=12mv2经电场偏转后侧移量y=12at2=12·qU偏mL⎝⎛⎭⎪⎫Lv2所以y=U偏L4U0,由图知t=0.06 s时刻U偏=1.8U0,所以y=4.5 cm设打在屏上的点距O点的距离为Y,满足Yy=L+L2L2所以Y=13.5 cm.(2)由题知电子侧移量y的最大值为L2,所以当偏转电压超过2U0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L=30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U1的加速电场加速后,沿垂直电场方向进入电压为U2的平行板电容器,经偏转落在下板的中间位置。
2018年高中物理第一章静电场1.13带电粒子在电场中的偏转学案新人教版
带电粒子在电场中的偏转一、考点突破:二、重难点提示:重点:掌握带电粒子在匀强场中的偏转规律及分析方法。
难点:掌握带电粒子在组合场中运动的分析方法。
一、带电粒子在匀强电场中的偏转(1)条件:带电粒子垂直于电场线方向进入匀强电场。
(2)运动性质:匀变速曲线运动。
(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动。
(4)运动规律:①沿初速度方向,做匀速直线运动,运动时间②沿电场力方向,做匀加速直线运动飞出电场时位移与水平方向的夹角α202tan mdv qUl=α 知识点 考纲要求题型说明带电粒子在电场中的偏转 1. 掌握带电粒子在匀强场中的偏转规律及分析方法;2、掌握带电粒子在匀强场中偏转的常用结论。
选择题、计算题本知识点是高考的重点、难点,属于高频考点,高考中通常是以压轴题的形式出现,重点考查分析方法,及学生是否能够根据实际物理情景确定解决问题的思路的能力。
二、带电粒子在匀强电场中偏转的推论1. 飞出电场时速度反向延长线交水平位移的中点;2. 速度方向和位移方向与水平方向夹角的正切值存在2倍关系,即:αθtan 2tan =;3. 速度方向始终向合外力方向偏转,但永远不能相同。
三、研究带电粒子在电场中运动的两类重要的思维技巧 (1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比。
例如,垂直射入平行板电场中的带电粒子的运动可类比于平抛运动,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g 值的变化等。
(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用。
电场力做功与重力做功一样,都只与始末位置有关,与路径无关。
它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动全过程中的功能关系出发(尤其是从静止出发末速度为零的问题)往往能迅速找到解题入口或简化计算。
例题1 如图所示,两平行金属板水平放置,板长为L ,板间距离为d ,板间电压为U ,一不计重力、电荷量为q 的带电粒子以初速度v 0沿两板的中线射入,经过t 时间后恰好沿下板的边缘飞出,则( )A. 在前2t 时间内,电场力对粒子做的功为41Uq B. 在后2t时间内,电场力对粒子做的功为83UqC. 在粒子下落的前4d 和后4d过程中,电场力做功之比为1∶1D. 在粒子下落的前4d 和后4d过程中,电场力做功之比为1∶2思路分析:粒子在两平行金属板间做类平抛运动,在水平方向做匀速直线运动,在竖直方向做初速度为零的匀加速直线运动,在前后两个2t的时间内沿电场线方向的位移之比为1∶3,则在前2t 时间内,电场力对粒子做的功为81Uq ,在后2t时间内,电场力对粒子做的功为83Uq ,选项A 错,B 对;由W =Eq ·s 知在粒子下落的前4d 和后4d过程中,电场力做功之比为1∶1,选项C 对,D 错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2
甲
乙图3
突破训练1 示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图4所示.如果在荧光屏上P点出现亮斑,那么示波管中的()
图4
A.极板X应带正电B.极板X′应带正电
C.极板Y应带正电D.极板Y′应带正电
四、带电粒子在电场中的圆周运动
解题知识储备:1、带电粒子在电场中运动问题的两种求解思路:讲义P103规律总结
2、圆周运动问题的研究方法:从a到b做圆周运动,应选用动能定理;a点和b点应使用向心力公式。
例:如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行.a、b为轨道直径的两端,该直径与电场方向平行.一电荷量为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb.不计重力,求电场强度的大小E、质点经过a点和b点时的动能.
章节
6.4.2
内容
带电粒子在电场中的偏转
课时
1
使用时间
2014.11
学习目标
1.明确带电粒子在电场中做类平抛运动的条件
2.掌握研究类平抛运动的两种方法:运动的合成分解;动能定理
3.能应用类平抛规律理解示波管的工作原理
重点提示
熟练掌选择动力学方法或功能关系解题
D.在粒子下落的前和后过程中,电场力做功之比为1∶2
2.如图所示,虚线PQ、MN间存在如图所示的水平匀强电场,一带电粒子质量为m=2.0×10-11kg、电荷量为q=+1.0×10-5C,从a点由静止开始经电压为U=100V的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN的某点b(图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ、MN间距为20cm,带电粒子的重力忽略不计.求:
(1)粒子从射入电场到打到屏上所用的时间.
(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tanα;
(3)粒子打在屏上的点P到O点的距离x.
三、带电粒子在电场中运动的实际应用----示波管
1、示波管的构造及功能:(1)电子枪:.
(2)偏转电极YY′:;
偏转电极XX′:.
2.工作原理
偏转电极XX′和YY′不加电压,;若只在XX′之间加电压,;若只在YY′之间加电压,;若XX′加扫描电压,YY′加信号电压,.
一、温故知新
1、带电粒子在匀强电场中的偏转(只受电场力)
(1)条件分析:
(2)运动性质:运动.
(3)处理方法:分解成相互的两个方向上的,类似于.
(4)运动规律:
①沿初速度方向做运动,运动时间
②沿电场力方向,做运动
二、考点突破
1、如图所示,一价氢离子(H)和二价氦离子(He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们()
A.同时到达屏上同一点
B.先后到达屏上同一点
C.同时到达屏上不同点
D.先后到达屏上不同点
2、如图所示,在两条平行的虚线内存在着宽度为L、电场强度为E的匀强电场,在与右侧虚线相距也为L处有一与电场平行的屏.现有一电荷量为+q、质量为m的带电粒子(重力不计),以垂直于电场线方向的初速度v0射入电场中,v0方向的延长线与屏的交点为O.试求:
课堂巩固
1.如图所示,两平行金属板水平放置,板长为L,板间距离为d,板间电压为U,一不计重力、电荷量为q的带电粒子以初速度v0沿两板的中线射入,经过t时间后恰好沿下板的边缘飞出,则()
A.在前时间内,电场力对粒子做的功为Uq
B.在后时间内,电场力对粒子做的功为Uq
C.在粒子下落的前和后过程中,电场力做功之比为1∶1
(1)带电粒子刚进入匀强电场时的速率v1;
(2)水平匀强电场的场强大小;
(3)ab两点间的电势差.
学法指导
及课堂笔记
阅读讲义P101.
认真填写
总结:
参考P102考点三
讲义P104-105