1 空间几何体
高中数学 必修二-第一章 立体几何初步 知识点整理
![高中数学 必修二-第一章 立体几何初步 知识点整理](https://img.taocdn.com/s3/m/c82df0610242a8956bece49c.png)
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
空间立体几何知识点归纳
![空间立体几何知识点归纳](https://img.taocdn.com/s3/m/8621e2480722192e4536f6a3.png)
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
空间几何体
![空间几何体](https://img.taocdn.com/s3/m/d52d7b7579563c1ec4da7110.png)
(1)
(2)
3.旋转体
旋转一周。。。
矩形
直角三角形
直角梯形
半圆圆柱圆锥 Nhomakorabea圆台球
圆柱
(1)定义: 以矩形的一边所在的直线为旋转轴,其余三边 旋转形成的曲面所围成的几何体叫圆柱.
(2)圆柱的轴、底面、侧面、侧面的母线、高 (3)圆柱的表示:
用表示轴的字母表示.如圆柱oo,
o
O,
圆锥
(1)定义: 以直角三角形的一条直角边所在的直线为旋转 轴,其余两边旋转形成的曲面所围成的几何体 叫圆锥。
3、棱柱
有两个面互相平行,其余各边都
•
是四边形,并且每相邻两个四边形
的公共边都互相平行,这些面围成
的几何体叫做棱柱。
两个互相平行的面叫做棱柱的底
•
面;其余各面叫做棱柱的侧面。
两个面的公共边叫做棱柱的棱。两个侧面的公共边 叫做棱柱的侧棱。
与两个底面都垂直的直线夹在两底面间的线段长叫 做棱柱的高。
底面多边形与侧面的公共顶点叫做棱柱的顶点。
(4)棱锥的分类:
按照底面多边形的边数可分为三棱锥,四棱锥,五棱锥……
S
E
A
D
B
C
正棱锥:底面是正多边形,并且顶点在底面
的射影是底面的中心.
正棱锥的性质:
(1)各侧棱相等,各侧面都是全等 S
的等腰三角形。(等腰三角形的底
边上的高叫正棱锥的斜高)
(2)棱锥的高、斜高和在
底面上的射影组成一个直角 三角形;棱锥的高、侧棱和
棱台与圆台统称为台体
S
O’
A
O
A
O
(2)圆锥的轴、底面、侧面、母线、高
(3)圆锥的表示:
空间几何体的结构1.1第1课时 棱柱、棱锥、棱台的结构特征
![空间几何体的结构1.1第1课时 棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/4c43895e55270722192ef795.png)
1.空间几何体的定义
空间中的物体都占据着空间的一部分, 若只考虑这些物体的_形__状___和_大__小___,
而不考虑其他因素,那么由这些物体抽 象出来的空间图形就叫做空间几何体.
[问题1] 图片(1)(2)(3)中的物体的形状有何特点? [提示] 由若干个平面多边形围成. [问题2] 图片(4)(5)(6)(7)的物体的形状与(1)(2)(3) 中有何不同?图片(4)(5)(6)(7)中的几何体可否看作 平面图形绕某定直线旋转而成? [提示] 表面是由平面与曲面围成.可以。
DCFD′. 其中四边形ABEA′和四边形DCFD′是底面, A′D′,EF,BC,AD为侧棱.
8.如 图 , 已 知 长 方 体 ABCD- A1B1C1D1,过 BC 和 AD 分别作 一 个 平 面 交 底 面 A1B1C1D1 于 EF、PQ,则长方体被分成的三 个几何体中,棱柱的个数是________.
答案: D
下列的几何体是多面体吗?
答:这些不但是多面体,他们还是多面体 当中的一种,叫做棱锥。
你们思考一下这些棱锥有什么共同特点?
2.棱锥的结构特征
什么是棱锥? 一般地,有一 个面是多边形,其余 各面都是有一个公共 点的三角形,由这些 面围成的多面体叫做 棱锥. 记为:棱锥S-ABCD
多边形 三角形
D'
E'
C'
D A'
B'
S A'B'C'D'E' S ABCDE
S' H '2 SH 2
E
O
C
AB
3. 棱台的结构特征
什么是棱台? 一般地,用一个平行于棱锥底面的平面去截 棱锥,底面和截面中间的部分的多面体叫做棱台.
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
![高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/899f4b8ed4d8d15abe234eae.png)
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
《空间几何体》基础的知识点
![《空间几何体》基础的知识点](https://img.taocdn.com/s3/m/e0f5bbfda32d7375a517809a.png)
《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。
4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。
2.2第一章 空间几何体
![2.2第一章 空间几何体](https://img.taocdn.com/s3/m/04bbe5a0680203d8ce2f2480.png)
第一章 空间几何体(一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a 22的正方体问题。
空间几何体的定义
![空间几何体的定义](https://img.taocdn.com/s3/m/70fd625f26d3240c844769eae009581b6bd9bd92.png)
空间几何体的定义以空间几何体的定义为标题,我们来探讨一下什么是空间几何体以及它们的特征和性质。
在几何学中,空间几何体是指在三维空间中存在的、具有一定形状和特征的实体。
它们是由点、线、面组成的,可以用来描述和研究三维空间中的各种物体。
下面我们将介绍几种常见的空间几何体。
我们来看点。
点是空间中最基本的几何元素,它没有长度、面积和体积,只有位置坐标。
点可以用来表示物体的位置或者作为构成其他几何体的基本单位。
接下来是线。
线是由一系列相邻点连接而成的几何元素,它有长度但没有宽度和高度。
线可以是直线也可以是曲线,它们可以用来表示物体的边界或者连接两个点。
然后是面。
面是由一系列相邻的线连接而成的几何元素,它有长度和宽度但没有高度。
面可以是平面也可以是曲面,它们可以用来表示物体的表面或者分隔空间。
最后是体。
体是由一系列相邻的面连接而成的几何元素,它有长度、宽度和高度。
体可以是立体也可以是曲体,它们可以用来表示物体的实体部分或者整个物体。
在空间几何中,有一些常见的几何体,比如立方体、球体、圆柱体等。
立方体是一个有六个面的几何体,每个面都是一个正方形,它有八个顶点和十二条边。
球体是一个没有棱角的几何体,它的表面是由无数个等距离的点构成的,球体有一个中心点和无限多条半径。
圆柱体是一个由两个平行的圆面和一个连接两个圆面的侧面组成的几何体,它有两个底面、一个侧面、两个底面连接的边和两个圆心。
圆柱体也常见于日常生活中,比如水杯、筒灯等。
除了这些常见的几何体,还有一些更复杂的几何体,比如锥体、棱锥体、棱柱体等。
锥体是一个由一个顶点和一条射线连接的平面图形组成的几何体,它的底面可以是任何形状,常见的锥体有圆锥和三角锥。
棱锥体是一个由一个凸多边形的底面、一个顶点和连接底面顶点和顶点的侧面组成的几何体,它的侧面是由多条三角形构成的。
棱柱体是一个由一个凸多边形的底面、一个与底面平行的凸多边形的顶面和连接底面和顶面的侧面组成的几何体,它的侧面是由多条矩形构成的。
高中数学必修2知识点总结:第一章-空间几何体
![高中数学必修2知识点总结:第一章-空间几何体](https://img.taocdn.com/s3/m/701cd7eabb68a98270fefac4.png)
高中数学必修2知识点总结:第一章-空间几何体(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;(3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底31 3台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案
![高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案](https://img.taocdn.com/s3/m/04466856dd3383c4ba4cd218.png)
第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。
空间几何体知识点总结
![空间几何体知识点总结](https://img.taocdn.com/s3/m/62e2ce5d15791711cc7931b765ce05087732756a.png)
空间几何体知识点总结一、点、线、面1. 点:点是空间的基本要素,没有长、宽、高,只有位置,用字母表示,如A、B、C等。
2. 线:由无限多个点组成的集合,是一种没有宽度只有方向的图形,分为直线和曲线两种。
- 直线:不含任何弯曲的线段,用两个点表示。
- 曲线:含有至少一段弯曲的线段。
3. 面:是由无限多个线组成的集合,是一种有长和宽但没有高度的图形,可以分为平面和曲面两种。
- 平面:没有限定的表面,如白纸的一面。
- 曲面:有曲度且没有边界的平面,常见的如球面、圆柱面等。
二、多面体1. 三棱锥和四棱锥:三棱锥和四棱锥是由底面和三个(四个)三角形面组成的几何体,具有尖顶和底部的多面体,如金字塔就是一种三棱锥。
2. 正多面体:正多面体是每个面都是正多边形的多面体,常见的有正立体角、正方体和正十二面体等。
3. 钝角多面体:钝角多面体是有一些面是钝角形的多面体,常见的有十二面体和二十面体等。
三、棱柱和棱台1. 棱柱:棱柱是以一个多边形为底面,侧面为平行四边形的几何体,根据底面形状的不同,可以分为三棱柱、四棱柱等。
2. 棱台:棱台是以一个多边形为底面,上下底面平行且相等的多面体,也根据底面形状的不同可以分为三棱台、四棱台等。
四、球面1. 球:球是一种特殊的曲面,就是一个没有边界、厚度的曲面,是由所有到一个给定点(球心)距离不大于给定半径的点的集合组成。
2. 球面积和体积:球面积和体积的计算公式分别是4πr^2和(4/3)πr^3,其中r为球的半径。
五、坐标系1. 直角坐标系:直角坐标系是用坐标轴构成的平面直角坐标系,通常用x、y轴表示,原点为坐标轴的交点,可以表示二维平面上的点。
2. 三维坐标系:三维坐标系是在直角坐标系的基础上加上z轴,表示三维空间内的点。
六、平行线、平行面、垂直线1. 平行线:平行线是两条直线在同一个平面内,且没有交点的直线。
2. 平行面:平行面是在三维空间内没有交点的两个平面。
3. 垂直线:垂直线是两条直线的夹角为90°,表示两条线在空间的相互关系。
立体几何第1单元 空间几何体的结构2
![立体几何第1单元 空间几何体的结构2](https://img.taocdn.com/s3/m/2c6c2d4f51e79b89680226f5.png)
第1单元空间几何体的结构〖要点梳理〗1.多面体:多面体是由若干个平面多边形所围成的几何体,围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一面上的两个顶点的线段叫做多面体的对角线。
把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体。
2.有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
3.棱柱的高:如果棱柱的一个底面水平放置,则铅垂线与两底面的交点之间的线段或距离,叫做棱柱的高(通常用h表示)。
4.棱柱的一种分类按底面是三角形、四边形、五边形……的棱柱叫做三棱柱、四棱柱、五棱柱……。
另一种分类(按侧棱与底面的关系分):斜棱柱——侧棱与底面不垂直的棱柱。
直棱柱——侧棱与底面垂直的棱柱。
正棱柱——底面是正多边形的直棱柱。
5. 特殊的四棱柱:平行六面体——底面是平行四边形的棱柱叫做平行六面体。
侧棱与底面垂直的平行六面体叫做直平行六面体。
底面是矩形的直平行六面体是长方体,棱长都相等的长方体是正方体。
6. 棱锥:有一个面是多边形,其余各面都是的一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥,这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
7. 棱锥的高:如果把棱锥的底面水平放置,则顶点与过顶点的铅垂线和底面的交点之间的线段或距离,叫做棱锥的高(通常用h表示)。
8. 正棱锥:如果棱锥的底面是正多边形,并且水平放置,它的顶点又在过正多边形中心的铅垂线上,则这个棱锥叫做正棱锥。
正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高(通常用h′表示)。
空间几何体的定义
![空间几何体的定义](https://img.taocdn.com/s3/m/0e02973ceef9aef8941ea76e58fafab069dc443e.png)
空间几何体的定义以空间几何体的定义为标题,我们将探讨空间几何体的概念、特征和分类。
一、空间几何体的概念空间几何体是三维空间中的物体或形状。
它们由点、线和面组成,并具有一定的形状和大小。
与平面几何体相比,空间几何体具有更多的维度,因此在研究和描述物体的位置、形态和相互关系时更加复杂。
二、空间几何体的特征1. 维度:空间几何体是三维的,具有长度、宽度和高度这三个维度。
这意味着空间几何体在空间中可以沿三个方向移动和变形。
2. 形状:空间几何体可以具有各种形状,如球体、立方体、圆锥体等。
它们的形状取决于它们的特定属性和构造。
3. 体积:空间几何体具有一定的体积,表示它所占据的空间大小。
体积可以通过不同的方法计算,如测量、积分等。
4. 表面:空间几何体具有表面,是几何体内外之间的分界线。
表面可以是平滑的、曲面的或多面体的,取决于几何体的形状和结构。
5. 边界:空间几何体具有边界,是几何体内外之间的界限。
边界可以是封闭的或开放的,取决于几何体的性质。
三、空间几何体的分类根据不同的属性和特征,空间几何体可以被分类为以下几种:1. 点:点是空间中最基本的几何体,它没有体积和形状,只有位置。
点由坐标表示,通常用(x, y, z)表示。
2. 线:线是由无数个点组成的,它是一维的,具有长度但没有宽度和高度。
根据形状和方向,线可以分为直线、曲线、射线等。
3. 面:面是由无数个线组成的,它是二维的,具有长度和宽度但没有高度。
根据形状和曲面特性,面可以分为平面、曲面、圆面等。
4. 体:体是由无数个面组成的,它是三维的,具有长度、宽度和高度。
根据形状和特征,体可以分为球体、立方体、圆柱体等。
除了以上常见的空间几何体外,还存在一些特殊的几何体,如多面体、复杂曲面等。
它们具有更复杂的形状和结构,需要更高级的数学工具和方法进行研究和描述。
总结:空间几何体是三维空间中的物体或形状,具有维度、形状、体积、表面和边界等特征。
根据不同的属性和特征,空间几何体可以被分类为点、线、面和体等。
(完整版)高一数学必修2_第一章空间几何体知识点
![(完整版)高一数学必修2_第一章空间几何体知识点](https://img.taocdn.com/s3/m/2285ad247c1cfad6185fa73a.png)
第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。
(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。
(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。
(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。
3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。
正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。
(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。
空间几何体知识点归纳
![空间几何体知识点归纳](https://img.taocdn.com/s3/m/f1f7c7e8650e52ea541898ab.png)
第一章空间几何体(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE -A'B'C'D'E'或用对角线的端点字母,如五棱柱AD' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P-A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P-A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
《空间几何体》课件
![《空间几何体》课件](https://img.taocdn.com/s3/m/8b20028e6037ee06eff9aef8941ea76e58fa4a26.png)
空间几何体的定义包括多面体、 旋转体和组合体等。
空间几何体的分类
1 2
3
多面体
由多个平面围成的立体图形,如长方体、正方体、三棱锥等 。
旋转体
由一个平面图形围绕其一条边旋转形成的立体图形,如圆柱 、圆锥、圆台等。
组合体
由两个或多个简单几何体组合而成的立体图形,如房屋、机 械零件等。
空间几何体的性质
数学建模
教学辅助
在中学数学教学中,通过《空间几何 体》ppt课件可以帮助学生更好地理 解空间几何体的表面积和体积的计算 方法,提高学习效果。
表面积和体积的计算是数学建模的基 础,通过解决几何问题可以培养数学 思维和解决问题的能力。
04
空间几何体的画法
投影法的基本原理
01
02
03
投影法定义
通过光线将物体投影到平 面上,以呈现物体的轮廓 和形状。
建筑设计中的应用
建筑设计中的空间几何体应用广泛, 如建筑物的外观、内部结构和装饰等 。
建筑设计中的空间几何体可以通过与 自然环境的融合,实现建筑与环境的 和谐统一。
建筑设计中的空间几何体可以创造出 独特的视觉效果,增强建筑的艺术性 和实用性。
建筑设计中的空间几何体可以通过合 理的布局和设计,提高建筑物的空间 利用率和使用舒适度。
主视图、俯视图和左视图相互垂 直,且主视图和俯视图长度相等 ,主视图和左视图高度相等。
空间几何体的画法步骤
确定观察角度
选择合适的角度,以便清晰地呈现几何体的特 征。
绘制投影线
根据投影法的基本原理,确定投影线的方向和 位置。
绘制轮廓线
根据几何体的形状,使用平滑的曲线或直线绘 制轮廓线。
05
空间几何体的实际应用
2020高中数学 第一章 空间几何体 1
![2020高中数学 第一章 空间几何体 1](https://img.taocdn.com/s3/m/419961866aec0975f46527d3240c844769eaa0be.png)
1。
1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征知识点一旋转体名称定义相关概念图形表示法圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫作圆柱轴:旋转轴叫作圆柱的轴;底面:垂直于轴的边旋转而成的圆面叫作圆柱的底面;侧面:平行于轴的边旋转而成的曲面叫作圆柱的侧面;母线:无论旋转到什么位置,不垂直于轴的边都叫作圆柱侧面的母线图中圆柱表示为圆柱O′O圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫作圆锥轴:旋转轴叫作圆锥的轴;底面:垂直于轴的边旋转而成的圆面叫作圆锥的底面;侧面:直角三角形的斜边旋转而成的曲面叫作圆锥的侧面;母线:无论旋转到什么位置,不垂直于轴的边都叫作圆锥侧面的母线图中圆锥表示为圆锥SO圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线图中圆台表示分叫作圆台为圆台O′O球以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫作球体,简称球球心:半圆的圆心叫作球的球心;半径:半圆的半径叫作球的半径;直径:半圆的直径叫作球的直径图中的球表示为球O1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.圆台也可以看作是等腰梯形以其底边的中线所在的直线为轴,各边旋转半周形成的曲面所围成的几何体.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.知识点二简单组合体1.简单组合体的定义由简单几何体组合而成的几何体叫作简单组合体.2.简单组合体的两种基本形式(1)由简单几何体拼接而成;(2)由简单几何体截去或挖去一部分而成.要描述简单几何体的结构特征,关键是仔细观察组合体的组成,结合柱、锥、台、球的结构特征,对原组合体进行分割.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)圆锥截去一个小圆锥后剩余部分是圆台.()(4)半圆绕其直径所在直线旋转一周形成球.( )答案:(1)×(2)×(3)√(4)×2.下列说法不正确的是( )A.圆柱的侧面展开图是一个矩形B.圆锥的侧面展开图是一个扇形C.圆台的侧面展开图是一个梯形D.过球心的截面所截得的圆面的半径等于球的半径解析:圆台的侧面展开图是一个扇环,其余的A、B、D都正确.答案:C3.如图所示,其中为圆柱体的是( )解析:B、D不是旋转体,首先被排除.又A不符合圆柱体的定义,只有C符合,所以选C。
人教B版高中数学必修二《第一章 立体几何初步 1.1 空间几何体 1.1.2 棱柱、棱锥和棱台的结构特征》_8
![人教B版高中数学必修二《第一章 立体几何初步 1.1 空间几何体 1.1.2 棱柱、棱锥和棱台的结构特征》_8](https://img.taocdn.com/s3/m/42936bc5ba0d4a7302763aab.png)
《空间几何体的结构(一)》教学设计1、章节内容:本章学习空间几何体。
课时安排为8课时,本章重点是认识空间几何体的结构特征,画出空间几何体的三视图、直观图,培养空间想象能力、几何直观能力、运用图形语言进行交流的能力。
由空间图形说出其结构特征,由结构特征想象出空间几何体,进行空间图形与其三视图的相互转化。
1.1节安排两课时,学生通过观察图片认识空间几何体;1.2安排两课时,学生可以在平面上画出空间几何体的三视图、直观图;1.3安排两个课时,学生可以了解空间几何体的表面积和体积的计算方法,并能计算简单组合体的表面积与体积,后面一节“实习作业”,一节习题课,本章教学层层递进,学生可以深刻体会空间几何体图形来自于生活实际,又为研究实际物体图形服务。
《空间几何体的结构(一)》是人教版A版新课程高一数学必修2第一章第一节第一课时,这一章是是立体几何学习初步,教师在教学时要层层递进,逐步培养学生的空间立体感。
2、教学理念和教学思路:我觉得新课程标准重在培养学生的动手动脑能力,重在知识的形成过程,而且《空间几何体的结构》是新课程立体几何部分的起始课程,重在逐步培养学生的空间立体感,所以本节教学应加强几何直观的教学,通过实物结合,得出空间几何体的概念。
同时,通过学生激趣学习、类比学习,增强学生参与数学学习的意愿。
其次,在学生学习过程中能够经历观察、归纳、分类、抽象、概括这一过程,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识.3、教材及学生学情分析:空间几何体是新课程立体几何部分的起始课程,新课标改变以往立体几何先研究点、直线、平面,再研究由它们构成的几何体,而改为从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这样设计巧妙解决了立体几何入门难的问题,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.笨节为空间几何体第一课时,本节内容学生在初中数学课程“空间与图形”已有所涉及,但高中阶段要求不同,素材更为丰富,学习的深度和概括程度加大.教学时要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理.本节在教学中学生容易出现以下问题:一是在归纳总结几何体的结构特征时,不能从现实生活空间中抽象出空间图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1空间几何体一、基础知识:1.棱柱的结构特征(1)棱柱的主要结构特征:有两个,其余各面都是,并且每相邻两个的公共边。
棱柱的两个互相平行的面叫做棱柱的,其余各面叫做棱柱的,两侧面的公共边叫做棱柱的。
如果棱柱的一个底面水平放置,则铅垂线与两底面的交点之间的,叫做棱柱的。
(2)棱柱的分类:按侧棱与底面的关系可分为:、直棱柱。
按底面多边形边数可分为:、四棱柱、等;底面是正多边形的直棱柱又称。
2.棱锥的结构特征(1)棱锥的定义:有一个面是多边形,其余各面都是有,这些面围成的几何体叫做棱锥。
(2)正棱锥的定义:如果一个棱锥的底面是,并且顶点在平面内的射影是,这样的棱锥叫做正棱锥。
(3)正棱锥的性质:①各侧面相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等,它叫做正棱锥的。
②棱锥的高、斜高和斜足与底面中心连线组成一个基础直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形。
3.圆柱、圆锥、圆台的特征分别以、、直角梯形中垂直于底面的腰所在的直线为,其余各边旋转一周而形成的曲面围成的几何体分别叫做、、圆台。
(矩形的一边;直角三角形的一直角边;旋转轴;圆柱;圆锥;)其中旋转轴叫做所围成的几何体的;在轴上的这条边叫做这几个几何体的;垂直于轴的边旋转而成圆面叫做这个几何体的底面;旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边叫做侧面的母线。
4.棱台、圆台的特征用平行于底面的平面去截、,截面与底面间的部分叫做、圆台。
5.球一个半圆绕着它的所在直线旋转一周所形成的曲面叫做球面,所围成的几何体叫做球。
形成球的半圆的叫做球心;连结球面上一点和球心的线段叫做球的;连结球面上两点且通过叫做球的直径。
球面被不经过球心的平面截得的面叫做球的,被经过球心的平面截得的面叫做球的。
二、基本题型:1.下列结论中,正确的是.①圆锥的顶点与底面圆周上的任意一点的连线都是圆锥的母线;②矩形绕其一边所在直线旋转形成的曲面所围成的几何体叫圆柱;③直角三角形绕其一边所在直线旋转形成的曲面围成的几何体叫圆锥;④等腰三角形绕其底边上的高所在直线旋转形成的曲面所围成的几何体叫圆锥.2.下列命题中,正确的是①有两个面互相平行,其余各面都是四边形的几何体,叫棱柱;②棱柱的侧棱一定相等,侧面是平行四边形;③两个侧面是矩形的棱柱是直棱柱;④一条侧棱垂直于底面的两条边的棱柱是直棱柱.4.用斜二测画法作水平放置的平面图形的直观图,下列说法正确的是.①三角形的直观图是三角形;②菱形的直观图是菱形;③平行四边形的直观图是平行四边形;④圆的直观图是椭圆;⑤直观图中的线段和原线段长度之比是1:1或1:2.5.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何体是(写出所有正确结论的编号..).①矩形;②不是矩形的平行四边形;③每个面都是等边三角形的四面体;④每个面都是直角三角形的四面体;⑤有三个面为等腰直角三角形,有一个面为等边三角形的四面体。
6.四面体的各个面中是直角三角形的个数最多有个7.如果四面体的四个顶点到平面α的距离相等,则这样的平面α一共有个.8.下列命题中正确的是.①有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱;②四棱锥的四个侧面都可以是直角三角形;③有两个面互相平行,其余各面都是梯形的多面体是棱台.④若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是六棱锥⑤各个面都是三角形的几何体是三棱锥.9.长方体从同一顶点出发的三边的和为14,对角线长为8,那么正确的序号是。
①它的全面积是66 ;②它的全面积是132;③它的全面积不能确定;④这样的长方体不存在.1空间几何体一、基础知识:1.棱柱的结构特征(2)棱柱的主要结构特征:有两个,其余各面都是,并且每相邻两个的公共边。
棱柱的两个互相平行的面叫做棱柱的,其余各面叫做棱柱的,两侧面的公共边叫做棱柱的。
如果棱柱的一个底面水平放置,则铅垂线与两底面的交点之间的,叫做棱柱的。
(面互相平行;四边形;四边形;都互相平行;底面;侧面;侧棱;线段或距离;高)(2)棱柱的分类:按侧棱与底面的关系可分为:、直棱柱。
按底面多边形边数可分为:、四棱柱、等;底面是正多边形的直棱柱又称。
(斜棱柱;三棱柱;五棱柱;正棱柱)6.棱锥的结构特征(4)棱锥的定义:有一个面是多边形,其余各面都是有,这些面围成的几何体叫做棱锥。
(一个公共顶点的三角形)(5)正棱锥的定义:如果一个棱锥的底面是,并且顶点在平面内的射影是,这样的棱锥叫做正棱锥。
(正多边形;底面中心)(6)正棱锥的性质:①各侧面相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等,它叫做正棱锥的。
(斜高)②棱锥的高、斜高和斜足与底面中心连线组成一个基础直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形。
7.圆柱、圆锥、圆台的特征分别以、、直角梯形中垂直于底面的腰所在的直线为,其余各边旋转一周而形成的曲面围成的几何体分别叫做、、圆台。
(矩形的一边;直角三角形的一直角边;旋转轴;圆柱;圆锥;)其中旋转轴叫做所围成的几何体的;在轴上的这条边叫做这几个几何体的;垂直于轴的边旋转而成圆面叫做这个几何体的底面;旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边叫做侧面的母线。
(轴;高;不垂直于轴的边。
)8.棱台、圆台的特征用平行于底面的平面去截、,截面与底面间的部分叫做、圆台。
(棱锥;圆锥;棱台)9.球一个半圆绕着它的所在直线旋转一周所形成的曲面叫做球面,所围成的几何体叫做球。
(直径;球面)形成球的半圆的叫做球心;连结球面上一点和球心的线段叫做球的;连结球面上两点且通过叫做球的直径。
(圆心;半径;球心的线段)球面被不经过球心的平面截得的面叫做球的,被经过球心的平面截得的面叫做球的。
(大圆;小圆)二、基本题型:1.下列结论中,正确的是①②④.①圆锥的顶点与底面圆周上的任意一点的连线都是圆锥的母线;②矩形绕其一边所在直线旋转形成的曲面所围成的几何体叫圆柱;③直角三角形绕其一边所在直线旋转形成的曲面围成的几何体叫圆锥;④等腰三角形绕其底边上的高所在直线旋转形成的曲面所围成的几何体叫圆锥.2.下列命题中,正确的是(②)①有两个面互相平行,其余各面都是四边形的几何体,叫棱柱;②棱柱的侧棱一定相等,侧面是平行四边形;③两个侧面是矩形的棱柱是直棱柱;④一条侧棱垂直于底面的两条边的棱柱是直棱柱.解:这些几何体中。
在每一种分类中都有其名称,容易混淆,最容易混淆的是正四棱柱,如果按底面多边形的边数分,它是四棱柱;如果按侧棱与底面垂直不垂直分类,它是直四棱柱;如果按平行六面体和非平行六面体分类,它是底面正方形的平行六面体。
综合起来,正四棱柱就是底面为正方形的长方体。
而长方体是底面为长方形的直四棱柱,直四棱柱是侧棱垂直于底面的四棱柱,直平行六面体是底面为平行四边形的直棱柱。
4.用斜二测画法作水平放置的平面图形的直观图,下列说法正确的是①③④.①三角形的直观图是三角形;②菱形的直观图是菱形;③平行四边形的直观图是平行四边形;④圆的直观图是椭圆;⑤直观图中的线段和原线段长度之比是1:1或1:2.5.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何体是①③④⑤(写出所有正确结论的编号..).①矩形;②不是矩形的平行四边形;③每个面都是等边三角形的四面体;④每个面都是直角三角形的四面体;⑤有三个面为等腰直角三角形,有一个面为等边三角形的四面体。
解:在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是①矩形如ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如ACB1D1;⑤每个面都是直角三角形的四面体,如AA1DC。
6.四面体的各个面中是直角三角形的个数最多有个(4)7.如果四面体的四个顶点到平面α的距离相等,则这样的平面α一共有个.(7 )解:有两种情况,平面α一侧有一个顶点,另一侧有三个顶点,分别到α的距离相等,这样的α有四个;另一种情况是各有两个顶点在α的两侧,这样的平面有三个。
8.下列命题中正确的是②④.①有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱;②四棱锥的四个侧面都可以是直角三角形;③有两个面互相平行,其余各面都是梯形的多面体是棱台.④若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是六棱锥⑤各个面都是三角形的几何体是三棱锥.点评:解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征.要学会通过反例对概念进行辨析.举例时要注意组合体的情况。
9.长方体从同一顶点出发的三边的和为14,对角线长为8,那么正确的序号是 。
( ④ ) ①它的全面积是66 ; ②它的全面积是132;③它的全面积不能确定 ;④这样的长方体不存在.解:设长方体三边分别为a 、b 、c ,则⎩⎨⎧=++=++,14,82222c b a c b a ⎩⎨⎧+-=-=+⇒,6614,142c c ab c b a 那么a 、b 是方程0)6614()14(22=+-+--c c x c x 的两根,此方程有38)314(32---=∆c <0,说明方程无实根,从而不可能取得实数a 、b 、c ,使之满足条件,故这样的长方体不存在。