LM48511SQNOPB,LM48511SQNOPB,LM48511SQNOPB,LM48511SQX, 规格书,Datasheet 资料
ML8511 紫外线传感器 封装很小
APPLICATIONS
• Smart phone, Watch, Weather station,Bicycle navigation, Accessary, Gaming
BLOCK DAIAGRAM
TP
9
VDD
7
EN
4
Amplifier
8
OUT
UV Photodiode ML8511
5 10
GND
15
SPECTRAL RESPONSIVILITY CHARACTERISTICS
1.0 Relative Responsivity 0.8 0.6 0.4 0.2 0.0 280 320 360 400 440
Ta=25°C, VDD=3.0V
480
520
560
Wavelength (nm)
4/8
Condition Ta=25 C Ta=25 C Ta=25 C Ta=25 C -
Rating -0.3 to +4.6 -0.3 to +4.6 5 30 -30 to +85
unit V V mA mW C
RECOMENTED OPERATION CONDITIONS
Parameter Operating Voltage Operating Temperature Symbol VDD Ta Min. 2.7 -20 Typ. 3.3 Max. 3.6 70 unit V C
FEDL8511-05
ML8511
TIMING CHART
Supply voltage and EN signal state should take one of the following procedures: 1. EN should be HIGH or LOW at the same time when VDD is applied. 2. EN should be HIGH or LOW while VDD is applied. Output should be read after output voltage level becomes stable. Maximum time required until stable output voltage reaches is 1 millisecond after EN goes HIGH.
最新485典型电路汇总
485 典型电路转RS485芯片介绍及典型应用电路串行通信2010-03-22 21:27:19 阅读136评论0字号:大中小一、RS485基本知识RS-485接口芯片已广泛应用于工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域。
可用于RS-485接口的芯片种类也越来越多。
如何在种类繁多的接口芯片中找到最合适的芯片,是摆在每一个使用者面前的一个问题。
RS-485接口在不同的使用场合,对芯片的要求和使用方法也有所不同。
使用者在芯片的选型和电路的设计上应考虑哪些因素,由于某些芯片的固有特性,通信中有些故障甚至还需要在软件上作相应调整,如此等等。
希望本文对解决RS-485接口的某些常见问题有所帮助。
1 RS-485接口标准传输方式:差分传输介质:双绞线标准节点数:32最远通信距离:1200m共模电压最大、最小值:+12V ;-7V差分输入范围:-7V〜+12V接收器输入灵敏度:支00mV接收器输入阻抗:>12k Q2节点数及半双工和全双工通信2.1节点数所谓节点数,即每个RS-485接口芯片的驱动器能驱动多少个标准RS-485负载。
根据规定,标准RS-485接口的输入阻抗为>12k金相应的标准驱动节点数为32。
为适应更多节点的通信场合,有些芯片的输入阻抗设计成1/2负载(》24k Q、1/4负载(>48k Q甚至1/8负载(》96k Q,相应的节点数可增加到64、128和256。
表1为一些常见芯片的节点数。
表1节点数型号32 SN75176,SN75276 ,SN75179,SN75180,MAX485,MAX488,MAX49064 SN75LBC184128 MAX487 , MAX1487256 MAX1482 , MAX1483 , MAX3080 〜MAX308922半双工和全双工RS-485接口可连接成半双工和全双工两种通信方式。
半双工通信的芯片有SN75176、SN75276、SN75LBC184、MAX485、MAX 1487、MAX3082、MAX1483 等;全双工通信的芯片有SN75179、SN75180、MAX488 〜MAX491、MAX1482 等。
RS485协议标准
本章将详细介绍 RS-485/422 原理与区别、元件选择、参考电路、通讯规约、程序设计 等方面的应用要点,以及在产品实践中总结出的一些经验、窍门。
1.2.1 增强型低功耗半双工 RS-485 收发器-SP481E/SP485E ..............................7
1.2.2 1/10 单位负载 RS-485 收发器-SP481R/SP485R .....................................10
1.6.6 节点与主干距离.............................................................................................40
1.6.7 RS-485 系统的常见故障及处理方法............................................................40
1.6.8 RS-422 与 RS-485 的网络拓朴 .....................................................................41
1.6.9 RS-422 与 RS-485 的接地问题 .....................................................................41
RSM485C(收发器)
深圳周立功
武汉周立功
地址:深圳市深南中路 2070 号电子科技大厦 C 座 4 地址:武汉市洪山区广埠屯珞瑜路 158 号 12128 室(华
楼D室
中电脑数码市场)
电话:(0755)83781788(5 线)
电话:(027)87168497 87168297 87168397
传真:(0755)83793285
2.3
绝缘特性................................................................................................................... 2
3. 典型应用...................................................................................................................3
mifare.support@
销售:
电话:(020)22644249 22644399 22644372 22644261 28872524 28872342 28872349 28872569 28872573 38601786
维修:
电话:(020)22644245
产品数据手册
广州专卖店
地址:广州市天河区新赛格电子城 203-204 室 电话:(020)87578634 87569917 传真:(020)87578842
南京周立功
地址:南京市珠江路 280 号珠江大厦 1501 室 电话:(025) 68123901 68123902 传真:(025) 68123900
北京周立功
LM5109BSDNOPB;LM5109BMAXNOPB;LM5109BSDXNOPB;中文规格书,Datasheet资料
■ SOIC-8 ■ LLP-8 (4 mm x 4 mm)
Simplified Block Diagram
FIGURE 1.
20211901
© 2007 National Semiconductor Corporation 202119
/
LM5109B
LM5109B High Voltage 1A Peak Half Bridge Gate Driver
Literature Number: SNVS477A
/
5109B High Voltage 1A Peak Half Bridge Gate Driver
Typical Applications
■ Current Fed push-pull converters ■ Half and Full Bridge power converters ■ Solid state motor drives ■ Two switch forward power converters
VDD to VSS HB to HS
LI or HI to VSS LO to VSS HO to VSS HS to VSS (Note 6) HB to VSS
-0.3V to 18V −0.3V to 18V −0.3V to VDD +0.3V −0.3V to VDD +0.3V VHS −0.3V to VHB +0.3V
0.3
0.6
mA
1.8
2.9
mA
0.06
0.2
mA
1.4
2.8
mA
0.1
10
µA
0.5
mA
无极性RS485通信芯片
GS1485
单位
V V V V 地 V V V
联系人: 18620140156 刘生
第4页共8页
邮箱: lyf_gmdz@
GS1485
8、电气特性
参数
符号 条件
供电电压 VCC
LDO
Vreg
LDO 输 出 Ireg 电流
LDO 压降 Vdrop Iout=20mA,VCC=5 V
LDO 限流 Iclt
ቤተ መጻሕፍቲ ባይዱ自动判别使能
当 RE 悬空时,进入自动判定收发 模式,此模式下,RO 将默认为高。
A 与 B 输出
A,B 端口作为输出端口时候可以耐受 8000V 人体模型 ESD. 可以在-7 到 12V 共模 电压下正常通信
无极性模式
当 AB 接反时,只要等待 500ms 以上, 即可完成极性判断。在无极性模式下能正确 识别信号下限是 200Hz.
485 总线收发器 GS1485
1、产品简介
GS1485NE 芯片是用于 RS-485 通信的 低功耗收发器,芯片能在+5.5V~+28V 的 宽范围电源电压内正常工作,内部集成了 稳压器,具有极性判别功能。芯片具有一 个驱动器和一个接收器,输出驱动设计了 压摆率限制,使得芯片能够减小 EMI 和信 号反射效应,实现无差错数据传输。芯片 最高传输速率大于 500kbps。
比较迟滞 ΔVth -7V<VCM<12V
RO 拉电流 Isink VA-VB=-200mV
RO 高电平 Ioh
VA-VB=-50mV
RO 高 阻 漏 Iozr
电
发送端特性
差分输出 VOD 差分 RL=100Ω
差分 RL=54Ω
常用开关电源芯片大全
第1章DC-DC电源转换器/基准电压源DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A降压式开关稳压器L4971高效率单片开关稳压器L4978高效率升压/降压式DC-DC电源转换器L5970降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM2577降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT1956升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT3464升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC1754单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC3426两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC3442同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX1643降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX1800同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX629升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445 100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB1600线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8 非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610负输出低压差线性稳压器MAX1735低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC6401基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗基准电压源MAX6120精密基准电压源MC1403基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA5311开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN7601型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS01电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx型开关电源功率转换器KA5H0165R型开关电源功率转换器KA5Qxx型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L6590SWITCH TN系列电源功率转换器LNK304/LNK305/LNK306 SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP1230系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB3759SwitchⅠ系列功率转换器TNY253、TNY254、TNY255SwitchⅡ系列功率转换器TNY264P~TNY268GSwitch(Ⅱ)系列离线式功率转换器TOP209~TOP227Switch-FX系列功率转换器TOP232/TOP233/TOP234Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV826场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP1653场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401x接口单节锂电池充电控制器BQ2402x同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN7564线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V通用充电控制器LT1571恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC4002锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC4008锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
485通讯协议怎么使用(传统光电隔离的典型电路实例)
485通讯协议怎么使用(传统光电隔离的典型电路实例)RS485总线标准是工业中(考勤,监控,数据采集系统)使用非常广泛的双向、平衡传输标准接口,支持多点连接,允许创建多达3两个节点的网络;最大传输距离1200m,支持1200 m时为100kb/s的高速度传输,抗干扰能力很强,布线仅有两根线很简单。
RS485通信网络接口是1种总线式的结构,上位机(以个人电脑为例)和下位机都挂在通信总线上,RS485物理层的通信协议由RS485标准和PLC的多机通讯方式。
传统光电隔离的典型电路VDD与+5V1(VCC485)是两组不共地的电源,一般用隔离型的DC-DC来实现。
通过光耦隔离来实现信号的隔离传输,ISL3152EIBZ与MCU系统不共地,完全隔离则有效的抑制了高共模电压的产生,大大降低485的损坏率,提高了系统稳定性。
但也存在电路体积过大、电路繁琐、分立器件过多,传输速率受光电器件限制等缺点,对整个系统的稳定性也有一定影响。
第一步,配置好串口发送、接收端引脚和485控制引脚;因为RXD1引脚相对于STM32芯片来说是接收外来数据,所以设置为输入;TXD1引脚相对于STM32芯片来说是对外发送数据,所以设置为输出;TRE1 引脚是对外发送1或0高低电平命令,所以设置为输出;/******************************************************************函数名称:UART2Init*功能描述:对串口2参数进行设置、485控制端口初始化**输入参数:无*返回值:无*其他说明:无*当前版本:v1.0*-----------------------------------------------------------------*******************************************************************/void UART2Init(void){GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//使能外设时钟//GPIO结构的成员设置如下:/*--------------485控制端初始化------PA1----------*/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 ;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出GPIO_Init(GPIOA,GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //485_TXGPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出GPIO_Init(GPIOA,GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; //485_RXGPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入GPIO_Init(GPIOA,GPIO_InitStructure);//串口的结构成员设置如下:USART_ART_BaudRate = 9600;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_ART_Mode = USART_Mode_Tx | USART_Mode_Rx;USART_Init(USART2,USART_InitStructure);USART_Cmd(USART2,ENABLE);/*方法一:清发送完成标志*/// USART_ClearFlag(USART3,USART_FLAG_TC);/*方法二:获取串口1状态标志位*/USART_GeTITStatus(USART1,USART_FLAG_TC);}第二步:发送数据这里需要注意的是:/* CPU的小缺陷:串口配置好,如果直接Send,则第1个字节发送不出去如下两个方法语句解决第1个字节无法正确发送出去的问题*/方法一:USART_ClearFlag(USART3,USART_FLAG_TC); /*清发送完成标志,Transmission Complete flag */方法二:/*获取串口1状态标志位*/USART_GeTITStatus(USART1,USART_FLAG_TC);刚上电时出现乱码的原因:while(USART_GetFlagStatus(USART2,USART_FLAG_TXE)== RESET); // USART_FLAG_TXE---检测发送数据寄存器空标志位如果USART_FLAG_TC---发送完成标志位(1)当设为USART_FLAG_TXE---检测发送数据寄存器空标志位为空,但是发送移位寄存器不为空,数据还没有完全的发送出去,又有数据就被写进来了,所以就会容易出现乱码;(2)当设为USART_FLAG_TC检测发送完成标志位为空,即发送移位寄存器为空,数据才真正的发送出去,因此此时又有数据被写进来也不会发生乱码1STM32的数据发送有两个中断标志,一个是发送数据寄存器空标志,一个是发送完毕标志。
常用开关电源芯片大全
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A11.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597014.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195632.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346437.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175440.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344254.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445 100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217 119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693 128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293 151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V14.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400823.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187438.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
PCS-9785E_X_说明书_国内中文_国内标准版_X_R1.00_(ZL_TXZZ5173.1105)
危险! 意味着如果安全预防措施被忽视,则会导致人员死亡, 严重的人身伤害,或 严重的设备损坏。
警告! 意味着如果安全预防措施被忽视,则可能导致人员死亡, 严重的人身伤害, 或严重的设备损坏 。
警示! 意味着如果安全预防措施被忽视,则可能导致轻微的人身伤害或设备损坏。 本条特别适用于对装置的损坏及可能对被保护设备的损坏。
PCS-9785E 时钟扩展装置
说明书
前言
PCS-9785E 时钟扩展装置
使用产品前,请仔细阅读本章节!
本章叙述了使用产品前的安全预防建议。在安装和使用时,本章内容必须全部阅读且充分理解。 忽略说明书中相关警示说明 ,因不当操作造成的任何损害,我公司不承担相应负责。
在对本装置做任何操作前,相关专业人员必须仔细阅读本说明书,熟悉操作相关内容。
南京南瑞继保电气有限公司 公司地址 :中国南京江宁区苏源大道 69 号 邮编 211102 公司网址:
ii
南京南瑞继保电气有限公司
目录
PCS-9785E 时钟扩展装置
前言.................................................................................................................................................... i 目录.................................................................................................................................................. iii 第 1 章 概述...................................................................................................................................... 1
奥特变频器说明书第版
目录第一章概述 (1)1.1 购入检查 (1)1.2 安全注意事项 (2)1.3 使用注意事项 (5)1.4 报废注意事项 (7)第二章安装配线 (8)2.1 安装方向与空间 (8)2.2 周围环境要求 (8)2.3 主回路配线 (9)2.4 控制回路配线 (10)2.5 标准接线图 (12)2.6 接线注意事项 (14)第三章标准规范 (16)3.1 AT3000G系列标准规范 (16)3.2 键盘显示与管理功能表 (18)第四章操作运行 (22)4.1 键盘的功能与操作 (22)4.2 基本运行操作 (25)第五章功能参数 (29)5.1 运行时查看参数 (29)5.2 控制式选择 (30)5.3 频率给定方式 (31)5.4 模拟信号输入选择 (32)5.5 最大频率、基本频率、输出电压 (33)5.6 上/下限频率 (33)5.7 模拟量偏置与增益 (34)5.8 转矩提升 (35)5.9 电子热过载继电器 (36)5.10 直流制动 (36)5.11 加减速时间 (36)5.12 多段速度 (37)5.13 频率回避点 (37)5.14 频率回避宽度 (37)5.15 上行频率水平检测下行频率水平检测 (38)5.16 程序运行及摆频运行 (38)5.17 载波频率调整 (40)5.18 FAR (40)5.19 模拟输入滤波系数 (40)5.20 电流限幅动作水平 (41)5.21 机械速度系数/PI调节滞环值 (41)5.22 加速/减速模式 (41)5.23 参数设定模式 (41)5.24 可编程输入端子 (42)5.25 可编程输出端子 (43)5.26 模拟表输出 (44)5.27 PI调节器 (44)5.28 反转禁止功能 (45)5.29 AVR功能 (45)5.30 键盘运行方式下自启动功能及故障自恢复/选择转速追踪是否有效 (45)5.31 电流限幅 (46)5.32 过电压处理回生制动电压 (46)5.33 停车方式选择 (47)5.34 过电压全程有效制动电压 (47)5.35 故障继电器输出定义 (47)5.36 磁链电流给定 (48)5.37 波特率设定 (48)5.38 通讯地址 (48)5.39 通讯资料格式 (48)5.40 旋转编码器线数 (48)5.41 电机极对数 (48)5.42 稳态磁链调节系数限幅值 (48)5.43 键盘STOP键停机功能选择 (48)5.44 系统自检功能 (48)第六章保护功能 (49)6.1 故障显示及其内容 (49)6.2 故障发生后的查询 (49)6.3 保护功能动作时的退出 (50)6.4 故障内容及保护措施 (50)第七章检查维护 (51)7.1 检查与保养 (51)7.2 定期更换的器件 (53)7.3 储存与保管 (53)7.4 常见异常现象及对策 (53)第八章安装尺寸 (55)第九章选件 (58)9.1 外围设备和任选件连接示意 (58)9.2 交流电抗器 ACL (59)9.3 直流电抗器 DCL (60)9.4 无线电噪声滤波器 (60)9.5 远方操作盘 (61)9.6 回生制动单元及回生制动电阻 (61)9.7 漏电保护器 (62)第十章应用范例 (63)第十一章 MODBUS通讯协议使用手册 (72)一、通讯协议概述 (73)1、协议内容 (73)2、应用方式 (73)3、总线结构 (73)4、协议说明 (73)二、通讯帧结构 (74)1、数据包格式 (74)2、字符结构 (76)3、ADD(通讯地址) (77)4、CMD(指令码)及DATA(资料字符) (78)5、错误检测 (81)6、ASCII模式与RTU模式转换 (82)三、奥特变频器命令类型及格式 (82)1、变频器通讯地址 (82)2、支持命令类型 (82)3、功能码参数地址表示规则 (82)四、通信涉及到的功能代码设定值 (84)五、接线说明 (85)1、接口说明 (85)2、现场总线结构 (86)3、接线要求 (86)六、应用举例 (86)附表:各功能代码通讯参数 (89)第一章概述1.1 购入检查●本产品在出厂前已经过严格检查。
常用开关电源芯片大全
For personal use only in study and research; not for commercial use常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A11.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597014.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195632.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346437.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175440.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344254.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445 100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693 128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V14.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400823.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
5V单电源供电的通信收发器LMS202ELMS485
5V 单电源供电的通信收发器 LMS202ELMS485 摘要介绍了采用单5V电源工作的RS-232通信双收发器LM S202E和高速双向数据通信差分总线收发器LMS485的主要特 性,给出了它们的典型应用电路。
关键词通信;-232-485-422 收发器 2024851 概述LMS202E和LMS485分别是美国国家半导体公司生 产的RS-232通信用双收发器和多点传输线用高速双向数据通信差 分总线/线路收发器。
这两种器件均使用5V单电源供电,电源电流分别为1mALMS2 02E和0.32mALMS485的典型值。
LMS202E满足E1A/T1A-232和CCITTV.28 规范,数据传输率可达230kbps,而其 ±15kV的静电放电ES D范文先生网收集整理保护指标符合IEC1000-4-2EN61 000-4-2标准要求。
LMS202E主要用于销售点终端POS条形码阅读机、手持式设 备或装置和通用目的RS-232通信等方面。
LMS485满足ANSI标准E1A/T1ARS485/RS -422,数据速率为2.5Mbps。
LMS485的应用领域主要是低功率RS-485系统网络中心、桥路和路由器销售点设备自动柜员机ATM、条形码扫描仪、局域网LA N、综合业务数据网ISDN、工业可编程逻辑控制器、高速串/并联应 用以及噪声环境下的多点应用系统等。
2RS-232双收发器LMS202ELMS202E采用16 引脚SOIC封装,可与MAXIM公司的MAX202E相互代换。
LMS202E的内部结构及典型应用电路如图1所示。
该器件内含DC-DC变换器,利用电路中的C1~C4使内部对偶 充电泵为两个发送器提供±10V的双电源。
通过C1,电荷泵可将+5V的电源电压转换为+10V,并存储在 C3中。
而通过C2电荷泵则可将+10V转换为-10V电压,而后再把- 10V存储在C4中。
485经典应用电路
查看文章RS485应用电路图2007年11月06日星期二下午 11:24摘要:就485总线应用中易出现的问题,分析了产生的原因并给出解决问题的软硬件方案和措施。
关键词:RS-485总线、串行异步通信1、问题的提出在应用系统中,RS-485半双工异步通信总线是被各个研发机构广泛使用的数据通信总线,它往往应用在集中控制枢纽与分散控制单元之间。
系统简图如图1所示。
图1. RS-485系统示意图由于实际应用系统中,往往分散控制单元数量较多,分布较远,现场存在各种干扰,所以通信的可靠性不高,再加上软硬件设计的不完善,使得实际工程应用中如何保障RS-485总线的通信的可靠性成为各研发机构的一块心病。
在使用RS-485总线时,如果简单地按常规方式设计电路,在实际工程中可能有以下两个问题出现。
一是通信数据收发的可靠性问题;二是在多机通信方式下,一个节点的故障(如死机),往往会使得整个系统的通信框架崩溃,而且给故障的排查带来困难。
针对上述问题,我们对485总线的软硬件采取了具体的改进措施2、硬件电路的设计现以8031单片机自带的异步通信口,外接75176芯片转换成485总线为例。
其中为了实现总线与单片机系统的隔离,在8031的异步通信口与75176之间采用光耦隔离。
电路原理图如图2所示。
图 2 改进后的485通信口原理图充分考虑现场的复杂环境,在电路设计中注意了以下三个问题。
2.1 SN75176 485芯片DE控制端的设计由于应用系统中,主机与分机相隔较远,通信线路的总长度往往超过400米,而分机系统上电或复位又常常不在同一个时刻完成。
如果在此时某个75176的 DE端电位为“1”,那么它的485总线输出将会处于发送状态,也就是占用了通信总线,这样其它的分机就无法与主机进行通信。
这种情况尤其表现在某个分机出现异常情况下(死机),会使整个系统通信崩溃。
因此在电路设计时,应保证系统上电复位时75176的DE端电位为“0”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LM48511March 22, 20123W, Ultra-Low EMI, Filterless, Mono, Class D Audio Power Amplifier with Spread SpectrumGeneral DescriptionThe LM48511 integrates a boost converter with a high effi-ciency Class D audio power amplifier to provide 3W continu-ous power into an 8Ω speaker when operating from a 5V power supply. When operating from a 3V to 4V power supply,the LM48511 can be configured to drive 1 to 2.5W into an 8Ω load with less than 1% distortion (THD+N). The Class D amplifier features a low noise PWM architecture that elimi-nates the output filter, reducing external component count,board area consumption, system cost, and simplifying design.A selectable spread spectrum modulation scheme suppress-es RF emissions, further reducing the need for output filters.The LM48511’s switching regulator is a current-mode boost converter operating at a fixed frequency of 1MHz. Two se-lectable feedback networks allow the LM48511 regulator to dynamically switch between two different output voltages, im-proving efficiency by optimizing the amplifier’s supply voltage based on battery voltage and output power requirements.The LM48511 is designed for use in portable devices, such as GPS, mobile phones, and MP3 players. The high, 80%efficiency at 5V, extends battery life when compared to Boost-ed Class AB amplifiers. Independent regulator and amplifier shutdown controls optimize power savings by disabling the regulator when high output power is not required.The gain of the LM48511 is set by external resistors, which allows independent gain control from multiple sources by summing the signals. Output short circuit and thermal over-load protection prevent the device from damage during fault conditions. Superior click and pop suppression eliminates au-dible transients during power-up and shutdown.Key Specifications■ Quiescent Power Supply CurrentV DD = 3V V DD = 5V9mA (typ)13.5mA (typ)■ P O at V DD = 5V, PV1 = 7.8VR L = 8Ω, THD+N = 1%3.0W (typ)■ P O at V DD = 3V, PV1 =4.8VR L = 8Ω, THD+N = 1%1W (typ)■ P O at V DD = 5V, PV1 = 7.8VR L = 4Ω, THD+N = 1%5.4W (typ)■ Shutdown Current at V DD = 3V0.01μA (typ)Features■3W Output into 8Ω at 5V with THD+N = 1%■Selectable spread spectrum mode reduces EMI ■80% Efficiency■Independent Regulator and Amplifier Shutdown Controls ■Dynamically Selectable Regulator Output Voltages ■Filterless Class D ■ 3.0V – 5.5V operation ■Low Shutdown Current ■Click and Pop SuppressionApplications■GPS■Portable media ■Cameras■Mobile Phones ■Handheld gamesEMI Graph300222h5FIGURE 1. LM48511 RF Emissions — 3 inch cableBoomer ® is a registered trademark of National Semiconductor Corporation.© 2012 Texas Instruments Incorporated 300222 SNAS416E LM48511 3W, Ultra-Low EMI, Filterless, Mono, Class D Audio Power Amplifier with Spread SpectrumTypical Application300222i3FIGURE 2. Typical LM48511 Audio Amplifier Application Circuit 2L M 48511Connection DiagramsSQ Package300222d4Top ViewOrder Number LM48511SQSee NS Package Number SQA24BSQ Package Marking300222d5Top ViewU — Wafer fab codeZ — Assembly plantXY — 2 Digit date codeTT — Lot traceability LM48511Pin DescriptionsLLP-24 PinName Function1FB_SEL Regulator Feedback Select. Connect to VDD to select feedback network connected to FB_GND1. Connect to GND to select feedback network connected to FB_GND0.2,3SW Drain of the Internal FET Switch 4SOFTSTART Soft Start Capacitor5SD_AMP Amplifier Active Low Shutdown. Connect to V DD for normal operation. Connect to GND to disable amplifier.6SS/FF Modulation Mode Select. Connect to V DD for spread spectrum mode (SS). Connect to GND for fixed frequency mode (FF).7GND Signal Ground8LS+Amplifier Non-Inverting Output 9, 11LSGND Amplifier H-Bridge Ground10PV1Amplifier H-Bridge Power Supply. Connect to V1.12LS-Amplifier Inverting Output13V1Amplifier Supply Voltage. Connect to PV114VG0+Amplifier Non-Inverting Gain Output 15IN-Amplifier Inverting Input 16IN+Amplifier Non-Inverting Input 17VG0–Amplifier Inverting Gain Output 18VDD Power Supply19FB Regulator Feedback Input. Connect FB to an external resistive voltage divider to set the boost output voltage.20FB_GND1Ground return for R 3, R 1 resistor divider 21FB_GND0Ground return for R 3, R 2 resistor divider 22,23REGGND Power Ground (Booster)24SD_BOOSTRegulator Active Low Shutdown. Connect to V DD for normal operation. Connect to GND to disable regulator.DAPTo be soldered to board for enhanced thermal dissipation. Connect to GND plane. 4L M 48511Absolute Maximum Ratings (Note 2, Note 2)If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.Supply Voltage (VDD , PV1, V1)9VStorage Temperature−65°C to +150°C Input Voltage−0.3V to V DD + 0.3V Power Dissipation (Note 3)Internally limited ESD Susceptibility (Note 4)2000V ESD Susceptibility (Note 5)200VJunction Temperature150°C Thermal Resistance θJC (SQ) 3.8°C/W θJA (SQ)32.8°C/WOperating RatingsTemperature RangeTMIN≤ TA≤ TMAX−40°C ≤ T A≤ +85°CSupply Voltage (VDD) 3.0V ≤ V DD≤ 5.5VAmplifier Voltage (PV1, V1) 4.8V ≤ PV1≤ 8.0VElectrical Characteristics VDD= 5.0V (Note 1, Note 2, Note 10)The following specifications apply for VDD = 5.0V, PV1= 7.8V (continuos mode), AV= 2V/V, R3= 25.5kΩ, RLS= 4.87kΩ, RL=8Ω, f = 1kHz, SS/FF = GND, unless otherwise specified. Limits apply for T A = 25°C.Symbol Parameter ConditionsLM48511Units(Limits) Typical(Note 6)Limit(Note 7)I DD Quiescent Power Supply CurrentVIN= 0, RLOAD= ∞Fixed Frequency Mode (FF)13.5mA (max)Spread Spectrum Mode (SS)14.522mA (max)I SD Shutdown CurrentVSD_BOOST= VSD_AMP= SS =FB_SEL = GND0.111μA (max)VIHLogic Voltage Input High 1.4V (min)VILLogic Voltage Input Low0.4V (max)T WU Wake-up Time CSS= 0.1μF49msVOSOutput Offset Voltage Note 120.013mVP O Output PowerRL= 8Ωf = 1kHz, BW = 22kHzTHD+N = 1%FFSS3.03.02.6W (min)WTHD+N = 10%FFSS3.83.8WWRL= 4Ωf = 1kHz, BW = 22kHzTHD+N = 1%FFSS5.45.4WWTHD+N = 10%FFSS6.76.7WWTHD+N Total Harmonic Distortion + Noise PO= 2W, f = 1kHz, RL= 8ΩFFSS0.030.03%%PO= 3W, f = 1kHz, RL= 4ΩFFSS0.040.05%% LM48511SymbolParameterConditionsLM48511Units (Limits)Typical (Note 6)Limit (Note 7)εOSOutput Noisef = 20Hz to 20kHzInputs to AC GND, No weighting FF SS3232µV RMS µV RMSf = 20Hz to 20kHzInputs to AC GND, A weighted FF SS2222µV RMS µV RMSPSRRPower Supply Rejection Ratio (Input Referred)V RIPPLE = 200mV P-P Sine,f RIPPLE = = 217Hz, FF SS8887dB dBV RIPPLE = 200mV P-P Sine,f RIPPLE = = 1kHz, FF SS8885dB dB V RIPPLE = 200mV P-P Sine,f RIPPLE = = 10kHz, FF SS7776dB dBCMRR Common Mode Rejection Ratio (Input Referred)V RIPPLE = 1V P-P , f RIPPLE = 217Hz 73 dB ηEfficiencyf = 1kHz, R L = 8Ω, P O = 1W80 %V FBFeedback Pin Reference Voltage1.23VElectrical Characteristics V DD = 3.6V(Note 1, Note 2, Note 10)The following specifications apply for V DD = 3.6V, PV1 = 7V (continuous mode), A V = 2V/V, R 3 = 25.5k Ω, R LS = 5.36k Ω, R L = 8Ω,f = 1kHz, SS/FF = GND, unless otherwise specified. Limits apply for T A = 25°C.SymbolParameterConditionsLM48511Units (Limits)Typical (Note 6)Limit (Note 7)I DDQuiescent Power Supply CurrentV IN = 0, R LOAD = ∞Fixed Frequency Mode (FF)16mA (max)Spread Spectrum Mode (SS)17.526.6mA (max)I SD Shutdown Current V SD_BOOST = V SD_AMP = SS =FB_SEL = GND0.031μA (max)V IH Logic Voltage Input High 0.96 1.4V (min)V IL Logic Voltage Input Low 0.840.4V (min)T WU Wake-up Time C SS = 0.1μF 50 ms V OSOutput Offset VoltageNote 120.04mV 6L M 48511Symbol Parameter ConditionsLM48511Units(Limits) Typical(Note 6)Limit(Note 7)P O Output PowerRL= 8Ω, f = 1kHz, BW = 22kHzTHD+N = 1%FFSS2.52.5WWTHD+N = 10%FFSS3.03.0WWRL= 4Ω, f = 1kHz, BW = 22kHzTHD+N = 1%FFSS4.34.2WWTHD+N = 10%FFSS5.45.3WWTHD+N Total Harmonic Distortion + Noise PO= 1.5W, f = 1kHz, RL= 8ΩFFSS0.030.03%%PO= 3W, f = 1kHz, RL= 4ΩFFSS0.040.05%%εOS Output Noise f = 20Hz to 20kHzInputs to AC GND, No weightingFFSS3536µVRMSµVRMS f = 20Hz to 20kHzInputs to AC GND, A weightedFFSS2526µVRMSµVRMSPSRR Power Supply Rejection Ratio(Input Referred)VRIPPLE= 200mVP-PSine,fRIPPLE == 217HzFFSS8586dBdBVRIPPLE= 200mVP-PSine,fRIPPLE == 1kHzFFSS8786dBdBVRIPPLE= 200mVP-PSine,fRIPPLE == 10kHzFFSS7877dBdBCMRR Common Mode Rejection Ratio(Input Referred)VRIPPLE= 1VP-P, fRIPPLE= 217Hz73dBηEfficiency f = 1kHz, R L = 8Ω, P O = 1W77%VFBFeedback Pin Reference Voltage 1.23VLM48511Electrical Characteristics V DD = 3.0V(Note 1, Note 2, Note 10)The following specifications apply for V DD = 3.0V, PV1 = 4.8V (continuos mode), A V = 2V/V, R 3 = 25.5k Ω, R LS = 9.31k Ω, R L =8Ω, f = 1kHz, SS/FF = GND, unless otherwise specified. Limits apply for T A = 25°C.SymbolParameterConditionsLM48511Units (Limits)Typical (Note 6)Limit (Note 7)I DDQuiescent Power Supply CurrentV IN = 0, R LOAD = ∞Fixed Frequency Mode (FF)9 mA (max)Spread Spectrum Mode (SS)9.5 mA (max)I SD Shutdown Current V SD_BOOST = V SD_AMP = SS =FB_SEL = GND 0.011μA V IH Logic Voltage Input High 0.91V (min)V IL Logic Voltage Input Low0.79V T WU Wake-up Time C SS = 0.1μF 49 ms V OSOutput Offset VoltageNote 120.04mVP OOutput PowerR L = 8Ω, f = 1kHz, BW = 22kHz THD+N = 1% FF SS110.84W (min)W THD+N = 10% FF SS1.31.3W WR L = 4Ω, f = 1kHz, BW = 22kHz THD+N = 1% FF SS1.81.8W W THD+N = 10% FF SS2.22.2W WTHD+N Total Harmonic Distortion + NoiseP O = 500mW, f = 1kHz, R L = 8Ω FF SS0.020.03%%P O = 500mW, f = 1kHz, R L = 4Ω FF SS0.040.06%%εOSOutput Noisef = 20Hz to 20kHzInputs to AC GND, No weighting FF SS3535µV RMS µV RMSf = 20Hz to 20kHzInputs to AC GND, A weighted FF SS2525µV RMS µV RMS 8L M 48511SymbolParameterConditionsLM48511Units (Limits)Typical (Note 6)Limit (Note 7)PSRRPower Supply Rejection Ratio (Input Referred)V RIPPLE = 200mV P-P Sine,f RIPPLE = = 217Hz FF SS8989dB dBV RIPPLE = 200mV P-P Sine,f RIPPLE = = 1kHz FF SS8888dB dBV RIPPLE = 200mV P-P Sine,f RIPPLE = = 10kHz FF SS7878 dB dB CMRR Common Mode Rejection Ratio (Input Referred)V RIPPLE = 1V P-P , f RIPPLE = 217Hz 71 dB ηEfficiencyf = 1kHz, R L = 8Ω, P O = 1W75 %V FBFeedback Pin Reference Voltage1.23VNote 1:“Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.Note 2:The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.Note 3:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX , θJ JA , and the ambient temperature, T A . The maximum allowable power dissipation is P DMAX = (T JMAX - T A ) / θJA or the number given in Absolute Maximum Ratings , whichever is lower. For the LM48511, see power derating curves for additional information.Note 4:Human body model, applicable std. JESD22-A114C.Note 5:Machine model, applicable std. JESD22-A115-A.Note 6:Typical values represent most likely parametric norms at T A = +25ºC, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.Note 7:Datasheet min/max specification limits are guaranteed by test or statistical analysis.Note 8:Shutdown current is measured with components R1 and R2 removed.Note 9:Feedback pin reference voltage is measured with the Audio Amplifier disconnected from the Boost converter (the Boost converter is unloaded).Note 10:R L is a resistive load in series with two inductors to simulate an actual speaker load for R L = 8Ω, the load is 15μH+8Ω+15μH. For R L = 4Ω, the load is 15μH+4Ω+15μH.Note 11:Offset voltage is determined by: (I DD (with load) — I DD (no load)) x R L .LM48511Typical Performance CharacteristicsTHD+N vs Frequency V DD = 5V, R L = 8ΩP O = 2W, filter = 22kHz, PV 1 = 7.8V300222g9THD+N vs Frequency V DD = 3.6V, R L = 8ΩP O = 500mW, filter = 22kHz, PV 1 = 4.8V300222g7THD+N vs Frequency V DD = 3V, R L = 8ΩP O = 1.5W, filter = 22kHz, PV 1 = 7V 300222g8THD+N vs Output PowerV DD = 5V, R L = 8ΩP O = 1.5W, f = 1kHz, filter = 22kHz, PV 1 = 7.8V300222h4THD+N vs Output Power V DD = 3.6V, R L = 8Ωf = 1kHz, filter = 22kHz, PV 1 = 7V 300222h1THD+N vs Output PowerV DD = 3V, R L = 8Ωf = 1kHz, filter = 22kHz, PV 1 = 4.8V300222h3 10L M 48511THD+N vs Output PowerV DD = 3V, 3.6V, 5V, RL= 8Ωf = 1kHz, filter = 22kHz, R1= 4.87kΩ, FF300222i1THD+N vs Output PowerVDD= 3.6V, RL= 8Ωfilter = 22kHz, PV1= 7.8V, PV1= 7V, PV1= 4.8V, FF300222i0Boost Amplifier vs Output PowerV DD = 5V, RL= 8Ωf = 1kHz, PV1= 7.8V300222f7Boost Amplifier vs Output PowerVDD= 3.6V, RL= 8Ωf = 1kHz, PV1= 7V300222f5Boost Amplifier vs Output PowerV DD = 3V, RL= 8Ωf = 1kHz, PV1= 4.8V300222f6PSRR vs FrequencyVDD= 5V, RL= 8ΩVRIPPLE= 200mVPP, PV1= 7.8V300222g3LM48511PSRR vs Frequency V DD = 3.6V, R L = 8ΩV RIPPLE = 200mV PP , PV 1 = 7V 300222g1PSRR vs Frequency V DD = 3V, R L = 8ΩV RIPPLE = 200mV PP , PV 1 = 4.8V300222g2Supply Current vs Supply VoltagePV 1 = 7.8V 300222g6Supply Current vs Supply VoltagePV 1 = 7V300222g5Supply Current vs Supply VoltagePV 1 = 4.8V300222g4Power Dissipation vs Output PowerV DD = 5V, R L = 8ΩPV 1 = 7.8V, FF300222g0 12L M 48511Power Dissipation vs Output PowerV DD = 3.6V, R L = 8ΩPV 1 = 7V, FF 300222f8Power Dissipation vs Output PowerV DD = 3V, R L = 8ΩPV 1 = 4.8V, FF300222f9Boost Converter Efficiency vs I LOAD(DC)V DD = 5V, PV 1 = 7.8V 300222h8Boost Converter Efficiency vs I LOAD(DC)V DD = 3.6V, PV 1 =7V300222h6Boost Converter Efficiency vs I LOAD(DC)V DD = 3V, PV 1 = 4.8V300222h7LM48511Application InformationGENERAL AMPLIFIER FUNCTIONThe LM48511 features a Class D audio power amplifier that utilizes a filterless modulation scheme, reducing external component count, conserving board space and reducing sys-tem cost. The outputs of the device transition from PV1 to GND with a 300kHz switching frequency. With no signal ap-plied, the outputs (V LS+ and V LS-) switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This can-cellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.With the input signal applied, the duty cycle (pulse width) of the LM48511 outputs changes. For increasing output voltage,the duty cycle of V LS+ increases, while the duty cycle of V LS-decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yields the differential output voltage.FIXED FREQUENCYThe LM48511 features two modulations schemes, a fixed fre-quency mode (FF) and a spread spectrum mode (SS). Select the fixed frequency mode by setting SS/FF = GND. In fixed frequency mode, the amplifier outputs switch at a constant 300kHz. In fixed frequency mode, the output spectrum con-sists of the fundamental and its associated harmonics (see Typical Performance Characteristics).SPREAD SPECTRUM MODEThe logic selectable spread spectrum mode eliminates the need for output filters, ferrite beads or chokes. I n spread spectrum mode, the switching frequency varies randomly by 10% about a 330kHz center frequency, reducing the wide-band spectral contend, improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM48511 spreads that energy over a larger bandwidth (See Typical Performance Characteristics). The cycle-to-cycle variation of the switching period does not affect the audio reproduction, efficiency, or PSRR. Set SS/FF =V DD for spread spectrum mode.DIFFERENTIAL AMPLIFIER EXPLANATIONThe LM48511 includes fully differential amplifier that features differential input and output stages. A differential amplifier amplifies the difference between the two input signals. Tradi-tional audio power amplifiers have typically offered only sin-gle-ended inputs resulting in a 6dB reduction in signal to noise ratio relative to differential inputs. The LM48511 also offers the possibility of DC input coupling which eliminates the two external AC coupling, DC blocking capacitors. The LM48511can be used, however, as a single ended input amplifier while still retaining it's fully differential benefits. In fact, completely unrelated signals may be placed on the input pins. The LM48511 simply amplifies the difference between the signals.A major benefit of a differential amplifier is the improved com-mon mode rejection ratio (CMRR) over single input amplifiers.The common-mode rejection characteristic of the differential amplifier reduces sensitivity to ground offset related noise in-jection, especially important in high noise applications.AUDIO AMPLIFIER POWER DISSIPATION AND EFFICIENCYThe major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48511 is attributed to the region of operation of the transistors in the output stage.The Class D output stage acts as current steering switches,consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.REGULATOR POWER DISSIPATIONAt higher duty cycles, the increased ON-time of the switch FET means the maximum output current will be determined by power dissipation within the LM48511 FET switch. The switch power dissipation from ON-time conduction is calcu-lated by:P D(SWITCH) = DC x (I INDUCTOR(AVE))2 x R DS(ON) (W)(1)where DC is the duty cycle.SHUTDOWN FUNCTIONThe LM48511 features independent amplifier and regulator shutdown controls, allowing each portion of the device to be disabled or enabled independently. SD_AMP controls the Class D amplifiers, while SD_BOOST controls the regulator.Driving either inputs low disables the corresponding portion of the device, and reducing supply current.When the regulator is disabled, both FB_GND switches open,further reducing shutdown current by eliminating the current path to GND through the regulator feedback network. Without the GND switches, the feedback resistors as shown in Figure 1 would consume an additional 165μA from a 5V supply. With the regulator disabled, there is still a current path from V DD ,through the inductor and diode, to the amplifier power supply.This allows the amplifier to operate even when the regulator is disabled. The voltage at PV1 and V1 will be:(V DD - [V D + (I L x DCR)](2)Where V D is the forward voltage of the Schottky diode, I L is the current through the inductor, and DCR is the DC resis-tance of the inductor. Additionally, when the regulator is dis-abled, an external voltage between 5V and 8V can be applied directly to PV1 and V1 to power the amplifier.It is best to switch between ground and V DD for minimum cur-rent consumption while in shutdown. The LM48511 may be disabled with shutdown voltages in between GND and V DD ,the idle current will be greater than the typical 0.1µA value.Increased THD+N may also be observed when a voltage of less than V DD is applied to SD_AMP .REGULATOR FEEDBACK SELECTThe LM45811 regulator features two feedback paths as shown in Figure 1, which allow the regulator to easily switch between two different output voltages. The voltage divider consists of the high side resistor, R3, and the low side resis-tors (R LS ), R1 and R2. R3 is connected to the output of the boost regulator, the mid-point of each divider is connected to FB, and the low side resistors are connected to either FB_GND1 or FB_GND0. FB_SEL determines which FB_GND switch is closed, which in turn determines which feedback path is used. For example if FB_SEL = V DD , the FB_GND1 switch is closed, while the FB_GND0 switch re-mains open, creating a current path through the resistors connected to FB_GND1. Conversely, if FB_SEL = GND, the FB_GND0 switch is closed, while the FB_GND1 switch re-mains open, creating a current path through the resistors connected to FB_GND0.14L M 48511FB_SEL can be susceptible to noise interference. To prevent an accidental state change, either bypass FB_SEL with a 0.1µF capacitor to GND, or connect the higher voltage feed-back network to FB_GND0, and the lower voltage feedback network to FB_GND1. Because the higher output voltageconfiguration typically generates more noise on VDD , this con-figuration minimizes the VDD noise exposure of FB_SEL, asFB_SEL = GND for FB_GND0 (high voltage output) and FB_SEL = VDDfor FB_GND1 (low voltage output).The selectable feedback networks maximize efficiency in two ways. In applications where the system power supply voltage changes, such as a mobile GPS receiver, that transitions from battery power, to AC line, to a car power adapter, the LM48511 can be configured to generate a lower voltage when the system power supply voltages is lower, and conversely, generate a higher voltage when the system power supply is higher. See the Setting the Regulator Output Voltage (PV1) section.In applications where the same speaker/amplifier combina-tion is used for different purposes with different audio power requirements, such as a cell phone ear piece/speaker phone speaker, the ability to quickly switch between two different voltages allows for optimization of the amplifier power supply, increasing overall system efficiency. When audio power de-mands are low (ear piece mode) the regulator output voltage can be set lower, reducing quiescent current consumption. When audio power demands increase (speaker phone mode), a higher voltage increases the amplifier headroom, increasing the audio power delivered to the speaker. PROPER SELECTION OF EXTERNAL COMPONENTS Proper selection of external components in applications using integrated power amplifiers, and switching DC-DC convert-ers, is critical for optimizing device and system performance. Consideration to component values must be used to maxi-mize overall system quality. The best capacitors for use with the switching converter portion of the LM48511 are multi-layer ceramic capacitors. They have the lowest ESR (equivalent series resistance) and highest resonance frequency, which makes them optimum for high frequency switching convert-ers. When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applica-tions. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden and Murata.POWER SUPPLY BYPASSINGAs with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. Thecapacitor location on both PV1, V1 and VDD pins should beas close to the device as possible.AUDIO AMPLIFIER GAIN SETTING RESISTOR SELECTIONThe amplifier gain of the LM48511 is set by four external re-sistors, the input resistors, R5 and R7, and the feed back resistors R6 and R8.. The amplifier gain is given by:Where RIN is the input resistor and RFis the feedback resistor.AVD= 2 X RF/RIN(3)Careful matching of the resistor pairs, R6 and R8, and R5 and R7, is required for optimum performance. Any mismatch be-tween the resistors results in a differential gain error that leadsto an increase in THD+N, decrease in PSRR and CMRR, aswell as an increase in output offset voltage. Resistors with atolerance of 1% or better are recommended.The gain setting resistors should be placed as close to thedevice as possible. Keeping the input traces close togetherand of the same length increases noise rejection in noisy en-vironments. Noise coupled onto the input traces which arephysically close to each other will be common mode and eas-ily rejected.AUDIO AMPLIFIER INPUT CAPACITOR SELECTIONInput capacitors may be required for some applications, orwhen the audio source is single-ended. Input capacitors blockthe DC component of the audio signal, eliminating any conflictbetween the DC component of the audio source and the biasvoltage of the LM48511. The input capacitors create a high-pass filter with the input resistors RIN. The -3dB point of the high pass filter is found by:f = 1 / 2πR IN C IN(4)In single-ended configurations, the input capacitor value af-fects click-and-pop performance. The LM48511 features a50mg turn-on delaly. Choose the input capacitor / input re-sistor values such that the capacitor is charged before the50ms turn-on delay expires. A capacitor value of 0.18μF anda 20kΩ input resistor are recommended. In differential appli-cations, the charging of the input capacitor does not affectclick-and-pop significantly.The input capacitors can also be used to remove low fre-quency content from the audio signal. High pass filtering theaudio signal helps protect speakers that can not reproduce ormay be damaged by low frequencies. When the LM48511 isusing a single-ended source, power supply noise on theground is seen as an input signal. Setting the high-pass filterpoint above the power supply noise frequencies, 217Hz in aGSM phone, for example, filters out the noise such that it isnot amplified and heard on the output. Capacitors with a tol-erance of 10% or better are recommended for impedancematching and improved CMRR and PSRR.SELECTING REGULATOR OUTPUT CAPACITORA single 100µF low ESR tantalum capacitor provides suffi-cient output capacitance for most applications. Higher capac-itor values improve line regulation and transient response.Typical electrolytic capacitors are not suitable for switchingconverters that operate above 500kHz because of significantringing and temperature rise due to self-heating from ripplecurrent. An output capacitor with excessive ESR reducesphase margin and causes instability.SELECTING REGULATING BYPASS CAPACITORA supply bypass capacitor is required to serve as an energyreservoir for the current which must flow into the coil each timethe switch turns on. This capacitor must have extremely lowESR, so ceramic capacitors are the best choice. A nominalvalue of 10μF is recommended, but larger values can beused. Since this capacitor reduces the amount of voltage rip-ple seen at the input pin, it also reduces the amount of EMIpassed back along that line to other circuitry.SELECTING THE SOFTSTART (CSS) CAPACITORThe soft-start function charges the boost converter referencevoltage slowly. This allows the output of the boost converterto ramp up slowly thus limiting the transient current at startup.LM48511。