人教版八年级数学下册《矩形的判定》练习

合集下载

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。

人教版八年级下册数学第18章18.2.2矩形的判定习题课件

人教版八年级下册数学第18章18.2.2矩形的判定习题课件

精彩一题 12.【中考·兰州】阅读下面材料:
在数学课上,老师请同学们思考如下问题:如图①,我 们把一个四边形ABCD的四边中点E,F,G,H依次连 接起来得到的四边形EFGH是平行四边形吗? 小敏在思考问题时,有如下思路:连接AC.
精彩一题 结合小敏的思路作答: (1)若只改变图①中四边形ABCD的形状(如图②),
习题链接
提示:点击 进入习题
1
相等;相等;互相平 分
2D
6A 7C
3 见习题
4
平行四边形;直角; 四边形
8 见习题 9A
5C
10 见习题
答案显示
习题链接 11 见习题 12 见习题
答案显示
新知基本功
1.对角线__相__等____的平行四边形是矩形; 对角线__相__等____且___互__相__平__分_____的四边形是矩形.
素质一练通
11.如图,在矩形ABCD中,AB=2,BC=5.点E,P分别在 AD,BC上,且DE=BP=1,AP,BE相交于点H,CE, DP相交于点F.
(1)判断△BEC的形状,并说明理由; 解:△BEC是直角三角形,且∠BEC=90°. 理由:∵四边形ABCD是矩形, ∴∠ADC=∠EAB=90°,AD=BC=5,CD=AB=2. ∵DE=1,∴AE=4.
新知基本功
5.【中考·崇左】如图,在矩形ABCD中,AB>BC,点E,
F,G,H分别是边DA,AB,BC,CD的中点,连接EG,
FH,则图中的矩形共有( C )
A.5个
B.8个
C.9个
D.11个
新知基本功
6.【中考·重庆】下列命题正确的是( A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形

初二数学矩形的判定作业练习题(含答案)

初二数学矩形的判定作业练习题(含答案)

初二数学矩形的判定作业练习题一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是( )A .两条对角线互相平分B .一组邻边相等C .两条对角线相等D .两条对角线互相垂直2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A .AB CD = B .AC BD = C .AB BC = D .AC BD ⊥3.平行四边形的四个内角平分线相交所构成的四边形一定是( )A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是( )A .测量其中三个角是否都为直角B .测量对角线是否相等C .测量两组对边是否分别相等D .测量对角线是否相互平分5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 .8.如图,在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 (填写一个即可).9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 .10.对角线 的四边形是矩形.三.解答题(共3小题)11.在平行四边形ABCD中,6AD=.求证:平行四边形ABCD是矩形.AC=,8AB=,1012.如图,AC是ABCD=,连接DEY的对角线,延长BA至点E,使AE AB(1)求证:四边形ACDE是平行四边形;(2)连接EC交AD于点O,若2∠=∠,求证:四边形ACDE是矩形.EOD B13.如图,AD是ABC=.AE BC,BE交AD于点F,且AF DF∆的中线,//(1)求证:AFE DFB∆≅∆;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足条件_______________时,四边形ADCE是矩形.答案与解析一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直【分析】根据平行四边形的判定(对角线互相平分),矩形的判定(对角线互相平分且相等),菱形的判定(对角线互相平分且垂直或一组邻边相等的平行四边形)判断即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.2.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是() A.AB CD⊥=D.AC BD=B.AC BD=C.AB BC【分析】由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.【解答】解:需要添加的条件是AC BD=;理由如下:Q四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,AC BDQ,=∴四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.3.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形【分析】由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.【解答】解:如图;Q四边形ABCD是平行四边形,∴∠+∠=︒;DAB ADC180Q、DH平分DABAH∠、ADC∠,EHG∠=︒;∴∠+∠=︒,即90HAD HDA90同理可证得:90∠=∠=∠=︒;HEF EFG FGH故四边形EFGH是矩形.故选:D.4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B 、测量对角线是否相等,不能判定平行四边形;C 、测量两组对边是否分别相等,能判定平行四边形;D 、对角线是否相互平分,能判定平行四边形;故选:A .5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠【分析】本题考查的是矩形的判定,平行四边形的性质有关知识,利用矩形的判定,平行四边形的性质对选项进行逐一判断即可解答.【解答】解:A .根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;B .根据对角线相等的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;C .不能判定平行四边形ABCD 为矩形,故此选项符合题意;D .平行四边形ABCD 中,//AB CD ,180BAD ADC ∴∠+∠=︒,又BAD ADC ∠=∠Q ,90BAD ADC ∴∠=∠=︒,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意. 故选:C .二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 对角线相等或有一个直角;【分析】根据矩形的判断方法即可解决问题;【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故答案为对角线相等或有一个直角;7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 对角线相等的平行四边形是矩形 .【分析】根据矩形和平行四边形的判定方法填空即可.【解答】解:先测量两组对边是否分别相等,可判定是否是平行四边形,然后测量两条对角线是否相等可判定是否是矩形,所以这样做的依据是:对角线相等的平行四边形是矩形,故答案为:对角线相等的平行四边形是矩形.8.在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 AC BD =或有个内角等于90度 (填写一个即可).【分析】因为在四边形ABCD 中,对角线AC 与BD 互相平分,所以四边形ABCD 是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:Q 对角线AC 与BD 互相平分,∴四边形ABCD 是平行四边形,要使四边形ABCD 成为矩形,需添加一个条件是:AC BD =或有个内角等于90度.故答案为:AC BD =或有个内角等于90度.9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 矩形 .【分析】首先利用外角性质得出B ACB FAE EAC ∠=∠=∠=∠,进而得到//AE CD ,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE 是平行四边形,即可求出四边形ADCE 是矩形.【解答】证明:AB AC =Q ,B ACB ∴∠=∠,Q 点D 为BC 的中点,90ADC ∴∠=︒,AE Q 是BAC ∠的外角平分线,FAE EAC ∴∠=∠,B ACB FAE EAC ∠+∠=∠+∠Q ,B ACB FAE EAC ∴∠=∠=∠=∠,//AE CD ∴,又//DE AB Q ,∴四边形AEDB 是平行四边形,AE ∴平行且等于BD ,又BD DC =Q ,AE ∴平行且等于DC ,故四边形ADCE 是平行四边形,又90ADC ∠=︒Q ,∴平行四边形ADCE 是矩形.即四边形ADCE 是矩形.故答案为矩形.10.对角线 互相平分且相等 四边形是矩形.【分析】根据矩形的判定可得对角线互相平分且相等的四边形为矩形.【解答】解:由对角线互相平分且相等的四边形为矩形可知,故填:互相平分且相等.三.解答题(共3小题)11.在平行四边形ABCD 中,6AB =,10AC =,8AD =.求证:平行四边形ABCD 是矩形.【分析】根据勾股定理的逆定理得到90ABC ∠=︒,从而判定矩形.【解答】解:10AC =Q ,10BD AC ∴==,6AB =Q ,8AD =,222AC AB BC ∴=+,90ABD ∴∠=︒,∴平行四边形ABCD 是矩形.12.如图,AC 是ABCD Y 的对角线,延长BA 至点E ,使AE AB =,连接DE(1)求证:四边形ACDE 是平行四边形;(2)连接EC 交AD 于点O ,若2EOD B ∠=∠,求证:四边形ACDE 是矩形.【分析】(1)由平行四边形的性质可得AB CD =,//AB CD ,由一组对边平行且相等的四边形是平行四边形可证四边形ACDE 是平行四边形;(2)由三角形的外角可证ADC OCD ∠=∠,可得OC OD =,即可得AD EC =,可证四边形ACDE 是矩形.【解答】证明:(1)Q 四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,AE AB =Q ,AE CD ∴=,且//AB CD ,∴四边形ACDE 是平行四边形;(2)Q 四边形ABCD 是平行四边形,B ADC ∴∠=∠,2EOD B ∠=∠Q2EOD ADC ∴∠=∠,且EOD ADC OCD ∠=∠+∠, ADC OCD ∴∠=∠,OC OD ∴=,Q 四边形ACDE 是平行四边形;AO DO ∴=,EO CO =,且OC OD =, AD CE ∴=,∴四边形ACDE 是矩形.13.如图,AD 是ABC ∆的中线,//AE BC ,BE 交AD 于点F ,且AF DF =.(1)求证:AFE DFB ∆≅∆;(2)求证:四边形ADCE 是平行四边形;(3)当AB 、AC 之间满足什么条件时,四边形ADCE 是矩形.【分析】(1)由“AAS ”可证AFE DFB ∆≅∆;(2)由全等三角形的性质和中线性质可得AE CD =,且//AE BC ,可证四边形ADCE 是平行四边形;(3)由等腰三角形的性质可得AD BC ⊥,即可得四边形ADCE 是矩形.【解答】证明:(1)//AE BC Q ,AEF DBF ∴∠=∠,且AFE DFB ∠=∠,AF DF = ()AFE DFB AAS ∴∆≅∆(2)AFE DFB ∆≅∆Q ,AE BD ∴=,AD Q 是ABC ∆的中线,BD CD ∴=AE CD ∴=//AE BC Q∴四边形ADCE 是平行四边形;(3)当AB AC =时,四边形ADCE 是矩形; AB AC =Q ,AD 是ABC ∆的中线,AD BC ∴⊥,90ADC ∴∠=︒Q 四边形ADCE 是平行四边形∴四边形ADCE 是矩形∴当AB AC =时,四边形ADCE 是矩形.。

人教版数学八年级下册:《矩形》练习卷(含答案)

人教版数学八年级下册:《矩形》练习卷(含答案)

平行四边形矩形练习卷一、选择题:1.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分 C.一组对边相等 D.对角线互相垂直2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.166.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.57.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形8.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14 B.16 C.17 D.189.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=ADC.AB=AFD.BE=AD﹣DF10.如图,在矩形ABCD中,AB=8.将矩形的一角折叠,使点B落在边AD上的B´点处,若AB/=4,则折痕EF 的长度为()A.8 B.C.D.1011.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155°B.170°C.105°D.145°12.如图,已知矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题:13.如图,在矩形ABCD中,对角线AC、BD相交于点O,若DF⊥AC,∠ADF:∠FDC=3:2,则∠BDF= .14.如图,在四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,则EF长度的最大值为.15.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.16.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为.17.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.18.如图,△ABC中,AB=12,AC=8,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、解答题:19.如图,已知在▱ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF.20.如图,已知把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案1.B2.B.3.C4.B5.D6.B7.C.8.D9.B10.C11.A12.A13.答案为:18°14.答案为:3.15.解:分两种情况:(1)①当∠BPC=90°时,作AM⊥BC于M,如图1所示,∵∠B=60°,∴∠BAM=30°,∴BM=AB=1,∴AM=BM=,CM=BC﹣BM=4﹣1=3,∴AC==2,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴当点P与A重合时,∠BPC=∠BAC=90°,∴BP=BA=2;②当∠BPC=90°,点P在边AD上,CP=CD=AB=2时,BP===2;(2)当∠BCP=90°时,如图3所示:则CP=AM=,∴BP==;综上所述:当△PBC为直角三角形时,BP的长为 2或2或.16.答案为:2.5.17.答案为:(0,).18.答案为:2;19.证明:连接AC交BD于点O,连接AF、CE∵▱ABCD∴OA=OC,OB=OD ∵OF=BF﹣OB,OE=DE﹣OD,BF=DE∴OE=OF ∵OA=OC,OE=OF ∴四边形AECF是平行四边形∴AE=CF20.21.证明:(1)∵△ABC和△BEF都是等边三角形,∴AB=AC,∠EBF=∠ACB=∠BAC=60°,∵∠EAD=60°,∴∠EAD=∠BAC,∴∠EAB=∠CAD,在△ABE和△ACD中,∠EBA=∠ACB,AB=AC,∠EAB=∠DAC,∴△ABE≌△ACD.(2)由(1)得△ABE≌△ACD,∴BE=CD,∵△BEF、△ABC是等边三角形,∴BE=EF,∴∠EFB=∠ABC=60°,∴EF∥CD,∴BE=EF=CD,∴EF=CD,且EF∥CD,∴四边形EFCD是平行四边形.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=0.5EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.。

18.2.2 矩形的判定 人教版数学八年级下册分层作业(含答案)

18.2.2 矩形的判定 人教版数学八年级下册分层作业(含答案)

人教版初中数学八年级下册18.2.2 矩形的判定同步练习夯实基础篇一、单选题:1.下列给出的判定中不能判定一个四边形是矩形的是( )A.有三个角是直角B.对角线互相平分且相等C.对角线互相垂直且相等D.一组对边平行且相等,一个角是直角【答案】C【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【详解】解:A、有三个角是直角的四边形是矩形,该选项说法正确,不合题意;B、对角线互相平分且相等的四边形是矩形,该选项说法正确,不合题意;C、对角线互相平分且相等的四边形是矩形,该选项原说法错误,符合题意;D、一组对边平行且相等,一个角是直角的四边形是矩形,该选项说法正确,不合题意;故选:C.【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.如图,四边形是平行四边形,添加下列条件,能判定这个四边形是矩形的是()A.B.C.D.【答案】A【分析】由矩形的判定和平行四边形的性质分别对各个选项进行判断即可;【详解】解:A、四边形是平行四边形,,,,平行四边形是矩形,故选项A符合题意;B、四边形ABCD是平行四边形,,,,,选项B不能判定这个平行四边形为矩形,故选项B不符合题意;C、四边形是平行四边形,,平行四边形是菱形,故选项C不符合题意;D、四边形是平行四边形,,平行四边形是菱形,故选项D不符合题意;故选:A.【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识,熟练掌握矩形的判定是解题的关键.3.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作交AD于E,若,则AE的长为()A.3B.4C.5D.【答案】C【分析】根据矩形ABCD,得到AD=BC=8,∠ADC=90°,OA=OC,从而得证△AOE≌△COE,AE=CE,设AE=x,则EC=x,DE=8-x,利用勾股定理计算即可.【详解】如图,连接EC,∵矩形ABCD,,,∴AD=BC=8,AB=CD=4,∠ADC=90°,OA=OC,∵,∴∠AOE=∠COE=90°,∵OE=OE,∴△AOE≌△COE,AE=CE,设AE=x,则EC=x,DE=8-x,在Rt△DEC中,,∴,∴x=5,∴AE=5,故选C.【点睛】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理,熟练掌握矩形的性质,三角形全等,勾股定理是解题的关键.4.如图,平行四边形ABCD的对角线AC,BD相交于点O,AOB是等边三角形,OE BD交BC于点E,CD=2,则CE的长为()A.1B.C.D.【答案】D【分析】先根据等边三角形的性质、平行四边形的性质、矩形的判定证出平行四边形是矩形,再根据矩形的性质可得,然后利用勾股定理可得,,最后根据线段和差即可得.【详解】解:四边形是平行四边形,,,是等边三角形,,,平行四边形是矩形,,,,,设,则,在中,,即,解得或(不符题意,舍去),,,故选:D.【点睛】本题考查了等边三角形的性质、平行四边形的性质、矩形的判定与性质、勾股定理等知识点,熟练掌握矩形的判定与性质是解题关键.5.如图,在四边形中,对角线,垂足为,点、、、分别为边、、、的中点.若,,则四边形的面积为( )A.48B.24C.32D.12【答案】D【分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.【详解】解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF BD,且EF=BD=3.同理求得EH AC GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF GH,FG HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故选:D.【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的性质,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,CA的中点,若四边形EFGH是矩形,则四边形ABCD需满足的条件是()A.B.C.D.【答案】A【分析】利用三角形中位线定理可得四边形EFGH是平行四边形,当,利用,可得即可证明四边形EFGH是矩形.【详解】解:∵点E,F,G,H分别是AD,BD,BC,CA的中点,∴,且,且,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,∴,即,∵,,∴,故选:A.【点睛】本题考查矩形的判定定理,三角形中位线的定义和性质,关键是利用三角形中位线定理证明四边形EFGH是平行四边形,再利用推出.7.如图,在直角三角形中,,,,点M是边上一点(不与点A,B重合),作于点E,于点F,则的最小值是()A.2B.2.4C.2.5D.2.6【答案】B【分析】根据题意可证四边形ECFM是矩形,得EF=CM,再由垂线段最短得CM最短进而可得EF最短,最后进行计算即可.【详解】连接CM,∵ME AC,MF BC,∴MEC=MFC=90°,∵C=90°,∴四边形ECFM是矩形,∴EF=CM,当CM AB时,CM最短,如下图:当CM AB,,∴,∵在Rt ABC中,=,∴,∴CM=2.4,∴CM的最小值是2.4,∴EF=CM=2.4,∴EF的最小值是2.4.故选:B.【点睛】本题考查了矩形的性质和判定、垂线段最短定理和勾股定理,解决此题的关键是要找到CM最短时的情况.二、填空题:8.如图,平行四边形ABCD中,对角线AC,BD相交于点O,欲使四边形ABCD变成矩形,则还需添加______.(写出一个合适的条件即可)【答案】AC=BD(答案不唯一)【分析】根据矩形的判定条件求解即可.【详解】解:添加条件AC=BD,利用如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC=BD,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点睛】本题主要考查了矩形的判定,熟知矩形的判定条件是解题的关键.9.一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯两次,就能得到矩形踏板.理由是______.【答案】三个角都是直角的四边形是矩形(或:“有一个角是直角的平行四边形是矩形”)【分析】使用矩形的判定定理,有三个角是直角的四边形是矩形【详解】因为木板的对边平行,在进行两次锯开时都是沿着垂直于对边的方向,所以会出现4个直角,有三个角是直角的四边形是矩形.故答案是三个角是直角的四边形是矩形.【点睛】本题考查矩形的判定,需要熟记矩形的判定定理并灵活运用.10.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,AC与BD应满足的的条件是___________.【答案】【分析】连接,先根据三角形中位线定理、平行四边形的判定可得四边形为平行四边形,再根据矩形的判定即可得.【详解】解:如图,连接,分别为的中点,,,四边形为平行四边形,要使平行四边形为矩形,则,,故答案为:.【点睛】本题考查了三角形中位线定理、平行四边形的判定、矩形的判定,熟练掌握三角形中位线定理是解题关键.11.如图,,、、、分别为角平分线,则四边形是__________.【答案】矩形【分析】首先根据角平分线的性质证明∠MPQ+∠NPQ=90°,再证明四边形PMQN是平行四边形,然后根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:∵PM、PN分别平分∠APQ,∠BPQ,∴∠MPQ=∠APQ,∠NPQ=∠BPQ,∵∠APQ+∠BPQ=180°,∴∠MPQ+∠NPQ=90°,即∠NPM=90°,∵AB∥CD,∴∠APQ=∠PQD,∵QN平分∠PQD,∴∠PQN=∠PQD,∴∠MPQ=∠NQP,∴PM∥QN,同理QM∥PN,∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.12.如图,矩形ABCD中,BE⊥AC于点E,若∠ACB=23°,则∠DBE=_______度.【答案】44【分析】由矩形的性质可知∠OBC=∠ACB=23°,则可求得∠AOB度数,由直角三角形的性质可得∠DBE的度数.【详解】解:∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD,∴OB=OC,∴∠ACB=∠OBC=23° ,∵∠AOB=∠ACB+∠OBC=46°,且BE⊥AC,∴∠DBE=44° .故答案为:44【点睛】本题主要考查矩形的性质,等腰三角形的性质,利用矩形的对角线相等且平分求得∠OBC的度数是解题的关键.13.如图,在面积为36的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,则DP的长是_____【答案】6【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=36,易得DP=6.【详解】如图,作DE⊥BC,交BC延长线于E,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,∴DP2=36,∴DP=6.故答案为6.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形和矩形的性质.本题的关键的作辅助线构造两个全等的三角形.三、解答题:14.如图,在中,,平分交于点D,分别过点A、D作、,与相交于点E,连接.(1)求证:;(2)求证:四边形是矩形.【答案】(1)见解析(2)见解析【分析】(1)根据、证明四边形为平行四边形,即可得出答案;(2)由等腰三角形的性质得出,,得出,,先证出四边形是平行四边形.再证明四边形是矩形即可.【详解】(1)证明:∵、,∴四边形是平行四边形,∴;(2)证明:∵,平分,∴,,∵,∴,∵,∴四边形是平行四边形,∵,∴∴四边形是矩形.【点睛】本题主要考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质,由等腰三角形的性质得出,,是解决问题的关键.15.如图,四边形是平行四边形,过点作于点,点在边上,,连接,.(1)求证:四边形是矩形.(2)若是的平分线.若,,求的长.【答案】(1)见解析(2)【分析】(1)先证出四边形是平行四边形,再根据矩形的判定即可证得;(2)根据勾股定理求出长,可证得,即可得出答案.【详解】(1)证明:四边形是平行四边形,,,,,即,四边形是平行四边形,,,四边形是矩形;(2)解:四边形是矩形,,,四边形是平行四边形,,是的平分线,,,,,,.【点睛】本题考查了平行四边形的性质,矩形的性质和判定,角平分线的定义,等角对等边,能综合运用定理进行推理是解此题的关键.16.如图,在四边形中,AD BC,.对角线交于点平分交于点,连接.(1)求证:四边形是矩形;(2)若,=,求△的面积.【答案】(1)证明见解析(2)【分析】(1)先根据平行线的性质可得,从而可得,再根据矩形的判定即可得证;(2)先根据含角的直角三角形的性质、勾股定理可得,再根据矩形的性质可得,根据角平分线的定义和直角三角形的性质可得,然后根据等腰三角形的判定可得,从而可得,最后利用三角形的面积公式即可得.(1)证明:,,∵,,∴四边形是矩形.(2)解:在中,,,由(1)已证:四边形是矩形,,平分,,,,,则的面积为.【点睛】本题考查了矩形的判定与性质、勾股定理、等腰三角形的判定等知识点,熟练掌握矩形的判定与性质是解题关键.17.如图,在中,对角线AC,BD相交于点O,于点E,于点F,且.(1)求证:四边形ABCD是矩形.(2)若,求的度数.【答案】(1)见解析(2)10°【分析】(1)证△AEO≌△DFO(AAS),得出OA=OD,则AC=BD,即可得出四边形ABCD是矩形.(2)由矩形的性质得出∠ABC=∠BAD=90°,OA=OB,则∠OAB=∠OBA,求出∠BAE=40°,则∠OBA=∠OAB=50°,即可得出答案.(1)∵四边形ABCD是平行四边形,∴,,∵于点E,于点F,∴,又∵,∴,∴,∴,∴四边形ABCD是矩形;(2)由(1)得:四边形ABCD是矩形,∴,,∴,∵,∴,∴,∴.【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.能力提升篇一、单选题:1.如图,点是中斜边不与,重合上一动点,分别作于点,作于点,点是的中点,若,,当点在上运动时,则的最小值是()A.B.C.D.【答案】B【分析】证明四边形BMPN是矩形,得BP=MN,由勾股定理求出AC=15,当BP⊥AC时,BP最小,然后由面积法求出BP最小值,即可解决问题.【详解】解:连接,如图所示:,于点,于点,四边形是矩形,,,与互相平分,点是的中点,,当时,最小∵,,,故选:B.【点睛】本题主要考查矩形的判定与性质,垂线段最短,勾股定理及面积法等知识,熟练掌握矩形的判定与性质是解题的关键.2.如图,在中,,M为的中点,H为上一点,过点C作,交的延长线于点,若,,则四边形周长的最小值是()A.28B.26C.22D.18【答案】A【分析】通过证明可得,可得四边形的周长即为,进而可确定当时,四边形的周长有最小值,通过证明四边形为矩形可得的长,进而可求解.【详解】解:,,是的中点,,在和中,,,,,,,四边形的周长,当最小时,即时四边形的周长有最小值,,,,四边形为矩形,,四边形的周长最小值为,故选:A.【点睛】本题主要考查轴对称最短路径问题,全等三角形的判定与性质,确定的值是解题的关键.3.在矩形ABCD中,对角线AC、BD相交于点O,AE平分交BC于点E,.连接OE,则下面的结论:①是等边三角形;②是等腰三角形;③;④;⑤,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO,△DOC是等边三角形,可判断①;根据等边三角形的性质求出OB=AB,再求出OB=BE,可判断②,由直角三角形的性质可得BC=AB,可判断③,由等腰三角形性质求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE=135°,可判断④;由面积公式可得可判断⑤;即可求解.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB−∠CAE=45°−15°=30°,∴∠BAO=90°−30°=60°,∵矩形ABCD中:OA=OB=OC=OD,∴△ABO是等边三角形,△COD是等边三角形,故①正确;∴OB=AB,又∵AB=BE,∴OB=BE,∴△BOE是等腰三角形,故②正确;在Rt△ABC中∵∠ACB=30°∴BC=AB,故③错误;∵∠OBE=∠ABC−∠ABO=90°−60°=30°=∠ACB,∴∠BOE=(180°−30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故④错误;∵AO=CO,∴,故⑤正确;【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.二、填空题:4.如图,在平行四边形中,,,,点在边上,且,点在线段上,点在线段的延长线上,且,连接交于点,过点作于,则___________.【答案】【分析】过点M作MH BC交CP于H,根据平行线的性质可得∠MHP=∠BCP,∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角角边”证明和全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,利用勾股定理列式求出AP,然后可得PD,再次利用勾股定理列式计算即可求出CP,从而得解.【详解】解:如图,过点M作MH BC交CP于H,则∠MHP=∠BCP,∠NCF=∠MHF,∵BP=BC,∴∠BCP=∠BPC,∴∠BPC=∠MHP,∴PM=MH,∵PM=CN,∴CN=MH,∵ME⊥CP,∴PE=EH,在和中,,∴(AAS),∴CF=FH,∴EF=EH+FH=CP,∵在平行四边形ABCD中,AD=10,,∴BC=AD=10,平行四边形ABCD是矩形,∴BP=BC=10,在Rt中,AP=,∴PD=AD−AP=10−6=4,∵在矩形ABCD中,∠D=90°,∴在Rt中,CP=,∴EF=CP=,故答案为:.【点睛】本题考查了平行四边形的性质,矩形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,熟记各性质并作辅助线构造出全等三角形和等腰三角形是解题的关键.5.如图,在矩形ABCD中,,,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q 也停止),这段时间内,当运动时间为______时,P、Q、C、D四点组成矩形.【答案】2.4s或4s或7.2s【分析】根据已知可知:点Q将由根据矩形的性质得到AD∥BC,设过了t秒,当AP=BQ时,P、Q、C、D四点组成矩形,在点Q由的过程中,则PA=t,BQ=12-4t,求得t=2.4(s),在点Q 由的过程中,t=4(t-3),求得t=4(s),在点Q再由中,t=12-4(t-6),求得t=7.2(s),在点Q 再由的过程中,t=4(t-9),t=13(s),故此舍去,从而得到结论.【详解】解:根据已知可知:点Q由在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,若,则四边形APQB是矩形,则以P、Q、C、D四点为顶点组成矩形.设过了t秒,则PA=t,BQ=12-4t,∴t=12-4t,∴t=2.4(s),在点Q由的过程中,设过了t秒,则PA=t,BQ=4(t-3),t=4(t-3),解得:t=4(s),在点Q再由过程中,设过了t秒,则PA=t,BQ=12-4(t-6),t=12-4(t-6),解得:t=7.2(s),在点Q再由的过程中,设过了t秒,则PA=t,BQ=4(t-9),t=4(t-9),解得:t=13(s)>12(s),故此舍去.故答案为:2.4s或4s或7.2s;【点睛】本题考查了矩形的性质与判定,此题属于动点型题目.解题时要注意数形结合与方程思想的应用.三、解答题:6.如图,在平行四边形中,过点D作于点E,点F在边上,,连接.(1)求证:四边形是矩形.(2)已知是的平分线,若,则□的面积为______.【答案】(1)见解析(2)【分析】(1)先证明四边形是平行四边形,再证明平行四边形是矩形.(2)根据边角的关系,得到,再根据S行四边形进行计算.【详解】(1)证明:∵四边形是平行四边形,∴,∵,∴,∴,∵,∴四边形是平行四边形,∵,∴,∴四边形是矩形.(2)解:∵,∴,∵,∴,∴,∵,∴,,∵四边形是平行四边形,∴,∴,∵平分,∴,∴,∴,∵,∴,∴,∴.【点睛】本题主要考查平行四边形及矩形判定,角平分线的性质,勾股定理及平行四边形面积计算,能够熟练运用平行四边形的性质是解题关键.7.如图,在中,,D是AC的中点,,动点P以每秒1个单位长度的速度从点B出发向点A移动,连接PD并延长交CE于点F,设点P移动的时间为t秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当时,求t的值.【答案】(1)2.4(2)t为时,四边形PBCF为平行四边形(3)【分析】(1)根据勾股定理,可得的长,根据面积的不同表示方法,可得答案;(2)根据两组对边分别平行的四边形是平行四边形,可得答案;(3)根据已知条件判定,即可得出,进而得到四边形为平行四边形,依据,即可得到四边形为矩形.再根据勾股定理即可得到的长,进而得出.(1)解:在中,,,.如图,过作于,则由,得.,与之间的距离为2.4.(2),当时,四边形是平行四边形.为的中点,为的中点..(3),,.为的中点,,.,四边形为平行四边形.,..四边形为矩形..在中,,,..【点睛】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.。

八年级数学下册19.1矩形2.矩形的判定练习(含答案)

八年级数学下册19.1矩形2.矩形的判定练习(含答案)

2.矩形的判断1.如图 , 在平行四边形 ABCD中, 对角线 AC和 BD订交于点 O,则下边条件能判断平行四边形ABCD是矩形的是 ( A )(A)AC=BD(B)AC⊥ BD(C)AO=CO(D)AB=AD2.已知平行四边形 ABCD,AC,BD是它的两条对角线 , 那么以下条件中 , 能判断这个平行四边形为矩形的是 ( C )(A) ∠ BAC=∠ DCA(B) ∠ BAC=∠ DAC(C) ∠ BAC=∠ ABD(D) ∠ BAC=∠ ADB3.如图 , 四边形 ABCD是平行四边形 , 对角线 AC与 BD订交于点 O,∠ 1=∠ 2. 若 AC=13,BC=12, 则四边形ABCD的面积是 ( D )(A)20 (B)30 (C)50 (D)604.在四边形 ABCD中 ,AC 和 BD的交点为 O,不可以判断四边形 ABCD为矩形的是 ( C )(A)AB=CD,AD=BC,AC=BD(B)AO=CO,BO=DO,∠ A=90°(C) ∠ A=∠ C,∠ B+∠ C=180°(D)AB∥ CD,AB=CD,∠A=90°5.如图 , 四边形 ABCD是平行四边形 , 增添一个条件 : ∠ ABC=90° ( 或 AC=BD等) , 可使它成为矩形 .6.如图 , 在△ ABC中 ,AB=AC,将△ ABC绕点 C 旋转 180°获得△ FEC,连接 AE,BF. 当∠ ACB为60°时 , 四边形 ABFE为矩形 .7. 如图 , 在两条平行直线 a 和 b 上用直角曲尺画两条直线, 则组成的四边形ABCD为矩形 .8.学完矩形的判断后 , 小明和小丽想实质应用一下 ( 查验教室的门能否为矩形 ). 依据小明和小丽的对话 , 你以为小明和小丽谁正确 :小明 : “我用直尺量这个门的两条对角线, 发现它们的长度相等, 因此这个四边形门就是矩形. ”小丽 : “我用角尺量这个门的随意三个角, 发现它们都是直角. 因此这个四边形门就是矩形. ”解: 小明的不必定是矩形, 只依据对角线相等不可以判断四边形为矩形;由于对角线相等的平行四边形是矩形, 因此小明的说法错误;小丽的必定是矩形, 由于有三个角是直角的四边形是矩形.因此小丽的说法正确.9.(2018北京门头沟期末) 已知 , 如图 , 在?ABCD中, 过点 D作 DE⊥ AB于点 E, 点 F 在边 CD上,DF=BE, 连接 AF 和 BF.(1)求证 : 四边形 BFDE是矩形 ;(2)假如 CF=3,BF=4,DF=5, 求证 :AF 均分∠ DAB.证明 :(1)由于四边形ABCD是平行四边形 ,因此 DF∥ BE.由于 DF=BE,因此四边形BFDE是平行四边形 .由于 DE⊥ AB,因此∠ DEB=90°.因此四边形BFDE是矩形 .(2)由于四边形 BFDE是矩形 ,因此∠ BFD=∠ BFC=90° .因此 BC==5, 因此 AD=BC=5.由于 DF=5,因此 AD=DF.因此∠ DAF=∠ DFA.由于 AB∥ CD,因此∠ DFA=∠ FAB.因此∠ DAF=∠ FAB.因此 AF 均分∠ DAB.10.如图 , 在△ ABC中 , 点 O是边 AC上一个动点 , 过点 O作直线 EF∥ BC分别交∠ ACB,外角∠ ACD 的均分线于点E,F.(1)若 CE=8,CF=6, 求 OC的长 ;(2)连接 AE,AF. 问 : 当点 O在边 AC上运动到什么地点时 , 四边形 AECF是矩形 ?并说明原因 . 解:(1) 由于 EF 交∠ ACB的均分线于点 E, 交∠ ACB的外角均分线于点 F,所以∠ OCE=∠BCE,∠ OCF=∠ DCF,由于 EF∥ BC,因此∠ OEC=∠ BCE,∠OFC=∠ DCF,因此∠ OEC=∠ OCE,∠OFC=∠ OCF,因此 OE=OC,OF=OC,因此 OE=OF.由于∠ OCE+∠ BCE+∠OCF+∠ DCF=180° ,因此∠ ECF=90° ,在 Rt △ CEF中 ,由勾股定理得EF===10,因此 OC=OE=EF=5.(2)当点 O在边 AC上运动到 AC中点时 , 四边形 AECF是矩形 . 原因 :连接 AE,AF, 以下图 ,当 O为 AC的中点时 ,AO=CO,由于 EO=FO,因此四边形AECF是平行四边形 ,由于∠ ECF=90° ,因此平行四边形AECF是矩形 .11.( 拓展研究 )(2018 青岛 ) 已知 , 如图 , 平行四边形 ABCD的对角线 AC与 BD订交于点 E, 点 G 为AD的中点 , 连接 CG,CG的延伸线交 BA的延伸线于点 F, 连接 FD.(1)求证 :AB=AF;(2)若 AG=AB,∠ BCD=120° , 判断四边形 ACDF的形状 , 并证明你的结论 .(1)证明 : 由于四边形 ABCD是平行四边形 ,因此 BF∥ CD,AB=CD,因此∠ AFG=∠ DCG.由于 GA=GD,∠ AGF=∠ CGD,因此△ AGF≌△ DGC.因此 AF=CD.因此 AB=AF.(2)解 : 四边形 ACDF是矩形 .证明以下 :由于 AF=CD,AF∥ CD,因此四边形ACDF是平行四边形 .因此 AG=DG,FG=CG.由于四边形ABCD是平行四边形 ,因此∠ BAD=∠BCD=120° .因此∠ FAG=60° . 由于 AB=AF,AG=AB,因此 AG=AF.因此△ AFG是等边三角形.因此 AG=GF.因此 AG=DG=FG=CG所.以 AD=CF.因此四边形ACDF是矩形 .12.(方程思想)如图, 在直角梯形ABCD 中,∠B=90°, AD∥BC,AB=14 cm,AD=18 cm,BC=21 cm, 点 E 由点 A 出发沿 AD方向向点 D 匀速运动 , 速度为 1 cm/s, 点 F 由点 C 出发沿 CB方向向点 B 匀速运动 , 速度为 2 cm/s, 假如动点 E,F 同时从 A,C 两点出发 , 连接EF, 若设运动的时间为 t s, 解答以下问题 :(1)当 t 何值时 , 梯形 AEFB的面积是 91 cm2?(2)当 t 何值时 , 四边形 AEFB是矩形 ?解:(1) 依据题意 , 得 AE=t cm,CF=2t cm,则 BF=(21-2t)cm. 由于 S 梯形AEFB=91,因此×(t+21-2t)× 14=91.因此t=8.因此当 t=8 时 , 梯形 AEFB的面积是91 cm2.(2) 依据题意 , 得 AE=t cm,CF=2t cm,则 BF=(21-2t)cm.由于 AE∥ BF, ∠ B=90° ,因此当 AE=BF时 , 四边形 AEFB是矩形 .因此 t=21-2t.因此t=7.因此当 t=7 时 , 四边形 AEFB是矩形 .。

人教版八年级数学下册18.2.1《矩形(2)》习题含答案

人教版八年级数学下册18.2.1《矩形(2)》习题含答案

《矩形的判定》测试题含答案1.如图,添加下列条件不能判定平行四边形ABCD是矩形的是( )A.∠BAD=90°B.∠BAD=∠BC.AB2+BC2=AC2D.∠B=60°2.如图,四边形ABCD的对角线互相平分,要使它变成矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC3.数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的几位同学拟订的方案,其中正确的是( )A.测量对角线是否互相平分B.测量两组对边是否都分别相等C.测量一组对角是否都为直角D.测量其中三个内角是否都为直角4.如图,在四边形ABCD中,AB∥DC,∠C=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是______.(写出一种情况即可)5.如图,在平行四边形ABCD中,M为AD的中点,且BM=CM.求证:四边形ABCD 是矩形.6.如图,AD是等腰三角形的底边BC上的高,0是AC的中点,延长DO到点E,使OE=0D,连接AE,CE.(1)求证:四边形ADCE是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.7.如图,矩形ABCD的对角线,AC,BD相交于点0,E,F,G,H分别是0A,0B,0C,0D的中点.求证:四边形EFGH是矩形.第1题图第4题图第2题图第5题图第6题图第7题图8.如图,四边形ABCD的对角线AC,BD交于点0,已知0是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若0D=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.9.如图,在△ABC中,AB=AC,AD,AE分别是∠BAC和∠BAF的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)判断AB与DE是否相等,并说明理由.10.的四个内角的平分线分别交于点E,F,G,H.求证:四边形EFGH是矩形.第8题图第10题图第9题图参考答案1.D【解析】有一个角是直角的平行四边形是矩形.在A项中,∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形;在B项中,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠B=180°,又∠BAD=90°,∴四边形ABCD 是矩形;在C项中,∵AB2+BC2=AC2,∴∠B=90°,又四边形ABCD是平行四边形,∴四边形ABCD是矩形.故选D.2.C【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD是平行四边形,当AC=BD时,平行四边形ABCD是矩形.故选C.3.D【解析】A项,对角线互相平分的四边形是平行四边形;B项,两组对边分别相等的四边形是平行四边形;C项,无法判断一组对角为直角的四边形的形状.故选D.4.∠A=9O°(或∠D=9O°或AB=CD或AD∥BC)(答案不唯一)【解析】∵AB∥DC,∠C=90°,∴∠B=90°.根据有三个角是直角的四边形是矩形,可知只需添加条件∠A=90°或∠D=90°即可;根据有一个角是直角的平行四边形是矩形,可知只需添加条件AB=CD或AD∥BC即可.5.【答案】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,AB=DC,∵M为AD的中点,∴AM=DM.又BM=CM,∴△ABM≌△DCM,∴∠A=∠D=90°.∴四边形ABC D是矩形.6.【答案】(1)∵0是AC的中点,∴AO=OC,又0E=0D,∴四边形ADCE是平行四边形.∵AD是等腰三角形ABC的底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形.(2)∵AD是等腰三角形ABC的底边BC上的高,BC=16,AB=17,∴BD=CD=8,AC=AB=17,∠ADC=900,由勾股定理,得2217-8=15,∴四边形ADCE的面积是AD·DC=15×8=120.7.【答案】∵四边形ABCD是矩形,∴OA=0B=OC=0D.∵E,F,G,H分别是OA,0B,0C,OD的中点,∴0E=0F=0G=OH,∴四边形EFGH是平行四边形,EG=FH.∴四边形EFGH是矩形.8.【答案】(1)∵0是AC的中点,∴A0=C0,又AE=CF,∴0E=0F.∵DF∥BE,∴∠OEB=∠OFD,又∠EOB=∠FOD,∴△BOE≌△DOF.(2)四边形ABCD是矩形.证明如下:由(1)知△BOE≌△DOF,∴OB=OD,又AO=CO,∴四边形ABCD是平行四边形,∴OD=12BD,又OD=12AC,∴AC=BD,∴四边形ABCD是矩形.9.【答案】(1)∵AD平分∠BAC,AE平分∠BAF,∴∠BAD=12∠BAC,∠BAE=12∠BAF.∴∠DAE=∠BAD+∠BAE=12∠BAC+12∠BAF=12(∠BAC+∠BAF)=90°,∴DA⊥AE.(2)AB=DE.理由如下:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADB=90°.∵BE⊥AE,DA⊥AE,∴∠AEB=∠DAE=90o.∴四边形AEBD是矩形,∴AB=0E.10.【答案】∴四边形ABCD是平行四边形,∵BC∥AD,AB∥CD,∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°,的四个内角的平分线分别交于点E,F,G,H,∴∠BAH+∠ABH=90°,∠GBC+∠GCB=90°,∴∠H=90°,∠BGC=90°,∴∠FGH=90°.同理可证∠FEH=90°.∴四边形EFGH是矩形.。

专题10 矩形的判定 题型全覆盖(25题)-2020-2021学年八年级数学下(人教版)(解析版)

专题10 矩形的判定 题型全覆盖(25题)-2020-2021学年八年级数学下(人教版)(解析版)

专题10 矩形的判定题型全覆盖(25题)【思维导图】【考查题型】考查题型一添加一个条件使四边形是矩形1.(2020·江阴市八年级期中)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【答案】B【提示】由矩形的判定方法即可得出答案.【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【名师点拨】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.2.(2020·辽宁营口市·八年级期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BDC.AB=BC D.AD=BC【答案】B【提示】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理可得,只需添加条件是对角线相等.【详解】可添加AC=BD,理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选B.【名师点拨】考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.3.(2020·辽宁沈阳市·九年级期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD【答案】D【提示】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【名师点拨】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.4.(2020·郑州市八年级期中)如图,顺次连接四边形ABCD各边的中点的四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=CD【答案】C【提示】根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH 为矩形,需要∠EFG=90度.由此推出AC⊥BD.【详解】依题意得:四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形),当AC⊥BD时,∠EFG=∠EHG=90度,四边形EFGH为矩形.故选C.【名师点拨】本题考查了矩形的判定定理,难度一般.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.5.(2020·自贡市八年级期中)如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【答案】C【提示】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.【详解】A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∴当AC⊥BD时四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选:C.【名师点拨】本题考查矩形的判定,解题的关键是掌握矩形的判定方法.考查题型二证明四边形是矩形6.(2020·东莞市九年级期中)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【答案】(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【提示】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【名师点拨】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.7.(2020·石家庄市八年级期中)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)4.【提示】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【名师点拨】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.8.(2020·株洲市八年级期中)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【答案】(1)见解析(2)见解析【解析】试题提示:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题提示:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【名师点拨】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.9.(2020·扬州市八年级期末)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO ,FO=CO .∴OE=OF .(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF 13.∴OC=12EF=6.5. (3)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:当O 为AC 的中点时,AO=CO ,∵EO=FO ,∴四边形AECF 是平行四边形.∵∠ECF=90°,∴平行四边形AECF 是矩形.【详解】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF 的长,即可根据直角三角形斜边上的中线性质得出CO 的长.(3)根据平行四边形的判定以及矩形的判定得出即可.10.(2020·湖北咸宁市·八年级期末)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E ,F 分别为 OB , OD 的中点,延长 AE 至G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.【答案】(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【提示】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【名师点拨】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.考查题型三 根据矩形的性质与判定求角度11.(2020·江西八年级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.【答案】(1)证明见解析;(2)∠ADO==36°.【提示】(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC 的度数,由此即可求得答案.【详解】(1)∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2AO,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【名师点拨】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键. 12.(2020·南阳市八年级期中)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)∠BDF=18°.【提示】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【名师点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.13.(2020·云南迪庆藏族自治州·八年级期末)如图,四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,AB=CD,且OA=OD.(1)求证:四边形ABCD是矩形;(2)DF⊥AC于点F,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【答案】(1)详见解析;(2)18°【提示】(1)利用对边平行且相等证明四边形ABCD是平行四边形,再利用对角线相等的平行四边形是矩形,即可证明四边形ABCD是矩形;(2)先求出∠FDC=36°,再求出∠OCD =∠ODC=54°,即可求出∠BDF.【详解】(1)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴∠ADC=90°,OC=OD,∴∠ODC=∠OCD,∵∠ADF:∠FDC=3:2,∴∠ADF=54°,∠FDC=36°,∵DF⊥AC,∴∠OCD=∠ODC=90°-∠FDC=54°,∴∠BDF=∠ODC-∠FDC=54°-36°=18°.【名师点拨】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.14.(2020·渠县九年级期末)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,且OA=OB .(1)求证:四边形ABCD 是矩形;(2)若AD=4,∠AOD=60°,求AB 的长.【答案】(1)证明见解析;(2)【提示】(1)由▱ABCD 得到OA=OC ,OB=OD ,由OA=OB ,得到;OA=OB=OC=OD ,对角线平分且相等的四边形是矩形,即可推出结论;(2)根据矩形的性质借用勾股定理即可求得AB 的长度.【详解】(1)证明:在平行四边形ABCD 中, OA=OC=12AC ,OB=OD=12BD , 又∵OA=OB ,∴AC=BD ,∴平行四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OD .又∵∠AOD=60°, ∴AOD 是等边三角形,∴OD=AD=4,∴BD=2OD=8,在Rt ABD 中,==15.(2020·江苏无锡市·八年级期末)如图,已知OAB ∆中,OA OB =,分别延长AO 、BO 到点C 、D ,使得OC AO =,OD BO =,连接AD 、DC 、CB .(1)求证:四边形ABCD 是矩形;(2)以OA 、OB 为一组邻边作AOBE ,连接CE ,若CE BD ⊥,求AOB ∠的度数.【答案】(1)证明过程见解析;(2)120AOB ∠=︒【提示】(1)根据已知条件推出四边形ABCD 是平行四边形,求得AO =12AC ,BO =12BD ,等量代换得到AC =BD ,于是得到四边形ABCD 是矩形;(2)连接OE ,设EC 与BD 交于F ,根据垂直的定义得到∠CFD =90°,根据平行四边形的性质得到AE ∥BO ,根据直角三角形的性质得到EO =AO ,推出△AEO 是等边三角形,于是得到结论.【详解】(1)证明:∵OC =AO ,OD =BO ,∴四边形ABCD 是平行四边形,∴AO =12AC ,BO =12BD , ∵AO =BO ,∴AC =BD ,∴四边形ABCD 是矩形;(2)解:连接OE ,设EC 与BD 交于F ,∵EC ⊥BD ,∴∠CFD =90°,∵四边形AEBO 是平行四边形,∴AE ∥BO ,∴∠AEC =∠CFD =90°,即△AEC 是直角三角形,∵EO 是Rt △AEC 中AC 边上的中线,∴EO =AO ,∵四边形AEBO 是平行四边形,∴OB =AE ,∵OA =OB ,∴AE =OA =OE ,∴△AEO 是等边三角形,∴∠OAE =60°,∵∠OAE +∠AOB =180°,∴∠AOB =120°.【名师点拨】本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.考查题型四 根据矩形的性质与判定求线段长16.(2020·辽宁阜新市·九年级期中)如图,在ABCD 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.【答案】(1)见解析;(2)245【解析】试题提示:(1)先证明四边形AEFD 是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∵CF=BE,∴CF+EC=BE+EC.即 EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=12AB•AF=12BF•AE.∴AE=•6824105 AB AFBF⨯==.17.(2020·辽宁鞍山市·八年级期中)如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【答案】(1)见解析;.【提示】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=12AC,利用勾股定理计算AC的长,可得结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt△AFD中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt△AFC中,∠AFC=90°.∴AC==∵点O是平行四边形ABCD对角线的交点,∴O为AC中点在Rt△AFC中,∠AFC=90°.O为AC中点. ∴OF=12.【名师点拨】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.18.(2020·江西吉安市·九年级期中)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【答案】(1)证明见解析;(2)见解析.【提示】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=365.【名师点拨】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.19.(2020·浙江杭州市·八年级期末)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【答案】(1)见解析;(2)CF=5cm.【提示】(1)要求证BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于12 BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt △BCD 中,由勾股定理得BD =5. 又∵BD•CE =BC•DC ,∴CE =125BC DC BD ⋅=.∴BE 95=. ∴EF =BF ﹣BE =3﹣9655=.∴CF ==cm . 【名师点拨】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.20.(2020·江苏连云港市·八年级期末)已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD .(1)如图1,若BP =4,判断△ADP 的形状,并加以证明.(2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′.①依题意补全图2;②请直接写出线段AC ′的长度.【答案】(1)△ADP 是等腰直角三角形.证明见解析;(2)①补图见解析;【提示】(1)先判断出PC =AB ,再用同角的余角相等判断出∠APB =∠PDC ,得出△ABP ≌△PCD (AAS ),即可得出结论; (2)①利用对称的性质画出图形;②过点C '作C 'Q ⊥BA 交BA 的延长线于Q ,先求出CP =4,AB =AP ,∠CPD =45°,进而得出C 'P =CP =4,∠C 'PD =∠CPD =45°,再判断出四边形BQC 'P 是矩形,进而求出AQ =BQ ﹣AB =3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′【名师点拨】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.考查题型五根据矩形的性质与判定求面积21.(2020·辽宁沈阳市·九年级期末)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.【答案】(1)见解析;(2)【提示】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AO=1AC=5,AB=10,BO=2∴矩形AEFD的面积=菱形ABCD的面积=12故答案为:【名师点拨】本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.22.(2020·吉林长春市·八年级期末)如图,在矩形ABCD中,EF经过对角线BD的中点O,分别交AD,BC于点E,F(1)求证:△BOF≌△DOE;(2)若AB=4cm,AD=5cm,当EF⊥BD时,求四边形ABFE的面积.【答案】(1)见解析;(2)10cm2【提示】(1)利用矩形的性质可得:AD∥BC,进而可证全等;(2)利用全等的性质可得:ED=FB.AE=CF,可得四边形ABFE的面积是矩形面积的一半.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠BFO=∠DEO,∠FBO=∠EDO,又∵O是BD中点,∴OB=OD,∴△BOF≌△DOE(AAS).(2)由(1)可得ED=FB.∴AE=CF,∴S四边形ABFE=S四边形CDEF.又∵AB=4cm,AD=5cm∴S矩形ABCD=20cm2,∴S四边形ABFE=10cm2.故答案为(1)见解析;(2)10cm2.【名师点拨】本题考查矩形的性质,全等的性质和判定,关键是找好对应关系.23.(2020·江西南昌市·八年级期中)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.【答案】(1)详见解析;(2)【提示】(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【详解】(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°-120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴.∴四边形ABCD的面积=4⨯2)【名师点拨】此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.24.(2020·江苏镇江市·八年级期中)如图,点O是菱形ABCD对角线的交点,过点C作CM∥OD,过点D作DE⊥CM,E为垂足.(1)求证:四边形OCED是矩形.(2)若AB =17,BD =30,则四边形ADEC 的面积为 平方单位.【答案】(1)证明见解析;(2)180【提示】(1)本题根据平行的性质以及菱形对角线互相垂直即可直接求证.(2)本题利用菱形性质以及勾股定理求解OA 、OC 、OD ,继而利用割补法求解四边形面积.【详解】(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠COD =90°,∵CE ∥OD ,∴∠OCE=∠COD=90°,∵DE ⊥CM ,∴∠DEC=∠OCE=∠COD=90°,∴四边形OCED 是矩形;(2)∵在菱形ABCD 中,AB =17,∴AB =BC =CD =17,OA=OC ,∵BD =30,∴OD =12BD =15,∴8OA OC ===, ∴11=81581518022AOD OCED ADEC S S S OA OD OC OD =+•+•=⨯⨯+⨯=矩四边形, 故四边形ADEC 的面积为180平方单位.【名师点拨】本题考查四边形的综合,解题关键在于对菱形、矩形对应概念的理解,各判定定理要熟记于心,菱形对角线互相垂直常作为勾股定理应用的前提.25.(2020·山东枣庄市·九年级期中)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且5AB =,4DN =,求四边形DEMN 的面积.【答案】(1)见解析;(2)24【提示】(1)由四边形ABCD 是平行四边形得出AB=CD ,AB //CD ,进而得到∠BAC=∠DCA ,再结合AO=CO ,M,N 分别是OA 和OC 中点即可求解;(2)证明△ABO 是等腰三角形,结合M 是AO 的中点,得到∠BMO=∠EMO=90°,同时△DOC 也是等腰三角形,N 是OC 中点,得到∠DNO=90°,得到EM //DN ,再由(1)得到EM=DN ,得出四边形EMND 为矩形,进而求出面积.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB //CD ,OA=OC ,∴∠BAC=∠DCA ,又点M ,N 分别为OA 、OC 的中点,∴1122===AM AO CO CN , 在AMB ∆和CND ∆中,=⎧⎪∠=∠⎨⎪=⎩AB CD BAC DCA AM CN ,∴()△≌△AMB CND SAS .(2)BD=2BO ,又已知BD=2AB ,∴BO=AB ,∴△ABO 为等腰三角形;又M 为AO 的中点,∴由等腰三角形的“三线合一”性质可知:BM ⊥AO ,∴∠BMO=∠EMO=90°,同理可证△DOC 也为等腰三角形,又N 是OC 的中点,∴由等腰三角形的“三线合一”性质可知:DN ⊥CO ,∠DNO=90°,∵∠EMO+∠DNO=90°+90°=180°,∴EM //DN ,又已知EM=BM ,由(1)中知BM=DN ,∴EM=DN ,∴四边形EMND 为平行四边形,又∠EMO=90°,∴四边形EMND 为矩形,在Rt △ABM 中,由勾股定理有:3AM ==,∴AM=CN=3,∴MN=MO+ON=AM+CN=3+3=6,∴6424EMND S MN ME =⋅=⨯=矩形.故答案为:24.【名师点拨】本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定方法是解决此类题的关键.。

初二数学下册知识点《矩形的判定》经典150例题及解析

初二数学下册知识点《矩形的判定》经典150例题及解析

初二数学下册知识点《矩形的判定》经典150例题及解析副标题一、选择题(本大题共69小题,共207.0分)1.如图,点E、F、G、H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A. 一定不是平行四边形B. 一定不是中心对称图形C. 可能是轴对称图形D. 当AC=BD时,它为矩形【答案】C【解析】【分析】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.先连接AC,BD,根据EF=HG,EH=FG,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:如图,连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG,EH=FG,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形.故选C.2.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.3.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形【答案】D【解析】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.由矩形的判定和菱形的判定即可得出结论.本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.4.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】【分析】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形,故本选项错误;B、对角线互相垂直的平行四边形是菱形,故本选项错误;C、对角线互相平分的四边形是平行四边形,故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误,故选:C.6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.7.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A. ∠A=∠BB. ∠A=∠CC. AC=BDD. AB⊥BC【答案】B【解析】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.由矩形的判定方法即可得出答案.本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.8.下列命题是真命题的是( )A. 四边都相等的四边形是矩形B. 菱形的对角线相等C. 对角线互相垂直的平行四边形是正方形D. 对角线相等的平行四边形是矩形【答案】D【解析】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选:D.根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB 【答案】C【解析】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.由矩形和菱形的判定方法即可得出答案.本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.10.下列关于矩形的说法,正确的是()A. 对角线相等的四边形是矩形B. 对角线互相平分的四边形是矩形C. 矩形的对角线互相垂直且平分D. 矩形的对角线相等且互相平分【答案】D【解析】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.本题主要考查学生对矩形的判定与性质这一知识点的理解和掌握,都是一些基础知识,要求学生应熟练掌握.11.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.12.已知四边形ABCD,下列说法正确的是()A. 当AD=BC,AB∥DC时,四边形ABCD是平行四边形B. 当AD=BC,AB=DC时,四边形ABCD是平行四边形C. 当AC=BD,AC平分BD时,四边形ABCD是矩形D. 当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B【解析】解:∵一组对边平行且相等的四边形是平行四边形,∴选项A不正确;∵两组对边分别相等的四边形是平行四边形,∴选项B正确;∵对角线互相平分且相等的四边形是矩形,∴选项C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴选项D不正确;故选:B.由平行四边形的判定方法得出选项A不正确、选项B正确;由矩形和正方形的判定方法得出选项C、选项D不正确.本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.13.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法.其中正确的个数是( )①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确.故选A.14.如图,l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,下面给出四个结论:①BE=CF;②AB=DC;③S△ABE=S△DCF;④四边形ABCD是矩形.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:∵l1∥l2,BE∥CF,∴四边形BCFE是平行四边形,∴BE=CF,故①正确,∵l1∥l2,BA⊥l1,DC⊥l2,∴AB=DC,故②正确,∵BE∥CF,∴∠AEB=∠DFC,在△ABE和△DCF中,∴△ABE≌△DCF(AAS),∴S△ABE=S△DCF,故③正确,∵l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,∴四边形ABCD是矩形,故④正确,故选:D.根据题意可以分别判断各个小题中的结论是否成立,从而可以解答本题.本题考查矩形的判断、平行线之间的距离,解答本题的关键是明确题意,利用矩形的性质和平行线的性质解答.15.如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )A. 当AB=CD,AO=DO时,四边形ABCD为矩形B. 当AB=AD,AO=CO时,四边形ABCD为菱形C. 当AD∥BC,AC=BD时,四边形ABCD为正方形D. 当AB=CD时,四边形ABCD为平行四边形【答案】C【解析】【分析】本题考查了矩形,菱形,正方形和平行四边形的判定,注意:对角线垂直且相等的平行四边形是正方形,对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形.根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.【解答】A.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AO=DO,∴AC=BD,∴四边形ABCD为矩形,故A正确;B.∵AB∥CD,∴∠BAO=∠DCO,又∵AO=CO,∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD为菱形,故B正确;C.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD为矩形,故C错误;D.∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,故D正确.故选C.16.对角线互相平分且相等的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:对角线互相平分且相等的四边形是矩形.故选:B.根据对角线相等的平行四边形是矩形,以及平行四边形的判定:对角线互相平分的四边形是平行四边形,即可得出结论.此题主要考查矩形的判定:对角线相等的平行四边形是矩形.以及平行四边形的判定:对角线互相平分的四边形是平行四边形,较为简单.17.如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A. 四边形ACEF4B. 四边形ACEF是矩形,它的周长是C. 四边形ACEF是平行四边形,它的周长是D. 四边形ACEF是矩形,它的周长是【答案】B【解析】解:∵DE=AD,DF=CD,∴四边形ACEF是平行四边形,∵四边形ABCD为菱形,∴AD=CD,∴AE=CF,∴四边形ACEF是矩形,∵△ACD是等边三角形,∴AC=1,∴EF=AC=1,过点D作DG⊥AF于点G,则AG=FG=AD×∴AF=CE=2AG∴四边形ACEF的周长为:AC+CE+EF+AF故选B.首先判断其是平行四边形,然后判定其是矩形,然后根据菱形的边长求得矩形的周长即可.本题考查了菱形的性质、平行四边形的判定与性质及矩形的判定与性质的知识,解题的关键是了解有关的判定定理,难度不大.18.如图.四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB、EC、DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A. AB=BEB. BE=DEC. ∠ADB=90°D. CE⊥DE【答案】B【解析】【分析】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A.∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B.∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.19.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A. AB∥DCB. AC=BDC. AC⊥BDD. AB=DC【答案】C【解析】解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选:C.根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.本题考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.难度一般.20.顺次连接菱形各边的中点所形成的四边形是()A. 等腰梯形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:∵E,F是中点,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形.又∵AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.故选:B.根据三角形的中位线定理以及菱形的性质即可证得.本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.21.依次连接菱形的各边中点,得到的四边形是()A. 矩形B. 菱形C. 正方形D. 梯形【答案】A【解析】解:如右图所示,四边形ABCD是菱形,顺次连接各边中点E、F、G、H,连接AC、BD,∵E、H是AB、AD中点,∴EH∥BD,同理有FG∥BD,∴EH∥FG,同理EF∥HG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,又∵EF∥AC,∴∠BME=90,∵EH∥BD,∴∠HEF=∠BME=90°,∴四边形EFGH是矩形.故选:A.先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.本题考查了三角形中位线定理、平行四边形的判定、矩形的判定、平行线的性质、菱形的性质.解题的关键是证明四边形EFGH是平行四边形以及∠HEF=∠BME=90°.22.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()【答案】D【解析】【分析】本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM.因为AP的最小值即为直角三角形ABC∴AM故选D.23.以下条件不能判别四边形ABCD是矩形的是()A. AB=CD,AD=BC,∠A=90°B. OA=OB=OC=ODC. AB=CD,AB∥CD,AC=BDD. AB=CD,AB∥CD,OA=OC,OB=OD 【答案】D【解析】【分析】本题考查了平行四边形和矩形的判定的应用有关知识,先根据平行四边形的判定得出四边形ABCD是平行四边形,再根据矩形的判定逐个判断即可.【解答】解:如图:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B.∵OA=OB=OC=OD,∴AC=BD,四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确,故选D.24.下列说法中错误的是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的矩形是正方形D. 两条对角线相等的菱形是正方形【答案】B【解析】【分析】本题主要考查的是平行四边形的判定,矩形的判定,正方形的判定的有关知识,根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等、平分进行判定即可得出结论.平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行且相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.【解答】解:A.对角线互相平分的四边形是平行四边形,故A选项正确;B.对角线相等的平行四边形才是矩形,故B选项错误;C.对角线互相垂直的矩形是正方形,故C选项正确;D.两条对角线相等的菱形是正方形,故D选项正确,综上所述,B符合题意,故选B.25.如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A. 四边形AEDF是平行四边形B. 如果∠BAC=90°,那么四边形AEDF是矩形C. 如果AD平分∠BAC,那么四边形AEDF是菱形D. 如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【答案】D【解析】【分析】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.26.下列说法正确的是()A. 对角线相等且互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线互相垂直的四边形是平行四边形D. 对角线相等且互相平分的四边形是矩形【答案】D【解析】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.27.下列命题中,假命题是()A. 有一组对角是直角且一组对边平行的四边形是矩形B. 有一组对角是直角且一组对边相等的四边形是矩形C. 有两个内角是直角且一组对边平行的四边形是矩形D. 有两个内角是直角且一组对边相等的四边形是矩形【答案】C【解析】【分析】本题考查了矩形的判定,熟练掌握矩形的判定方法是解决此类题目的关键.举反例往往是解决此类题目的重要的方法.利用矩形的定义或者是矩形的判定定理分别判断四个选项的正误即可.【解答】解:A、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意.故选C.28.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是矩形,则这个条件可以是()A. ∠ABC=90°B. AC⊥BDC. AB=CDD. AB∥CD【答案】A【解析】【分析】本题主要考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.因为在四边形ABCD中,对角线AC与BD互相平分,所以四边形ABCD是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:∵对角线AC与BD互相平分,∴四边形ABCD是平行四边形,要使四边形ABCD成为矩形,需添加一个条件是:AC=BD或有个内角等于90度.故选A.。

八年级数学下册特殊的平行四边形矩形矩形的判定测试题新人教版

八年级数学下册特殊的平行四边形矩形矩形的判定测试题新人教版

第2课时矩形的判定Q 课后刃1|练> > 分层训练巩固提升£]叽固练==1. ?ABCD中,AC交BD于点0,再添加一个条件,仍不能判定四边形ABCD是矩形的是(A )(A)AB=AD (B)0A=0B(C)AC=BD (D)DC丄BC2. 四边形ABCD的对角线AC,BD互相平分,要使它成为矩形,需要添加的条件是(B )(A)AB=CD (B)AC=BD(C)AB=BC (D)AC 丄BD3. 如图,在锐角△ ABC中,点0是AC边上的一个动点,过0作直线MN/ BC,设MN交/ ACB的平分线于点E,交/ ACB的外角平分线于点F,下列结论中正确的是(B )①0E=0F②CE=CF③若CE=12,CF=5,则0C的长为6;④当A0=C0寸,四边形AECF是矩形. (A)①②(B)①④(C)①③④(D)②③④4. 为了检查自己家新装修的房门是否为矩形,小明手中仅有一根较长的绳子,他先测了门的两组对边是相等的,然后他还需测量对角线是否相等(注意:小明手中的绳子只能用来进行长短的测量比较).I5. (2018 恩施一模)如图,DB // AC,且DB= AC,E是AC的中点.(1)求证:BC=DE;⑵连接AD,BE,若/ BAC=Z C,求证:四边形DBEA是矩形• 证明:(1) •/ E是AC的中点,1••• EC= AC.•/ DB= AC,•DB=EC.又••• DB// EC,•四边形DBCE是平行四边形•BC=DE.(2) T DB=AC,AE= AC,••• DB=AE.又••• DB// AE,•四边形DBEA是平行四边形.•••/ BAC=/ C,•BA=BC,T BC=DE,•AB=DE.•?DBEA是矩形.6. 如图,在?ABCD中,过点D作DEL AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1) 求证:四边形DEBF是矩形;(2) 若AF 平分/ DAB,AE=3,BF=4,求?ABCD的面积.(1)证明:•四边形ABCD是平行四边形,•DF/ BE,又••• DF=BE,•四边形DEBF是平行四边形,又••• DEI AB, •/ DEB=90 ,•平行四形DEBF是矩形.⑵解:•••四边形DEBF是矩形,•DF/ AB,DE=BF=4,DF=BE,•/ DFA=/ FAB,又••• AF平分/ DAB,•/ DAF=/ FAB,•/ DFA=/ DAF,「. DA=DF,又••• DEI AB,•/ DEA=90 ,在Rt △ ADE中,由勾股定理,得+ DE,=J昭+舉=5,AD站贞•BE=DF=AD=5,•AB=AE+BE=3+5=8,•S?ABC[=AB • BF=8X 4=32.7. 女口图,四边形ABCD中,对角线AC, BD相交于点O, AO=CO, BO= DO,且 / ABC+/ ADC=180 .(1) 求证:四边形ABCD是矩形;(2) DF丄AC,若/ ADF:/ FDC=3: 2,则/ BDF的度数是多少?(1) 证明:T AO=CO,BO=DO,•••四边形ABCD是平行四边形,•••/ ABC玄ADC,•// ABC+/ ADC=180 ,•••/ ABC玄ADC=90 ,•四边形ABCD是矩形.(2) 解:I / ADC=90 ,/ ADF:/ FDC=3: 2,•/ FDC=36 ,•••DF 丄AC,•/ DCO=90 -36 ° =54 ° ,•••四边形ABCD是矩形,•OC=OD,•/ ODC=54 ,•/ BDF=/ ODC-/ FDC=54 -36 ° =18° .◎素养提升练=E==8. 如图,在四边形ABCD中,AD// BC,AB丄BC于点B,AD=24 cm,BC=26 cm,点P从点A出发,以1 cm/s的速度向点D运动,同时点Q从点C出发,以3 cm/s的速度向点B运动,其中一个动点到达端点时另一个动点也随之停止运动,设运动时间为t s.(1) 当t= ________ s时,四边形APQB为矩形;⑵当四边形PQCD为平行四边形时,求t的值.解:⑴ 根据题意得AP=t cm,CQ=3t cm,■/ AD=24 cm,BC=26 cm,• - BQ=(26-3t) cm,•/ AD// BC,/ B=90° ,•••当AP=BC时,四边形APQB是矩形,•t=26-3t,解得t=6.5,即当t=6.5 s 时,四边形APQB是矩形.故答案为6.5.(2) 因为PD=(24-t) cm,CQ=3t cm,所以当PD=CQ寸,四边形PQCD^平行四边形,即24-t=3t, 解得t=6.所以当四边形PQCD为平行四边形时,t的值为6.。

人教版八年级数学下册矩形性质和判定同步练习

人教版八年级数学下册矩形性质和判定同步练习

初中数学试卷金戈铁骑整理制作1.矩形的对边矩形的性质和判断,对角线且同步练习,四个角都是,即是图形又是图形。

2.矩形的面积是60,一边长为5,则它的一条对角线长等于。

3.若是矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________ 。

4.矩形的一内角均分线把矩形的一条边分成 3 和 5 两部分,则该矩形的周长是___________.5.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.6.如图 , 已知在平面直角坐标系中C(0,4 ), 点 D是 OA的中点 , 点,O 为坐标原点 , 四边形 OABC是矩形 , 点 A、C的坐标分别为(A 10,0)、P 在 BC边上运动 , 当△ ODP是腰长为5 的等腰三角形时, 点 P 的坐标为。

7. 若一个直角三角形的两条直角边分别为 5 和12,则斜边上的中线等于.8.平行四边形没有而矩形拥有的性质是()A. 对角线相等B.对角线互相垂直C.对角线互相均分D. 对角相等9. 以下表达错误的选项是()A. 平行四边形的对角线互相均分B. 平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角时90o的平行四边形是矩形10. 以下检查一个门框可否为矩形的方法中正确的选项是()A. 测量两条对角线可否相等B.用曲尺测量对角线可否互相垂直C.用曲尺测量门框的三个角可否都是直角D.测量两条对角线可否互相均分11. 矩形 ABCD对角线订交于点O,若是△ ABC周长比△ AOB周长大 10cm,则 AD长是()12. 以下列图形中对称轴有A. 平行四边形B.2 条的图形是(等边三角形)C.矩形D.直角三角形二、解答题 :13. 如图,已知矩形ABCD的两条对角线订交于O, ∠AOD=120°,AB=4cm,求此矩形的面积.14.平行四边形 ABCD,E是 CD的中点 , △ ABE是等边三角形 . 求证:四边形 ABCD是矩形 .15. 如图 , 矩形 ABCD中, EF⊥ EB,EF=EB,ABCD周长为 22cm,CE=3cm.求: DE的长 .16. 如图 , 矩形 ABCD中,DE=AB, CF⊥ DE.求证 :EF=EB.17.如图 , 矩形 ABCD中, 点 E、 F 分别在 AB、 CD上 ,BF//DE, 若 AD=12cm,AB=7cm,且 AE:EB=5:2, 求阴影部分 .18. 如图 , 矩形 ABCD中, 对角线 AC、 BD订交于 O,AE⊥ BD,垂足为 E, 已知 AB=3,AD=4, 求△ AEO的面积 .19. 矩形 ABCD中, E 是 CD上一点,且AE=CE, F 是 AC上一点 FH⊥ AE于 H, FG⊥ CD于 G.求证: FH+FG=AD.20.在平行四边形 ABCD中,对角线 AC、 BD订交于 O, EF 过点 O,且 AF⊥ BC.求证:四边形AFCE是矩形21.平行四边形 ABCD中, 对角线 AC、 BD订交于点O , 点P是四边形外一点 , 且 PA⊥ PC, PB⊥ PD,垂足为P .求证:四边形ABCD为矩形 .参照答案1. 相等;互相均分;相等;直角;轴对称;中心对称;2.12 ;3.48 ;或 26;5.10,5 ;6. ( 2, 4),( 3,4 ),( 8,4 );;13.16 3 2cm ;14. 证明:∵ AE = BE (等边△) , ∠ DEA =∠ EAB = 60o =∠ ABE =∠ CEB (内错角相等) .DE =CE ( E 中点);∴△ ADE ≌△ BCE (两边夹一角相等) , ∠ C =∠ D (对应角相等) , ∠ C +∠ D = 180o (同旁内角互补) , ∠ C =∠ D = 90o, 同理∠ A =∠ B = 90o; 所以 平行四边形 ABCD 是矩形 . (四个角是直角) .15. ∵四边形 ABCD 是矩形,∴ AD=BC , DC=AB ,∠ D=∠ C=90°,∵ EF ⊥ EB ,∴∠ FEB=90°,∴∠ DEF+∠ CEB=90°,∠ CEB+∠ CBE=90°,∴∠ DEF=∠ CBE ,在△ DEF 和△ CBE 中,∠ D =∠ C ,∠ DEF =∠ CBE , EF = EB ,∴△ DEF ≌△ CBE ( AAS ), ∴ DE=BC , DF=CE=3cm ,∵矩形 ABCD 的 ABCD 周长为 22cm ,∴ 2( BC+DE+EC ) =22,∴ DE+DE+3=11,∴ DE=4.16. ∵∠ AED=∠ FDC ,∠ DAE=∠DFC=90°∴∠ ADE=∠ FCD又∵ DE=AB=CD ∴△ ADE ≌△ FCD ∴DF=AE ∴ EF=DE-DF=AB-AE=BE 。

人教版八年级下册专项训练专题06 矩形的判定(学生版)

人教版八年级下册专项训练专题06 矩形的判定(学生版)

专题06 矩形的判定一、知识点矩形的判定方法分为两种途径:1、在四边形基础上证明三个角等于90∘,即三个角等于90∘的四边形是矩形;2、在平行四边形基础上+矩形特性:对角线相等的平行四边形是矩形;有一个角是90∘的平行四边形是矩形二、标准例题:例题1:四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC例2:如图,在四边形ABCD中,E、F两点分别在边BC上.DE // AB,AF // DC,且四边形AEFD是平行四边形.(1)请判断线段AD与BC有何数量关系?并说明理由.(2)当AB=DC时.请猜想四边形AEFD是什么特殊的平行四边形?并说明理由.三、练习1.四边形ABCD的对角线AC、BD于点O,下列各组条件,不能判定四边形ABCD是矩形的是()A.AB=CD,AD=BC,AC=BD B.∠A=∠C,∠B=∠D,∠A=∠BC.OA=OC,OB=OD,∠BAD=90∘D.∠A=∠C,∠B+∠C=180∘,∠AOB=∠BOC2.在四边形ABCD中,O是对角线交点,不能判定四边形ABCD是矩形的是()A.∠ABC=∠BCD=∠CDA=90∘B.AD=BC,AD // BC,AC⊥BDC.OA=OB=OC=OD D.AB=CD,AD=BC,∠BAD=90∘3.下列关于矩形的说法中正确的是().A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形4.如图ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是().A.AC⊥BD B.∠ABC=90° C.OA=OB=OC=OD D.AC=BD5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:(1)以点C为圆心,AB长为半径画弧;(2)以点A为圆心,BC长为半径画弧;(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1)乙:(1)连接AC,作线段AC的垂直平分线,交AC于点M;(2)连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对7.阅读下面材料:在数学课上,老师提出如下问题:已知:Rt△ABC,∠ABC=90°.求作:矩形ABCD.小敏的作法如下:①作线段AC的垂直平分线交AC于点O;②连接BO并延长,在延长线上截取OD=BO;③连接DA,DC.则四边形ABCD 即为所求.老师说:“小敏的作法正确.”请回答:小敏的作图依据是__________.8.如图:△ABC 中,AB =AC .(1)求作BC 边上的垂直平分线MN ,使得MN 交BC 于D ;将线段BA 沿着BC 的方向平移到线段DE(其中点B 平移到点D),画出平移后的线段DE ;(要求用尺规作图,不写作法,保留作图痕迹.)(2)连接AE 、EC ,试判断四边形ADCE 是矩形吗?说明理由.9.如图,A B ∥CD ,点 E 、F 分别在 AB 、CD 上,连接 EF .∠AEF 、∠CF 的平分线交于点 G ,∠BEF 、∠DFE 的平分线交于点 H .求证:四边形 EGFH 是矩形.10.如图,在△ABC 中,∠ABC=90°,BD 为AC 边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C 作直线CE ,使CE ⊥BC 于点C ,交BD 的延长线于点E ,连接AE ;(2)求证:四边形ABCE 是矩形.11.如图,在▱ABCD 中,点M 、N 分别为边AD 、BC 的中点,AE 、CF 分别是∠BAD 、∠BCD 的平分线.(1)求证:AE//CF ;(2)若AD =2AB ,求证:四边形PQRS 是矩形.12.如图,在□ABCD 中, E F ,为BC 上两点,且BE CF =, AF DE =.求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.13.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC , BC 的中点,且BC =2AF .(1)求证:四边形ADFE 为矩形;(2)若∠C =30°,AF =2,写出矩形ADFE 的周长.14.如图,在△ABC 中,BD 、CE 分别是边AC 、AB 上的中线,BD 与CE 相交于点O ,点M 、N分别是OB 、OC 的中点.(1)求证:EN 与DM 互相平分;(2)若AB=AC ,判断四边形DEMN 的形状,并说明理由.15.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?解:(1)如下图,连接DE,EB,BF,FD,由已知条件易得AE=CF,BO=DO,AO=CO,由此可得OE=OF,从而可得四边形BEDF是平行四边形;(2)由(1)可知,四边形BEDF是平行四边形,故当EF=BD=12cm时,四边形BEDF是矩形,由此分以下两种情况进行解答即可求得对应的t的值,①点E在OA上,点F在OC上时,EF=BD=12cm;②点E在OC上,点F 在OA上是,EF=BD=12cm.详解:(1)连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)由已知条件可得:AE=CF=2t,∵由(1)可知四边形BEDF是平行四边形,∴当EF=BD=12时,四边形BEDF是矩形.①当点E在OA上,点F在OC上时,EF=AC-4t,∵EF=BD=12,∴20-4t=12,解得:t=2;②当点E在OC上,点F在OA上时,EF=4t-AC=4t-20,∵EF=BD=12,∴4t-20=12,解得:t=8.综上所述:当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.16.如图,在△ABC中,点O是A C边上(端点除外)的一个动点,过点O作直线MN∥B C.设MN交∠B C A的平分线于点E,交∠B C A的外角平分线于点F,连结AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.解:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.如图,由CE平分∠BCA可得∠1=∠2,由MN∥BC可得∠1=∠3,所以∠3=∠2,所以EO=CO,同理可证FO=CO,所以EO=FO,结合OA=OC可得四边形AECF是平行四边形,由CF是∠BCA的外角平分线可得∠4=∠5,不难证明∠2+∠4=90°,所以平行四边形AECF是矩形.试题解析:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.17.如图,已知△ABC和△DEF是两个边长都为8cm的等边三角形,且点B,E,C,F在同一直线上,连接AE,DC.(1)求证:四边形AEDC是平行四边形;(2)若△ABC沿着BF的方向匀速运动,△DEF不动,当△ABC运动到点B与点F重合时,四边形AEDC是什么特殊的四边形?说明理由.解:(1)∵△ABC与△DEF是边长为8的等边三角形,∴DE=AC,∠1=∠2=60∘.∵∠1=∠2,∴DE // AC.∴四边形AEDC是平行四边形.(2)四边形AEDC是矩形,理由如下:∵点B与点F重合,∴EF=CF=8,AF=DF=8.∴AD=CE=16.由(1)可知四边形AEDC是平行四边形,∴四边形AEDC是矩形.20.如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证:四边形AEFD是平行四边形;(Ⅱ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.解:(I)由题意得,AE=t,CD=2t,∵DF ⊥BC ,∠C=30°,∴DF=12CD=t ;(Ⅱ)∵∠ABC=90°,DF ⊥BC ,∴AB ∥DF ,∵AE=t ,DF=t ,∴AE=DF ,∴四边形AEFD 是平行四边形;(Ⅱ)当t=3时,四边形EBFD 是矩形,理由如下:∵∠ABC=90°,∠C=30°,∴BC=12AC=6cm , ∵BE ∥DF ,∴BE=DF 时,四边形EBFD 是平行四边形,即6-t=t ,解得,t=3,∵∠ABC=90°,∴四边形EBFD 是矩形,∴t=3时,四边形EBFD 是矩形.专题06 矩形的判定一、知识点矩形的判定方法分为两种途径:1、在四边形基础上证明三个角等于90∘,即三个角等于90∘的四边形是矩形;2、在平行四边形基础上+矩形特性:对角线相等的平行四边形是矩形;有一个角是90∘的平行四边形是矩形二、标准例题:例题1:四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB=CDB .AC=BDC .AB=BCD .AD=BC分析:四边形ABCD 的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理可得,只需添加条件是对角线相等.解:可添加AC=BD ,理由如下:∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD 是矩形.故选:B .总结:虽然矩形判定方法由三个,但由于平行四边形的判定方法较多,造成了矩形判定的多样性,因此,把握矩形证明的本质思路非常重要。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
金戈铁骑整理制作
《矩形的判定》练习
一、选择——基础知识运用
1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
2.检查一个门框是否为矩形,下列方法中正确的是()
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.测量门框的三个角,是否都是直角
D.测量两条对角线,是否互相垂直
3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是()
A.正方形B.矩形C.菱形D.都有可能
4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()
A.2个B.3个C.4个D.5个
5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是()
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对)
二、解答——知识提高运用
6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。

7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。

8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。

9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。

10.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F。

(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形。

11.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P 从A点出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动。

(1)从运动开始,经过多少时间点P、Q、C、D为边得四边形是平行四边形?
(2)从运动开始,经过多少时间点A、B、Q、P为边得四边形是矩形?
参考答案一、选择——基础知识运用
1.【答案】C
【解析】∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,∴A正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,∴B正确;
∵∠B+∠C=180°,
∴AB∥DC,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,∴C不正确;
∵∠A=∠B=90°,
∴∠A+∠B=180°,
∴AD∥BC,如图所示:
在Rt△ABC和Rt△BAD中,
AC=BD;AB=AB,
∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD,
∴四边形ABCD是平行四边形,
∴四边形ABCD是矩形,∴D正确;
故选:C。

2.【答案】C
【解析】根据“三个角是直角的四边形是矩形”可以得到测量门框的三个角,是否都是直角即可检验该四边形是不是矩形。

故选C。

3.【答案】B
【解析】∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形。

故选:B。

4.【答案】C
【解析】
如图1,∠A=∠B=∠C=∠D=360°÷4=90°,∴①正确;
如图1AD∥BC,∠A=∠B=90°,不能推出∠C和∠D也是90°,如直角梯形,∴②错误;
∵AD=BC,AB=CD,
∴四边形ABCD是平行四边形,
∵∠A=90°,
∴平行四边形ABCD是矩形,∴③正确;
根据对角线相等和有一个角是直角不能推出四边形是平行四边形,即不是矩形,∴④错误;
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形,∴⑤正确;
∵AD∥BC,∠A=90°,
即AB是两平行线AD和BC间的高,
∵CD=AB,
∴CD应也是AD和BC间的高,
∴CD⊥BC,
根据矩形的定义得出四边形是矩形,∴⑥正确;
∴正确的个数是4个,
故选C。

5.【答案】A
【解析】由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形.
所以甲的作业正确;
由乙同学的作业可知,CM=AM,MD=MB,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形。

所以乙的作业正确;
故选A。

二、解答——知识提高运用
6.【答案】∵AB=5,AD=12,BD=13.
∴AB2+AD2=BD2,
∴∠BAD=90°,
∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形;
7.【答案】∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,AB=DC,
∴∠D+∠A=180°,
∵E是AD边的中点,
∴AE=DE,
∵△CBE是等边三角形,
在△ABE 和△DCE 中,
AB =DC ;AE =DE ;BE =CE ,
∴△ABE ≌△DCE (SSS ),
∴∠A=∠D ,
∵∠D+∠A=90°,
∴∠D=∠A=90°,
∵四边形ABCD 是平行四边形,
∴□ABCD 是矩形。

8.【答案】∵M ,N 分别是DE ,BE 的中点,
∴MN 是△BDE 的中位线,
∴MN ∥AB ,MN=12BD , 同理:PN ∥CE ,PN=12CE ,MQ ∥CE ,MQ=12CE , ∴PN=MQ ,PN ∥MQ ,
∴四边形PQMN 是平行四边形,
∵∠A=90°,
∴BA ⊥CA ,
∵MN ∥AB ,MQ ∥AC ,
∴MN ⊥MQ ,
∴∠NMQ=90°,
∴四边形PQMN 是矩形。

9.【答案】∵在□ABCD 与□ABEF 中,AB ∥CD ,AB=CD ,AB ∥EF ,AB=EF , ∴CD ∥EF ,CD=EF ,
∴四边形EFDC 是平行四边形,
∵BC=BE ,∠ABC=∠ABE ,
∴AB ⊥CE ,
∴CD ⊥CE ,
∴∠DCE=90°,
∴四边形EFDC 是矩形。

10.【答案】(1)∵四边形ABCD 是平行四边形,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴AC=BE;
(2)∵AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形。

11.【答案】(1)当PD=CQ时,四边形PQCD为平行四边形,即24-t=3t,
解得,t=6,
即当t=6s时,四边形PQCD为平行四边形;
(2)根据题意得:AP=tcm,CQ=3tcm,
∵AB=8cm,AD=24cm,BC=26cm,
∴DP=AD-AP=24-t(cm),BQ=26-3t(cm),
∵AD∥BC,∠B=90°,
∴当AP=BQ时,四边形ABQP是矩形,
∴t=26-3t,
解得:t=6.5,
即当t=6.5s时,四边形ABQP是矩形。

相关文档
最新文档