钢铁材料的一般热处理
2、金属材料与热处理---钢铁热处理
A1以下的某温度保温适当
时间后,置于空气或水中 冷却的工艺。
螺杆表面的 淬火裂纹
1、回火的目的 ⑴减少或消除淬火内应力,
防止变形或开裂。
⑵获得所需要的力学性能。淬火钢一般硬度高,脆性大,回 火可调整硬度、韧性。
⑶稳定尺寸。淬火M和A’都是非平衡组织,有自发向平衡组
织转变的倾向。回火可使M与A’转变为平衡或接近平衡的组 织,防止使用时变形。
● <0.6%C时,组织为F+S;
● 0.6%C时,组织为S 。
正火温度
正火 实质上是完全退火 的变相形式,只不过 把退火炉内缓冷改为 空冷而言。 正火表示方法为Z。
正火温度
2、正火的目的
⑴ 对于低、中碳钢(≤0.6C%),目的与退火的相同。 ⑵ 对于过共析钢,用于消除网状二次渗碳体,为球化退火作 组织准备。 ⑶ 普通件最终热处理。
下保温,使珠光体中的渗
碳体球化后出炉空冷。
主要用于共析、过共析钢。
球化退火的组织为铁素体基体上 分布着颗粒状渗碳体的组织,称 球状珠光体, 用P球表示。
对于有网状二次渗碳体的过共析 钢,球化退火前应先进行正火,
以消除网状.
球状珠光体
⑷ 去应力退火 将工件缓慢加热(100~150 ℃/小 时)到500~600℃ ,经过一段保温 后,随炉缓慢冷却到300~200 ℃以 下,再出炉空冷。 主要目的:1.消除内应力、稳定 尺寸、减少加工和使用过程中的变
实际加热或冷却时存在着过冷 或过热现象,因此将钢加热 时的实际转变温度分别用
Ac1、Ac3、Accm表示;冷却
时的实际转变温度分别用 Ar1、Ar3、Arcm表示。
常用钢材热处理参数
常用钢材热处理参数常见的钢材热处理参数包括淬火、回火、退火、正火等。
下面将详细介绍它们的温度范围、保温时间以及应用领域。
1. 淬火(quenching)淬火是指将加热至临界温度以上的钢材迅速冷却至室温或低温的热处理过程。
淬火的目的是增加钢材的硬度和强度。
常见的淬火温度范围为800℃到950℃,保温时间通常为数分钟。
钢材的选用因素包括成分、形状和尺寸、要求的性能等。
应用领域包括汽车零部件、工具、刀具等。
2. 回火(tempering)回火是指将淬火后的钢材加热至一个较低的温度范围并持续保温一段时间的热处理过程。
回火使得钢材硬度和强度降低,但同时也提高了其韧性和可塑性。
回火一般在淬火后立即进行。
温度范围通常为150℃到700℃,保温时间则根据要求的性能来确定。
应用领域包括航空航天、机械零部件、轴承等。
3. 退火(annealing)退火是指将钢材加热至足够高的温度并持续保温一段时间,然后缓慢冷却的热处理过程。
退火的目的是消除钢材内部的应力,改善它的可加工性和韧性。
退火温度和保温时间的选择依赖于钢材的成分和形状,一般在600℃到800℃之间。
应用领域涉及到钢材的精密加工,如汽车制造、船舶等。
4. 正火(normalizing)正火是指将加热至临界温度以上的钢材空气冷却至室温的热处理过程。
正火可以消除钢材内部的应力,改善它的可加工性和韧性。
正火温度范围一般为800℃到950℃,保温时间通常为数分钟。
应用领域包括汽车零部件、轴承、机械零件等。
此外,还有其他钢材热处理方法如奥氏体化退火、球化退火等针对不同的钢材类型和应用需求的热处理方法。
具体的热处理参数应根据材料的成分、形状和要求的性能来确定,并结合实际生产条件进行调整。
因此,在进行钢材热处理时,需要进行一系列的试验和分析,以确定最佳的处理参数。
钢的热处理方法
钢的热处理方法钢是一种重要的金属材料,在工业生产和日常生活中得到广泛应用。
为了提高钢的性能和使用寿命,需要对钢进行热处理。
热处理是指通过控制钢材的加热和冷却过程,使钢材的组织和性能发生变化,从而达到预期的效果。
本文将介绍几种常见的钢的热处理方法。
第一种热处理方法是退火。
退火是将钢材加热到一定温度,保持一定时间后,缓慢冷却的过程。
退火可以消除钢材中的应力,改善钢材的塑性和韧性,提高加工性能。
退火分为全退火和局部退火两种。
全退火是将整个钢材进行退火处理,局部退火是只对钢材的某一部分进行退火处理。
退火的温度和时间需要根据钢材的成分和要求来确定。
第二种热处理方法是淬火。
淬火是将钢材加热到临界温度以上,然后迅速冷却的过程。
淬火可以使钢材的组织转变为马氏体组织,从而提高钢材的硬度和强度。
淬火的冷却介质可以是水、油或气体,不同的冷却介质会对钢材的硬度和组织产生影响。
淬火后的钢材通常需要进行回火处理,以提高其韧性和减少内应力。
第三种热处理方法是正火。
正火是将钢材加热到临界温度,然后在空气中冷却的过程。
正火可以使钢材的组织转变为珠光体组织,从而提高钢材的韧性和塑性。
正火的温度和时间需要根据钢材的成分和要求来确定,通常需要多次进行正火处理。
第四种热处理方法是回火。
回火是将淬火后的钢材加热到一定温度,保持一定时间后,缓慢冷却的过程。
回火可以降低钢材的硬度和脆性,提高其韧性和塑性。
回火的温度和时间需要根据钢材的成分和要求来确定,通常需要多次进行回火处理。
第五种热处理方法是表面处理。
表面处理是通过加热和冷却的方式改变钢材表面的组织和性能。
常见的表面处理方法包括渗碳、氮化、镀层等。
渗碳是将钢材加热到高温,使其表面吸收碳元素,从而提高表面的硬度和耐磨性。
氮化是将钢材加热到高温,使其表面吸收氮元素,从而提高表面的硬度和耐腐蚀性。
镀层是将钢材表面涂覆上一层金属或非金属材料,以改变其表面的性质和外观。
以上是几种常见的钢的热处理方法。
四种热处理方式
淬火Quenching钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
淬火工艺将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
常用的淬冷介质有盐水、水、矿物油、空气等。
淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。
通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。
另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。
淬火工艺主要用于钢件。
常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。
随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。
与钢中其他组织相比,马氏体硬度最高。
淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。
为此必须选择合适的冷却方法。
根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。
淬火工件的硬度淬火工件的硬度影响了淬火的效果。
淬火工件一般采用洛氏硬度计,测试HRC硬度。
淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。
厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。
钢材热处理的四种方法
钢材热处理的四种方法
钢材热处理是钢铁制造业中的一项重要工艺,它能够改变钢材的组织结构和性能,增强钢材的强度、韧性和耐磨性。
现在,我们将介绍热处理钢材的四种方法。
1. 火焰淬火
火焰淬火是一种常见的钢材热处理方法,它通过在钢材表面加热的同时,使用水、油或空气急冷的方式来迅速冷却钢材。
这种方法可以提高钢材的硬度和韧性,适用于生产高强度、高韧性的组件。
2. 淬火加回火
淬火加回火是一种将淬火和加回火结合起来的热处理方法。
首先,在高温下进行淬火,然后在适当的温度下进行回火,可以使钢材获得较高的强度和韧性。
这种方法适用于制造高强度和高耐磨性的零件。
3. 退火
退火是一种将钢材加热至一定温度,然后缓慢冷却的热处理方法。
这种方法可以使钢材改善韧性和可塑性,较好地适用于制造需要弯曲、拉伸和冲压的钢材产品。
4. 软化处理
软化处理是一种将钢材加热至高温,然后缓慢冷却的热处理方法。
这种方法可以使钢材获得较高的可塑性和韧性,具有优良的加工和成形
性能。
总的来说,这四种方法是钢材热处理中较为基础和常见的方法。
每种方法都有其特定的优缺点和适用范围,因此在选择热处理方法时,需要结合不同的钢材类型和使用条件来进行选择。
钢材热处理的四种方法
钢材热处理的四种方法钢材热处理是指通过加热、保温和冷却等一系列工艺,改变钢材的组织和性能,以达到一定的技术要求。
在工程实践中,钢材热处理是非常重要的一环,可以有效提高钢材的硬度、强度、韧性和耐磨性等性能。
下面将介绍钢材热处理的四种常见方法。
首先,淬火是一种常见的钢材热处理方法。
淬火是指将钢材加热至临界温度以上,然后迅速冷却到室温或低温,使其组织发生相变,从而获得高硬度和高强度。
淬火是通过快速冷却来固溶过饱和的碳元素,形成马氏体组织,从而提高钢材的硬度。
淬火后的钢材具有较高的表面硬度和内部强度,适用于制作刀具、弹簧等工件。
其次,回火是钢材热处理的另一种重要方法。
回火是指将淬火后的钢材加热至较低的温度,保温一定时间后再冷却,目的是消除淬火产生的残余应力和改善硬度。
回火可以使钢材获得适当的硬度和韧性,提高其耐磨性和抗断裂性能,适用于制作各种机械零件和工具。
另外,正火是一种钢材热处理方法,也称为退火。
正火是将钢材加热至适当温度,保温一定时间后缓慢冷却,目的是使钢材内部组织发生均匀的晶粒再结晶和析出碳化物,从而获得较好的韧性和塑性。
正火后的钢材具有较低的硬度和较高的韧性,适用于制作焊接零件和需要较高韧性的零件。
最后,固溶处理是一种钢材热处理方法,主要用于不锈钢和高温合金等特殊钢材。
固溶处理是将钢材加热至固溶温度,然后保温一定时间后迅速冷却,目的是溶解钢材中的合金元素和固溶相,从而提高钢材的塑性和加工性能。
固溶处理后的钢材具有较好的塑性和韧性,适用于制作航空发动机零件和化工设备等高温高压工件。
综上所述,钢材热处理的四种方法分别是淬火、回火、正火和固溶处理。
每种方法都有其适用的钢材和工件类型,通过合理选择和控制热处理工艺参数,可以使钢材获得理想的组织和性能,满足不同工程要求。
在实际生产中,需要根据具体情况选择合适的热处理方法,以确保钢材具有良好的性能和可靠的使用寿命。
钢铁材料的一般热处理
回火
低温回火
回火 类别
中温回火
高温回火
调质
人工时效 时效 处理
自然时效
①获得所需的力学性能。在通常情况
将淬火后的钢件加热到临界温度以 下,保温一段时间,然后 在空气 或油中冷却 回火是紧接着淬火以后进行的,也 是热处理的最后一道工序
下,零件淬火后的强度和硬度有很大提 高,但塑性和韧性却有明显降低, 而零 件的实际工作条件要求有良好的强度和 韧性。选择适当的回火温度进行回火 后,可以获得所需的力学性能 ②稳定组织,稳定尺寸
钢铁材料的一般热处理
名称
热处理过程
热处理目的
退火
完全退火
退火 类别
球化退火
①降低钢的硬度,提高塑性,以利于切
削加工及冷变形加工
将钢件加热到一定温度,保温一定 ②细化晶粒,均匀钢的组织,改善钢的
时间,然后缓慢冷却到室温
性能及为以后的热处理作准备
③消除钢中的内应力。防止零件加工后
变形及开裂 将钢件加热到临界温度(不同钢材
等 将钢件放在感应器中,感应器在一源自定频率的交流电的作用下产生磁场,钢件在磁场作用下产生感应电 流,使钢件表面迅 速加热(2一
表面感应淬 火
lOmin)到淬火温度,这时立即将水 喷射到钢件表面。 经表面感应淬火的零件,表面硬而
耐磨,而心部保持着较好的强度和 韧性。
表面感应淬火适用于中碳钢和中等
含碳量的合金钢件
随炉冷却)
变形 去应力退火适用于各种铸件、锻
件、焊接件和冷挤压件等
正火
将钢件加热到临界温度以上40~60 ºC,保温一定时间,然后在空气中 冷却
①改善组织结构和切削加工性能 ②对机械性能要求不高的零件,常用正 火作为最终热处理 ③消除内应力
常用钢热处理工艺
常用钢热处理工艺热处理是一种通过改变金属结构来改善其力学性能的方法。
常用钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
下面对这几种常用钢热处理工艺进行详细介绍。
1. 退火退火是指将钢加热到一定温度,然后缓慢冷却。
退火工艺分为完全退火和等温退火两种。
完全退火是将钢材加热至超过临界温度,然后慢慢降温。
等温退火是将钢材加热至超过临界温度,然后在等温时间内,使钢材的温度均匀,从而使钢材的组织变得均匀,于是提高了钢材的韧性。
2. 正火正火是将钢加热到一定温度,然后快速冷却。
正火一般分为低温正火,中温正火和高温正火三种。
低温正火使钢材的硬度提高,但是韧性降低。
高温正火使钢材的韧性提高,但是硬度降低。
中温正火平衡了钢材的硬度和韧性。
3. 淬火淬火是指将钢加热到超过临界温度,然后快速冷却。
淬火一般分为油淬、水淬和气淬三种。
油淬适用于要求较低的钢材,水淬适用于要求较高的钢材,气淬适用于要求最高的钢材。
淬火后钢材的硬度很高,但是韧性降低,此时需要回火来消除内部应力,提高钢材的韧性。
4. 回火回火是将淬火后的钢在一定温度下加热一段时间,然后由于自然冷却所形成的工艺。
回火分为低温回火和高温回火两种。
低温回火提高了钢材的韧性,但是硬度降低。
高温回火提高了钢材的韧性,但是硬度降低。
5. 表面淬火表面淬火是一种特殊的热处理工艺,用于提高钢材的表面硬度和耐磨性。
表面淬火和淬火不同的是,只在钢材表面进行加热和快速冷却。
这种技术对钢材表面的耐磨性提高很大,但是对钢材硬度的提高不大。
总之,钢材热处理是提高钢材力学性能的重要方法,常用的钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
选择适当的热处理工艺可以使钢材达到最佳的机械性能。
热处理对钢铁材料的热膨胀系数的影响
热处理对钢铁材料的热膨胀系数的影响热处理对钢铁材料的性能有着重要的影响,其中之一就是对热膨胀系数的影响。
热膨胀系数是描述物体在温度变化时线膨胀或收缩程度的物理量。
钢铁材料在热处理过程中经历了晶体结构的改变,从而导致热膨胀系数的变化。
本文将对热处理对钢铁材料热膨胀系数的影响进行探讨。
一、钢铁材料热处理的概述热处理是通过加热和冷却的方式对钢铁材料进行物理和化学性能的改变,以达到提高材料硬度、强度、韧性等方面的目的。
常用的热处理方法包括淬火、回火、正火、退火等。
这些热处理方法能够改变钢铁材料内部的晶体结构,从而使得材料性能发生变化。
二、热处理对钢铁材料热膨胀系数的影响钢铁材料在热处理过程中会发生晶界的变化和晶格参数的改变,这些变化会直接影响材料的热膨胀系数。
通常情况下,经过热处理后的钢铁材料的热膨胀系数相对于未经处理的材料会发生变化。
热处理中的淬火过程会使钢铁材料中的奥氏体相转变为马氏体相。
由于马氏体相具有较高的硬度和脆性,这种结构的钢铁材料具有较小的热膨胀系数。
相反,回火过程是将淬火后的钢铁材料加热到一定温度并保温一段时间,使马氏体相分解为较软和韧性较好的渗碳体和残留奥氏体。
这些结构的钢铁材料通常具有较大的热膨胀系数。
因此,在淬火和回火过程中,热处理会对钢铁材料的热膨胀系数产生显著影响。
另外,热处理还会改变钢铁材料中的晶格参数。
晶格参数是描述晶体结构的重要参数,也是影响热膨胀系数的一个因素。
经过热处理后,钢铁材料的晶格参数会发生改变,而晶格参数的变化又会直接影响热膨胀系数。
由于热处理导致的晶格参数的改变是钢铁材料内部晶体结构的重构,因此热处理对钢铁材料的热膨胀系数具有重要的影响。
三、热处理参数对热膨胀系数的影响除了热处理过程本身对钢铁材料的热膨胀系数产生影响外,热处理参数也对热膨胀系数具有一定的影响。
热处理参数包括加热温度、保温时间等。
一般而言,热处理温度越高,钢铁材料的晶体结构就越容易发生变化,热膨胀系数也会随之变大。
钢的五种热处理工艺
钢的五种热处理工艺热处理工艺——外表淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度〔700度〕以下,保温一段时间后再在空气中冷却叫回火。
2、把金属材料加热到相变温度〔800度〕以上,保温一段时间后再在炉中缓慢冷却叫退火。
3、把金属材料加热到相变温度〔800度〕以上,保温一段时间后再在特定介质中〔水或油〕快速冷却叫淬火。
◆外表淬火•钢的外表淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的外表层承受着比心部更高的应力。
在受摩擦的场合,外表层还不断地被磨损,因此对一些零件外表层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有外表强化才能满足上述要求。
由于外表淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,外表淬火主要有感应加热外表淬火、火焰加热外表淬火、电接触加热外表淬火等。
感应外表淬火后的性能:1.外表硬度:经高、中频感应加热外表淬火的工件,其外表硬度往往比普通淬火高2~3单位〔HRC〕。
2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。
这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比拟高,外表的高的压应力等综合的结果。
3.疲劳强度:高、中频外表淬火使疲劳强度大为提高,缺口敏感性下降。
对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。
一般硬化层深δ=〔10~20〕%D。
较为适宜,其中D。
为工件的有效直径。
◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢那么是粒状珠光体。
总之退火组织是接近平衡状态的组织。
•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。
热处理的4种方法
钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。
(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。
对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。
从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。
退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。
电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。
在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。
因此要严格控制加热温度和加热速度等。
图2-2为退火和正火的加热温度范围。
什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。
当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。
冷加工塑性变形较大时,还会产生较大内应力。
这种现象称为冷加工硬化。
利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。
钢铁材料及热处理
热处理在钢铁材料中的应用
提高钢铁材料的机械性能
通过热处理可以改变钢铁材料的内部 组织结构,从而提高其强度、硬度和 韧性等机械性能。
提高钢铁材料的耐磨性
通过热处理可以细化钢铁材料的晶粒, 从而提高其硬度和耐磨性。
提高钢铁材料的耐腐蚀性
通过热处理可以改变钢铁材料的表面 结构和化学成分,从而提高其耐腐蚀 性。
钢铁材料在未来的应用前景与挑战
高端装备制造领域
随着高端装备制造业的发展,对 钢铁材料的性能要求越来越高, 需要钢铁材料具备更高的强度、
韧性、耐腐蚀等性能。
新能源领域
新能源产业的发展对钢铁材料提 出了新的要求,如风电设备、核 电设备等需要钢铁材料具备更高
的耐高温、耐辐射等性能。
环保领域
随着环保意识的提高,钢铁材料 在环保领域的应用逐渐增多,如 环保设备、污水处理设备等,需 要钢铁材料具备更高的耐腐蚀、
钢铁材料及热处理
contents
目录
• 钢铁材料简介 • 钢铁材料的热处理技术 • 钢铁材料的性能优化 • 钢铁材料的发展趋势与挑战
01
钢铁材料简介
钢铁材料的定义与分类
定义
钢铁材料是指以铁元素为主要成 分,经过冶炼、加工和热处理后 得到的金属材料。
分类
钢铁材料可以分为生铁、铸铁、 钢和铁合金等。
热处理过程中,金属材料内部的原子或分子的运动速度会随着温度的升高而加快 ,当温度降低时,原子或分子的运动速度会减缓。通过控制加热和冷却速度,可 以控制原子或分子的运动速度和排列方式,从而改变材料的内部组织结构。
热处理的主要工艺方法
退火
将金属材料加热到适当温度后保温一段时间,然后缓慢冷 却至室温。退火可以消除金属材料的内应力、降低硬度并 提高塑性。
钢材的热处理有以下几个方法
钢材的热处理有以下几个方法※均质退火处理简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。
加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。
※完全退火处理完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。
※球化退火处理球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。
常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。
使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。
※软化退火处理软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。
此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。
大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
※弛力退火处理弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。
简述钢的普通热处理
钢的普通热处理方法:
1.正火:将钢加热到适当温度,保温一段时间后取出在空气中
冷却。
正火的主要应用范围有:用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理;用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理;用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织;用于铸钢件,可以细化铸态组织,改善切削加工性能;用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向;用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
2.淬火:将钢加热至高温后快速冷却,使其硬化。
淬火的主要
目的是提高钢的硬度、强度和耐磨性。
3.回火:将淬火后的钢加热到一定温度并保温一段时间,然后
冷却。
回火的主要目的是消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。
4.退火:将钢加热至适当温度并保温一段时间后缓慢冷却。
退
火的主要目的是调整硬度以方便切削加工,消除内应力,稳定尺寸,防止加工中变形。
退火还能细化晶粒,改善组织。
5.表面热处理:包括表面淬火和火焰加热表面淬火等。
表面热
处理的主要目的是提高材料表面的硬度和耐磨性。
6.化学热处理:包括渗碳、渗氮、碳氮共渗等。
化学热处理的
主要目的是改变材料表面的化学成分,以提高其耐腐蚀性和耐磨性。
钢材常用的热处理方法及常见零件的热处理
钢材常用的热处理方法及常见零件的热处理工艺一、钢材常用的热处理方法1、正火钢的正火就是将钢加热到适当温度,保温一定时间,然后在空气中进行冷却。
正火的目的是为了材料的组织均匀,增加强度与靭性,消除粗切削加工后的加工硬化现象,改善切削加工性能,并为其后的淬火做细化晶粒的组织准备。
2、淬火钢的淬火就是将钢加热到临界温度以上,保持一定时间,然后在适当的淬火介质中进行冷却,以获得较好的组织结构和性能。
钢经过淬火后,其硬度和强度均显著提高。
钢的加热情况可以其灼热的颜色来判定。
钢加热温度的选择见表1。
钢经过淬火,虽然会提高其硬度和强度,但由于淬火会产生内应力使钢变脆,所以淬火后必须进行回火。
3、回火钢的回火就是将钢件淬火后再加热到适当温度,并保温一定时间,然后在空气中或在水、油等介质中冷却到室温。
回火的目的是为了消除淬火时产生的内应力,减少脆性,提高钢的塑性和韧性,改善加工性能。
钢的回火分为高温回火、中温回火和低温回火3种。
碳素工具钢的回火温度见表2。
表2碳素工具钢的回火温度4、退火钢的退火就是将钢加热到临界温度以上,保温适当时间,然后在炉中缓缓冷却。
退火的目的是为了消除内应力和组织不均匀及晶粒粗大等现象,降低硬度,消除坯件的冷硬现象,提岛切削加工性能。
碳钢的退火规范见表3。
表3碳钢的退火规范注:临界温度是指在该温度下,钢的组织发生了变化。
二、几种常见零件的热处理1、齿轮机床齿轮的热处理见表3。
2、蜗轮蜗轮的热处理见表43、丝杠丝杠广泛应用于机床和各种机械的传动机构中。
丝杠传动能保证直线移动有较高的精确性和均匀性。
为此,丝杠必须具有一定的强度及较高的耐磨性和精度保持性。
丝杠的材料必须具有足够的机械性能和良好的切削加工性。
经过热处理后,应具有较高的硬度和最小的变形。
为了避免弯曲变形,丝杠的热处理通常都在井式炉中进行。
丝杠如果变形,必须进行校直(并且,最好是热校直)。
但是经过校直的丝杠,必须进行彻底的消除内应力的处理。
常用的钢材热处理方法[精品]
常用的钢材热处理方法一.淬火将钢件加热到临界温度以上40~60℃,保温一定时间,急剧冷却的热处理方法,称为淬火。
常用急剧冷却的介质有油、水和盐水溶液。
淬火的加温温度、冷却介质的热处理规范,见表<常用钢的热处理规范>.淬火的目的是:使钢件获得高的硬度和耐磨性,通过淬火钢件的硬度一般可达HRC60~65,但淬火后钢件内部产生了内应力,使钢件变脆,因此,要经过回火处理加以消除。
钢件的淬火处理,在[wiki]机械[/wiki]制造过程中应用比较普遍,它常用的方法有:1.单液淬火:将钢件加热到淬火温度,经保温一定时间后,在一种冷却液中冷却,这种热处理方法,称为单液淬火。
它适用于形状简单、技术要求不高的碳钢或合金钢,工件直径或厚度大于5~8mm的碳素钢,选用盐水或水中冷却;合金钢选用油冷却。
在单液淬火中,水冷容易发生变形和裂纹;油冷容易产生硬度不够或不均的现象。
2.双液淬火:将钢件加热到淬火温度,经保温后,先在水中快速冷却至300~400℃,在移入油中冷却,这种处理方法,称为双液淬火。
形状复杂的钢件,常采用此方法。
它既能保证钢件的硬度,又能防止变形和裂纹。
缺点是操作难度大,不易掌握。
3.火焰表面淬火:用乙炔和氧气混合燃烧的火焰喷射到工件表面,并使其加热到淬火温度,然后立即用水向工件表面喷射,这种处理方法,称为火焰表面淬火。
它适用于单件生产、要求表面或局部表面硬度高和耐磨的钢件,缺点是操作难度大。
4.表面感应淬火:将钢件放人感应器内,在中频或高频交流电的作用下产生交变磁场,钢件在磁场作用下产生了同频率的感应电流,使钢件表面迅速加热(2-10s)至淬火温度,立即把水喷射到钢件表面。
这种热处理方法,称为表面感应淬火。
经表面感应淬火的零件,表面硬而耐磨,而内部有较好的强度和韧性。
这种方法适用于中碳钢和中等含碳量的合金钢件。
表面感应淬火根据所采用的电流频率的不同,可分为高频、中频和工频淬火三种。
高频淬火电流频率为100~150kHz,淬硬层深1~3mm,它适用于齿轮、花键轴、活塞和其它小型零件的淬火;中频淬火电流频率为500~10000Hz,淬硬层深3—10mm,它适用于曲轴、钢轨、机床导轨、直径较大的轴类和齿轮等;工频淬火电流频率为50Hz,淬硬层一般大于10mm,适用于直径在300mm以上的大型零件的淬火,如冷轧辊等。
钢铁热处理工艺流程
保温
在达到加热温度后,保持钢铁材料在一定温度范围内一段时间,使材料内部的原子和晶体发生再分布。
5
冷却
保温后,对钢铁材料进行冷却处理,冷却方式包括自然冷却、油冷却、水冷却等。
6
检验
对热处理后的钢铁材料进行质量检验,包括硬度测试、金相组织观察等。
7
包装与入库
合格产品经过包装后入库,等待进一步加工或使用。
钢铁热处理工艺流程
序号
工艺流程
描述1Leabharlann 预处理清洗钢铁材料,去除表面污垢或氧化层,包括化学清洗(酸洗、碱洗)和机械清洗(喷砂、抛光)。
2
切割与机加工
对预处理后的钢铁材料进行切割和机加工,获得所需的形状和尺寸。
3
加热
将钢铁材料加热至预定温度,根据材料种类和性能要求选择适当的加热方式(高频感应加热、盐浴炉加热、电阻加热等)。
钢材热处理的方法
钢材热处理的方法
钢材热处理的方法:
①正火处理将钢材加热至Ac3点以上五十至八十摄氏度保温一段时间后出炉空冷;
②退火处理分为完全退火球化退火等前者加热至Ac3以上四十至六十摄氏度后者Accm;
③淬火处理先将钢材快速加热至Ac1或Ac3以上三十至五十摄氏度保温后迅速冷却;
④淬火介质有水油盐浴等根据材料尺寸形状选择合适冷却速度防止变形开裂产生;
⑤回火处理淬火后紧接着进行将钢材加热到临界点以下某一温度保温后冷却下来;
⑥回火温度越高硬度越低塑性韧性越好可根据实际需求调整至最佳力学性能状态;
⑦调质处理即淬火加高温回火组合工艺广泛应用于制造重要机械零件如齿轮曲轴;
⑧时效处理用于提高马氏体不锈钢沉淀硬化型不锈钢强度硬度处理后需保温冷却;
⑨扩散退火针对铸锭锻件消除枝晶偏析促进合金元素均匀分布改善铸造结构缺陷;
⑩化学热处理包括渗碳氮化碳氮共渗等向钢材表面渗入碳氮原子提高耐磨耐蚀性能;
⑪渗碳处理后需淬火回火使表面形成高硬度马氏体心部保持较高韧性的组织状态;
⑫在整个热处理过程中需严格控制加热速度保温时间冷却方式确保获得预期效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.
时效处理
(1)人工时效
将经过淬火的钢件加热到100~160℃,经过长时间的保温,随后冷却
消除内应力,减少零件变形,稳定尺寸,对精度要求较高的零件更为重要
(2)自然时效
将铸件放在露天;钢件(如长轴、丝杠等)放在海水中或长期悬吊或轻轻敲打要经自然时效的零件,最好先进行粗加工
7.化学热处理
将钢件放到含有某些活性原子(如碳、氮、铬等)的化学介质中,通过加热、保温、冷却等方法,使介质中的某些原子渗入到钢件的表层,从而达到改变钢件表层的化学成分,使钢件表层具有某种特殊的性能
化
学
热
处
理
(1)钢渗的碳
将碳原子渗入钢件表层
常用于耐磨并受冲击的零件,如:轮、齿轮、轴、活塞销等
使表面具有高的硬度(HRC60~65)和耐磨性,而中心仍保持高的韧性
钢铁材料的一般热处理
名称
热处理过程
热处理目的
1.退火
将钢件加热到一定温度,保温一定时间,然后缓慢冷却到室温
①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工
②细化晶粒,均匀钢的组织,改善钢的性能及为以后的热处理作准备
③消除钢中的内应力。防止零件加工后变形及开裂
退
火
类
别
(1)完全退火
将钢件加热到临界温度(不同钢材临界温度也不同,一般是710-750℃,个别合金钢的临界温度可达800—900ºC)以上30—50ºC,保温一定时间,然后随炉缓慢冷却(或埋在沙中冷却)
(2)钢渗的氮
将氮原子渗入钢件表层
常用于重要的螺栓、螺母、销钉等零件
提高钢件表层的硬度、耐磨性、
耐蚀性
类
别
(3)钢的氰化
将碳和氮原子同时渗人到钢件表层适用于低碳钢、中碳钢或合金钢零件,也可用于高速钢刀具
提高钢件表层的硬度和耐磨性
8.发黑
将金属零件放在很浓的碱和氧化剂溶液中加热氧化,使金属零件表面生成一层带有磁性的四氧化三铁薄膜常用于低碳钢、低碳合金工具钢
单液淬火只适用于形状比较简单,技术要求不太高的碳素钢及合金钢件。淬火时,对于直径或厚度大于5~8mm的碳素钢件,选用盐水或水冷却;合金钢件选用油冷却
(2)双液淬火
将钢件加热到淬火温度,经过保温以后,先在水中快速冷却至300—400ºC,然后移人油中冷却
(3)火焰表面淬火
用乙炔和氧气混合燃烧的火焰喷射到零件表面,使零件迅速加热到淬火温度,然后立即用水向零件表面喷射,火焰表面淬火适用于单件或小批生产、表面要求硬而耐磨,并能承受冲击载荷的大型中碳钢和中碳合金钢件,如曲轴、齿轮和导轨等
(4)表面感应淬
火
将钢件放在感应器中,感应器在一定频率的交流电的作用下产生磁场,钢件在磁场作用下产生感应电流,使钢件表面迅速加热(2一lOmin)到淬火温度,这时立即将水喷射到钢件表面。
经表面感应淬火的零件,表面硬而耐磨,而心部保持着较好的强度和韧性。
表面感应淬火适用于中碳钢和中等含碳量的合金钢件
4.回火
①改善组织结构和切削加工性能
②对机械性能要求不高的零件,常用正火作为最终热处理
③消除内应力
3.淬火
将钢件加热到淬火温度,保温一段时间,然后在水、盐水或油(个别材料在空气中)中急速冷却
①使钢件获得较高的硬度和耐磨性
②使钢件在回火以后得到某种特殊性能,如较高的强度、弹性和韧性等
淬
火
类
别
(1)单液淬火
将钢件加热到淬火温度,经过保温以后,在一种淬火剂中冷却
由于材料和其他因素的影响,发黑层的薄膜颜色有蓝黑色、黑色、红棕色、棕褐色等,其厚度为0.6~O.8µm
防锈、增加金属表面美观和光泽,消除淬火过程中的应力
②稳定组织,稳定尺寸
③消除内应力
(1)低温回火
将淬硬的钢件加热到150-50ºC,并在这个温度保温一定时间,然后在空气中冷却,低温回火多用于切削刀具、量具、模具、滚动轴承和渗碳零件等
消除钢件因淬火而产生的内应力
类
别
(1)中温回火
将淬火的钢件加热到350~450%,经保温一段时间冷却下来,一般用于各类弹簧及热冲模等零件
使钢件获得较高的弹性、一定的韧性和~650ºC,经过保温以后冷却,主要用于要求高强度、高韧性的重要结构零件,如主轴、曲轴、凸轮、齿轮和连杆等
使钢件获得较好的综合力学性能,即较高的强度和韧性及足够的硬度,消除钢件因淬火而产生的内应力
5.调质
将淬火后的钢件进行高温(500~600ºC)回火多用于重要的结构零件,如轴类、齿轮、连杆等调质一般是在粗加工之后进行的
(3)去应力退火
将钢件加热到500~650ºC,保温一定时间,然后缓慢冷却(一般采用随炉冷却)
消除钢件焊接和冷校直时产生的内应力,消除精密零件切削加工时产生的内应力,以防止以后加工和用过程中发生变形
去应力退火适用于各种铸件、锻件、焊接件和冷挤压件等
2.正火
将钢件加热到临界温度以上40~60ºC,保温一定时间,然后在空气中冷却
细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件
(2)球化退火
将钢件加热到临界温度以上20~30ºC,经过保温以后,缓慢冷却至500℃以下再出炉空冷
降低钢的硬度,改善切削性能,并为以后淬火作好准备,以减少淬火后变形和开裂,球化退火适用于含碳量(质量分数)大于O.8%的碳素钢和合金工具钢
将淬火后的钢件加热到临界温度以下,保温一段时间,然后在空气或油中冷却
回火是紧接着淬火以后进行的,也是热处理的最后一道工序
①获得所需的力学性能。在通常情况下,零件淬火后的强度和硬度有很大提高,但塑性和韧性却有明显降低,而零件的实际工作条件要求有良好的强度和韧性。选择适当的回火温度进行回火后,可以获得所需的力学性能