空间直线与平面,平面与平面地位置关系
直线与平面、两平面的相对位置
THANKS
感谢观看
04
直线与平面、两平面相对位置的性质
和定理
直线与平面垂直的性质和定理
直线与平面垂直的性质
如果一条直线垂直于一个平面,那么这 条直线上的任意一点到平面的距离都相 等。
VS
直线与平面垂直的定理
如果一条直线与平面内的两条相交直线都 垂直,那么这条直线与这个平面垂直。
直线与平面平行的性质和定理
直线与平面平行的性质
在构建过程中,需要充分考虑直线与平面的关系,以及两平 面之间的相对位置,以确保所构建的几何形状符合设计要求 。
建筑设计中的应用
在建筑设计中,直线与平面、两平面 的相对位置关系具有重要意义。通过 合理利用这些关系,可以设计出具有 独特美感和实用性的建筑作品。
例如,可以利用直线与平面的垂直关 系设计出高耸入云的摩天大楼,利用 两平面之间的角度关系创造出独特的 建筑造型。
直线与平面相交
总结词
当直线与平面有一个公共点时,直线 与平面相交。
详细描述
直线与平面相交意味着直线和平面在 某一点相遇。这个点是直线和平面的 唯一公共点。
直线与平面垂直
总结词
当直线的方向向量与平面的法向量平行时,直线与平面垂直。
详细描述
直线与平面垂直意味着直线与平面中的所有线段都垂直。在这种情况下,直线要么完全位于平面上,要么与平面 相交于一点。
应用
在几何学、物理学和工程学中,两平面垂直 的情况也经常出现,例如建筑物的墙与地面 、电路板上的线路与基板等。
03
直线与平面、两平面相对位置的应用
空间几何形状的构建
空间几何形状的构建是直线与平面、两平面相对位置在实际 应用中的重要体现。通过利用这些相对位置关系,可以构建 出各种复杂的空间几何形状,如球体、立方体、圆柱体等。
空间点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
直线与平面、平面与平面之间的位置关系
2.直线 a 在平面 γ 外,则( A.a∥γ B.a 与 γ 至少有一个公共点 C.a∩γ=A D.a 与 γ 至多有一个公共点
【答案】 D
)
(
3.直线 a∥直线 b,b⊂平面 α,则 a 与 α 的位置关系是 ) A.a∥α B.a⊂α C.a∥α 或 a⊂α D.a∥α 或 a⊂α 或 a 与 α 相交
思考讨论 分别指出下列各图中直线与平面的关系,并总结它们的 特点,用符号表示出来.
提示:(1)直线在平面内——有无数个公共点,符号表示 为:a⊂α; (2)直线与平面相交——有且只有一个公共点,符号表示 为:a∩α=A; (3)直线与平面平行——没有公共点,符号表示为:a∥α.
课前预习 1.直线与平面平行是指( ) A.直线与平面内的无数条直线都无公共点 B.直线上两点到平面的距离相等 C.直线与平面无公共点 D.直线不在平面内
【分析】 由题目可获取以下主要信息:本题主要考查 直线与直线、直线与平面、平面与平面的位置关系.解答本 题要考虑线线、线面、面面位置关系的特征与定义,结合空 间想象能力作出判断.
【解析】 由公理 4 知①正确;由直线与平面平行的位 置关系知⑤正确.从而选 A.其中②是错误的,因为平行于 同一平面的两条直线可能平行、可能相交,也可能异 面.③是错误的,因为当 a∥c,c∥α 时,可能 a∥α,也可能 a⊂α.对于④,α,β 可能平行,也可能相交. 【答案】 A
公共点情况 符号语言 ②有无数个 ③a⊂α 公共点 ⑤有且只有 ⑥a∩α= 一个公共点 A ⑧没有公共 ⑨a∥α 点
2.直线与平面相交或平行的情况统称为直线在平面外. 3.平面与平面的位置关系 位置 图形语言 公共点情况 符号语言 关系 两平 ②无数个, 面相 ① 构成一条直 ③α∩β=a 交 线 两平 面平 ⑤无公共点 ⑥α∥β 行 ④
空间中直线与平面之间的位置关系、平面与平面之间的位置关系 课件
答案:D
符号语言 a⊂α a∩α=A a∥α
二、平面和平面的位置关系
问题思考 1.观察前面问题中的长方体,平面A1C1与长方体的其余各个面,两 两之间有几种位置关系? 提示:两种位置关系:两个平面相交或两个平面平行. 2.平面与平面平行的符号语言和图形语言分别怎样表达? 提示:平面与平面平行的符号语言是:α∥β;图形语言是:
因思考不全面致错 【典例】 设P是异面直线a,b外的一点,则过P与a,b都平行的平面 () A.有且只解如图,过P作a1∥a,b1∥b.
∵a1∩b1=P,∴过a1,b1有且只有一个平面.故选A.
提示:以上解题过程中都有哪些错误?出错的原因是什么?你如何 改正?如何防范?
∴在平面α内与b平行的直线都与a平行,故④正确.
答案:A
反思感悟直线与平面的位置关系有三种,即直线在平面内,直线 与平面相交,直线与平面平行.
(1)判断直线在平面内,需找到直线上两点在平面内,根据公理1知 直线在平面内.
(2)判断直线与平面相交,据定义只需判定直线与平面有且只有一 个公共点.
(3)判断直线与平面平行,可根据定义判断直线与平面没有公共点, 也可以排除直线与平面相交及直线在平面内两种情况,从而判断直 线与平面平行.
空间中直线与平面之间的位置关系 平面与平面之间的位置关系
一、直线和平面的位置关系 问题思考
1.如图所示,在长方体ABCD-A1B1C1D1中,线段BC1所在的直线与 长方体的六个面所在的平面有几种位置关系?
提示:三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直 线与平面平行.
2.如何用图形表示直线与平面的位置关系?这种位置关系如何用 符号语言表示?
答案:C
(2)如果在两个平面内分别有一条直线,这两条直线互相平行,那
平面和直线的位置关系
平面和直线的位置关系
平面和直线是几何学中常见的基本图形,它们在空间中的位置关系有以下几种情况:
1. 直线在平面内:当一条直线完全位于一个平面内时,我们称这条直线在这个平面内。
这种情况下,直线与平面有唯一的交点,也就是直线的一个端点与平面的一个点重合。
2. 直线与平面相交:当一条直线与一个平面有交点时,我们称这条直线与这个平面相交。
这种情况下,直线与平面有无限多个交点,交点的数量取决于直线与平面的相对位置。
3. 直线与平面平行:当一条直线与一个平面没有交点且与平面上任意一条直线的夹角为零时,我们称这条直线与这个平面平行。
这种情况下,直线与平面之间没有交点。
4. 直线与平面垂直:当一条直线与一个平面上的任意一条直线的夹角为90度时,我们称这条直线与这个平面垂直。
这种情况下,直线与平面有唯一的交点,交点位于直线与平面的垂线上。
总之,平面和直线的位置关系有多种情况,要根据具体的情况来判断它们之间的
关系。
在实际应用中,我们需要根据需要来选择适当的位置关系,以便更好地解决问题。
空间点、直线、平面之间的位置关系
考点一 平面的基本性质
【题组练透】
1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c
()
A.一定平行
B.一定相交
C.一定是异面直线 D.一定垂直
【解析】选D.两条平行线中一条与第三条直线垂直,另 一条直线也与第三条直线垂直.
2.如图是正方体的平面展开图,则在这个正方体中: ①BM与ED平行; ②CN与BE是异面直线; ③CN与BM成60°角; ④DM与BN是异面直线. 以上结论中,正确的序号是 ( ) A.③④ B.②④ C.①②③ D.②③④
能确定一个平面;④正确,用反证法,假设有三点共线, 设这条直线为l,则直线l与第四个点能确定一个平面,所 以这四点共面,与已知矛盾. 答案:②③④
3.下列命题中不正确的是________.(填序号) ①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面; ③一条直线和两条异面直线中的一条平行,则它和另一 条直线不可能平行;
B1B,AD的中点,则异面直线BF与D1E所成角的余弦值为
A. 14 7
C. 10 5
B. 5 7
D. 2 5 5
()
【解析】选D.如图,取A1A的中点M,D1D的中点N,连接EM,
MN,取MN的中点G,连接EG,D1G,FG,所以四边形BFGE是平
④一条直线和两条异面直线都相交,则它们可以确定两 个平面.
【解析】没有公共点的两直线平行或异面,故①错;命 题②错,此时两直线有可能相交;命题③正确,因为若直 线a和b异面,c∥a,则c与b不可能平行,用反证法证明如 下:若c∥b,又c∥a,则a∥b,这与a,b异面矛盾,故c与b 不平行;命题④也正确,若c与两异面直线a,b都相交,由
3.空间直线与平面、平面与平面之间的位置关系
空间中直线与平面之间的位置关系、平面与平面之间的位置关系
2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、空间中直线与平面的位置关系 1.直线与平面的位置关系直线与平面的位置关系有且只有___________种: ①直线在平面内——有___________个公共点; ②直线与平面相交——有且只有一个公共点; ③___________——没有公共点. 学*科网 直线与平面相交或平行的情况统称为___________. 2.直线与平面的位置关系的符号表示和图形表示3.直线和平面位置关系的分类 (1)按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 (2)按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内 (3)按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行二、平面与平面之间的位置关系 1.两个平面之间的位置关系两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点;(2)两个平面相交——有___________条公共直线. 2.两个平面之间的位置关系的图形表示和符号表示3.两个平行平面的画法画两个平行平面时,要注意使表示平面的两个平行四边形的对应边平行,且把这两个平行四边形上下放置.K 知识参考答案:一、1.三 无数 直线与平面平行 直线在平面外 二、 1.一K—重点了解空间中直线与平面、平面与平面的位置关系K—难点会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系K—易错对概念理解不透彻致误1.直线与平面的位置关系空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决.【例1】若直线a α,则下列结论中成立的个数是①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a 平行的直线A.0 B.1C.2 D.3【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.2.平面与平面的位置关系判断两平面之间的位置关系时,可把自然语言转化为图形语言,搞清图形间的相对位置是确定的还是可变的,借助于空间想象能力,确定平面间的位置关系.【例2】已知α,β是两个不重合的平面,下面说法正确的是A.平面α内有两条直线a,b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β【答案】D【解析】不能保证α,β无公共点.如图:故A、B选项错误.当a∥α,a∥β时,α与β可能相交.如图:故C选项错误.平面α内所有直线都与平面β平行,说明α,β一定无公共点,则α∥β.故D选项正确.【名师点睛】两个平面之间的位置关系有且只有两种:平行和相交.判断两个平面之间的位置关系的主要依据是两个平面之间有没有公共点.解题时要善于将自然语言或符号语言转换成图形语言,借助空间图形作出判断.【例3】如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系是A.平行B.相交C.平行或相交D.不确定【答案】C【解析】如图,在正方体ABCD-A1B1C1D1中,AB⊂平面ABCD,C1D1⊂平面A1B1C1D1,C1D1⊂平面CDD1C1,AB∥C1D1,但平面ABCD∥平面A1B1C1D1,平面ABCD与平面CDD1C1相交.3.对直线与平面相交的概念理解不透彻致误【例4】已知:直线a∥b,a∩平面α=P,求证:直线b与平面α相交.【错解】如图,因为a∥b,所以a,b确定一个平面,设该平面为β.因为a∩平面α=P,所以P∈a,P∈α,所以P∈β,即点P为平面α与β的一个公共点,由此可知α与β相交于过点P的一条直线,记为c,即α∩β=c.在平面β内,a∥b,a∩c=P.由平面几何知识可得b与c也相交,设b∩c=Q,则Q∈b,Q∈c.因为c⊂α,所以Q∈α,所以直线b与平面α相交.【错因分析】错解中对直线与平面相交的概念理解不透彻,误认为直线和平面相交就是直线和平面有一个公共点.【名师点睛】直线与平面相交,要求直线与平面有且只有一个公共点,即直线与平面有一个公共点且直线不在平面内,也就是直线既不与平面平行,又不在平面内.1.已知直线与直线垂直,,则与的位置关系是A.//B.C.相交D.以上都有可能2.如果空间的三个平面两两相交,那么A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线3.已知平面α内有无数条直线都与平面β平行,那么 A .α∥β B .α与β相交 C .α与β重合D .α∥β或α与β相交4.若直线a 不平行于平面α,则下列结论成立的是A .α内的所有直线均与a 异面B .α内不存在与a 平行的直线C .α内直线均与a 相交D .直线a 与平面α有公共点 5.以下命题(其中a b ,表示直线,α表示平面): ①若∥a b ,b α⊂,则∥a α; ②若∥a α,b α⊂,则∥a b ; ③若∥a b ,∥b α,则∥a α. 其中正确命题的个数是A .0B .1C .2D .36.若M ∈平面α,M ∈平面β,则不同平面α与β的位置关系是 . 7.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,试判断: (1)AM 所在的直线与平面ABCD 的位置关系; (2)CN 所在的直线与平面ABCD 的位置关系; (3)AM 所在的直线与平面CDD 1C 1的位置关系; (4)CN 所在的直线与平面CDD 1C 1的位置关系.8.三个平面,,αβγ,如果,,∥a b αβγαγβ==,且直线,∥c c b β⊂.(1)判断c 与α的位置关系,并说明理由; (2)判断c 与a 的位置关系,并说明理由.9.若a ,b 是异面直线,且a ∥平面α,则b 与α的位置关系是 A .∥b α B .相交C .b α⊂D .b α⊂、相交或平行 10.已知平面α和直线l ,则在平面α内至少有一条直线与直线lA .平行B .垂直C .相交D .以上都有可能11.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.(填序号)12.如图所示,1111ABCD A B C D -是正方体,在图①中E ,F 分别是11D C ,1B B 的中点,画出图①、②中有阴影的平面与平面ABCD 的交线,并给出证明.1 2 3 4 5 9 10 DADDADB3.【答案】D【解析】如图,设α∩β=l ,则在α内与l 平行的直线可以有无数条a 1,a 2,…,a n ,…,它们是一组平行线.这时a 1,a 2,…,a n ,…与平面β都平行,但此时α∩β=l.另外也有可能αβ∥.故选D.4.【答案】D【解析】直线a 不平行于平面α,则a 在α内或a 与α相交,故A 错; 当a α⊂时,在平面α内存在与a 平行的直线,故B 错;α内的直线可能与a 平行或异面,故C 错;显然D 正确. 5.【答案】A【解析】若∥a b ,b α⊂,则∥a α或a α⊂,故①不正确; 若∥a α,b α⊂,则∥a b 或,a b 异面,故②不正确; 若∥a b ,∥b α,则∥a α或a α⊂,故③不正确.故选A . 6.【答案】相交【解析】由公理3知,α与β相交.7.【解析】(1)AM 所在的直线与平面ABCD 相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)CN所在的直线与平面CDD1C1相交.9.【答案】D【解析】三种情况如图(1),(2),(3).10.【答案】B【解析】若直线l与平面α相交,则在平面α内不存在直线与直线l平行,故A错误;若直线l∥平面α,则在平面α内不存在直线与l相交,故C错误;对于直线l与平面α相交,直线l与平面α平行,直线l在平面α内三种位置关系,在平面α内至少有一条直线与直线l垂直,故选B.11.【答案】①【解析】如图,三点A、B、C可能在α的同侧,也可能在α两侧,其中真命题是①.证明:在图①中,因为直线EN ∥BF ,所以、、、B N E F 四点共面,又2EN BF ,因此EF 与BN 相交,设交点为M .因为M ∈EF ,且M ∈NB ,而EF ⊂平面AEF ,NB ⊂平面ABCD ,所以M 是平面ABCD 与平面AEF 的公共点.又因为点A 是平面AEF 和平面ABCD 的公共点,故AM 为两平面的交线. 在图②中,C 1M 在平面11CDD C 内,因此与DC 的延长线相交,设交点为M ,则点M 为平面11A C B 与平面ABCD 的公共点,又点B 也是这两个平面的公共点,因此直线BM 是两平面的交线.学!科网。
直线与平面、平面与平面间的位置关系
错解:因为 ∥ 所以l与 所成的角α,就是 就是l与 错解 因为BD∥B1D1,所以 与B1D1所成的角 就是 与BD 因为 所以 所成的角.在平面 内以P为顶点 底边在B 为顶点,底边在 所成的角 在平面A1C1内以 为顶点 底边在 1D1上作一个等 在平面 腰三角形,使底角为 则两腰所在直线就与 腰三角形 使底角为α,则两腰所在直线就与 1D1成等角 所 使底角为 则两腰所在直线就与B 成等角,所 以这样的直线有两条.应选 以这样的直线有两条 应选B. 应选 错因分析:错解中受定势思维的影响 只考虑了 错因分析 错解中受定势思维的影响,只考虑了 α ∈ (0, ) 错解中受定势思维的影响 2 π 时的一般情况,而忽略了特殊情况 而忽略了特殊情况.当 时的一般情况 而忽略了特殊情况 当 α = 0或 时, 这样的直 2 线只有一条. 线只有一条 正解: 正解
2-1.如果在两个平面内分别有一条直线,这两条直线互相 - 如果在两个平面内分别有一条直线 如果在两个平面内分别有一条直线, 平行,那么这两个平面的位置关系是 平行,那么这两个平面的位置关系是( C )
A.平行 . C.平行或相交 .平行或相交 B.相交 . D.垂直相交 .
解析:有平行、相交两种情况,如图
解析: 可能在平面α内 在平面α外有 解析:①错,l 可能在平面 内;②错,直线 a 在平面 外有 两种情况: ∥ 和 相交; 可能在平面α内 两种情况:a∥α和 a 与α相交;③错,直线 a 可能在平面 内; 相交 在平面α内或 ∥ ,在平面α内都有无数条直线 ④正确,无论 a 在平面 内或 a∥α,在平面 内都有无数条直线 正确, 与 a 平行. 平行.
2:如图 在长方体 如图,在长方体 的面A 上有一点P(P 如图 在长方体ABCD—A1B1C1D1的面 1C1上有一点 — ∉ B1D1),过P点在平面 1C1上作一直线 使l与直线 成α角, 点在平面A 上作一直线l,使 与直线 与直线BD成 角 过 点在平面 这样的直线l有 这样的直线 有( A.1条 条 B.2条 条 ) C.1条或 条 条或2条 条或 D.无数条 无数条
第3讲 直线平面之间的位置关系(学生版)
第八章 立体几何与空间向量第3讲 空间点、直线、平面之间的位置关系班级__________ 姓名__________一、基础知识:1、空间直线的位置关系(1)位置关系的分类:⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2.(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (4)异面直线判定定理:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2、平面:(1)平面的概念:平面是一个描述而不定义的概念,立体几何里所说的平面是从生活中常见的平面,如桌子的表面、黑版面、平静的水面等中抽象出来的,生活中的平面是比较平且是有限的,而立体几何中的平面是绝对的平且是无限延展的。
(2)平面的表示:①立体几何中通常画平行四边形来表示平面,且当平面水平放置时,把平行四边形的锐角画成45 , 横边画成等于邻边的2倍。
②平面通常用一个希腊字母表示。
如平面α、平面β、 平面γ等;也可以用表示平面的平行四边形的两个顶点的字母来表示,如平面AC 等;若用三角形表示平面时,则表示成平面ABC 。
注意:在平面几何里,凡是后引的辅助线都画成虚线,而立体几何里则不然,凡是被遮住的线,都画成虚线,凡是不被遮住的线都画成实线,无论是题中原有的还是后引的辅助线。
3、平面的基本性质:公理1:如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示:或者:∵,A B αα∈∈,∴AB α⊂公理2:经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.推论1 经过一条直线和直线外的一点有且只有一个平面.推论2 经过两条相交直线有且只有一个平面推论3 经过两条平行直线有且只有一个平面公理3:如果两个平面有一个公共点,那么它们有且只有一条经过这个点的公共直线。
空间点直线平面之间的位置关系例题
空间点直线平面之间的位置关系例题空间几何是数学中一个非常重要的分支,在空间几何中,点、直线和平面是最基本的元素。
它们之间的位置关系既复杂又深刻,需要我们用深度和广度兼具的方式进行全面评估。
在本文中,我们将从简到繁,由浅入深地探讨空间点、直线和平面之间的位置关系,以及解决一些典型的例题。
一、空间点、直线和平面的基本概念1. 点:在几何中,点是最基本的概念,它是没有大小,没有形状,只有位置的。
点在空间中是唯一的,通过坐标来表示。
2. 直线:直线是由无数个点组成的,在空间中是一条无限延伸的路径。
直线有方向和长度,可以根据方向向量来表示。
3. 平面:平面是由无数个点和直线组成的,在空间中是没有边界的二维图形。
平面可以通过点和法向量来表示。
二、点、直线和平面之间的位置关系1. 点和直线的位置关系:(1)点是否在直线上:给定点P(x,y,z),直线L:Ax+By+Cz+D=0,要判断点P是否在直线L上,可以将点P的坐标代入直线方程,若等式成立,则点P在直线L上。
(2)点到直线的距离:点P到直线L的距离可以通过点到直线的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和直线的位置关系还包括点在直线的上、下、左、右、内、外等方面。
2. 点、直线和平面的位置关系:(1)点是否在平面上:给定点P(x,y,z),平面π:Ax+By+Cz+D=0,要判断点P是否在平面π上,可以将点P的坐标代入平面方程,若等式成立,则点P在平面π上。
(2)点到平面的距离:点P到平面π的距离可以通过点到平面的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和平面的位置关系还包括点在平面的前、后、内、外等方面。
三、例题解析:空间点、直线、平面的位置关系1. 例题一:已知点A(1,2,3)、直线L:2x-3y+z+4=0和平面π:3x+y-2z-7=0,判断点A是否在直线L上和平面π上,若不在,求点A到直线L和平面π的距离。
空间点线面位置关系、线面平行、面面平行
空间点线面位置关系、线面平行、面面平行1.位置关系:线与线:相交、平行、异面;线与面:线在面内、相交、平行;面与面:相交、平行。
2.异面直线夹角:范围(0,]2π;计算:一做、二证、三计算。
3.线面平行证明: ;4.面面平行证明: ;5.常考知识点:(1)平行于同一直线的两直线 ;(2)平行于同一直线的两平面 ;(3)平行于同一平面的两直线 ; (4)平行于同一平面的两平面 ;(5)垂直于同一直线的两直线 ;(6)垂直于同一直线的两平面 ; (7)垂直于同一平面的两直线 ;(8)垂直于同一平面的两平面 ; 知识点1.位置关系判断例1. 已知m 、n 表示两条直线,γβα,,表示三个平面,下列命题中正确的个数是 ; ①若,,m n αγβγ⋂=⋂=//m n ,则//αβ;②若m,n 相交且都在βαβαβαβα//,//,//,//,//则外n n m ,m 、③若n m n n m m l //,//,//,//,//,则βαβαβα=⋂;④若m//α,n//n m //,则α 例2. ,m n 是不重合的直线,,αβ是不重合的平面:①m α⊂,n ∥α,则m ∥n ;②m α⊂,m ∥β,则α∥β;③n αβ=,m ∥n ,则m ∥α且m ∥β,上面结论正确的有 ; 例3. a 、b 、c 表示直线,M 表示平面,可以确定a ∥b 的条件是( ).A.a ∥M ,b M ⊂B.a ∥c ,c ∥bC.a ∥M ,b ∥MD.a 、b 和c 的夹角相等 例4. 下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面 例5. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=例6. 若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交 例7. 下列命题中,假命题的个数是 ;① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行 线面平行例8. 正方形ABCD 交正方形ABEF 于AB ,M 、N 在对角线AC 、FB 上,且FN AM =, 求证://MN 平面BCE例9. 如图,四边形ABCD 是矩形,,E F 是AB 、PD 的中点,求证:AF ∥面PCE .面面平行例10. 如图,正方体中,,,,M N E F 分别是棱A B '',A D '',B C '',C D ''的中点,求证:平面AMN ∥平面EFDB .ABDCEFMNFM NB 'C 'A ' DCBAD ' EA BC DDC 1B 1A 1 例11. 如图,设,P Q 是单位正方体1AC 的面11AA D D 、面1111ABCD 的中心,证明: ⑴PQ ∥平面11AA B B ;⑵面1D PQ ∥面1C DB .线面、面面平行综合应用.例12. 如图,空间四边形ABCD 的对棱AD 、BC 成o60的角,且2B C AD ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于,,,E F G H .(1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?借助面面平行 线面平行例13. 如图,在四棱锥O ABCD -中,底面ABCD 是菱形,M 为OA 的中点,N 为BC 的中点, 证明:直线MN OCD 平面‖例14. 如图,S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SMAM =NDBN, 求证://MN 平面SBC点的存在性问题例15. 直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,90o BAD ADC ∠=∠=,222AB AD CD ===. (1)在11A B 上是否存一点P ,使得DP 与平面1BCB 与平面1ACB 都平行?证明你的结论. (2)试在棱AB 上确定一点E ,使1A E ∥平面1ACD ,并说明理由.例16. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.N M SCBA D AEBHFDG CM A D CO。
空间点、直线、平面之间的位置关系(教案)
空间点、直线、平面之间的位置关系适用学科高中数学适用年级高中一年级适用区域人教版课时时长(分钟)60知识点平行、垂直关系的综合问题教学目标考查空间线面平行、垂直关系的判断考查空间线面平行、垂直关系的判断教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学过程一、复习预习平面的基本性质平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公共直线.(4)公理2的三个推论:的三个推论:推论1:经过一条直线和这条直线外一点有且只有一个平面;:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.:经过两条平行直线有且只有一个平面.二、知识讲解空间中两直线的位置关系空间中两直线的位置关系(1)空间两直线的位置关系空间两直线的位置关系相交相交(2)异面直线所成的角异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:2π. (3)平行公理和等角定理平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.三、例题精析【例题1】【题干】在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________. 【答案】平行平行 【解析】如图.如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE . 【例题2】【题干】如图,直三棱柱ABCA ′B ′C ′,∠BAC =90°,AB =AC =,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.′的中点.(1)证明:MN ∥平面A ′ACC ′;′; (2)求三棱锥A ′MNC 的体积.的体积.(锥体体积公式V =31Sh ,其中S 为底面面积,h 为高) 【答案】证明证明 法一法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,′为直三棱柱,所以M 为AB ′中点.′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,′,因此MN ∥平面A ′ACC ′. 法二法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,′的中点,所以MP ∥AA ′,PN ∥A ′C ′,′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′. (2)解 法一法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,′,所以A ′N ⊥平面NBC .又A ′N =21B ′C ′=1, 故V A ′MNC =V NA ′MC =21V NA ′BC =21V A ′NBC =61. 法二法二 V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC =61. 【解析】(1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC ,体积可求.,体积可求.【例题3】【题干】如图所示,在三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.在,请说明理由.【答案】解 存在点E ,且E 为AB 的中点.的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题4】【题干】如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.的位置;若不存在,请说明理由.的中点.【答案】存在点E,且E为AB的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题5】【题干】如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC. 证明 (1) 【答案】证明图(a) 如图(a),取BD的中点O,连接CO,EO. 由于CB=CD,所以CO⊥BD,(2分) 又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分) 的中点,因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分) (2)法一法一 如图(b),取AB的中点N,连接DM,DN,MN,图(b) 的中点,因为M是AE的中点,所以MN∥BE. 又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分) 为正三角形,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分) 又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分) 法二 如图(c),延长AD,BC交于点F,连接EF. 法二图(c) 因为CB=CD,∠BCD=120°,30°. . 所以∠CBD=30°为正三角形,因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB =21AF .(8分) 又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分) 又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分) 【解析】(1) 取BD 的中点O ,证明BD ⊥EO ;(2)取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE的交线EF ,证明DM ∥EF . 四、课堂运用【基础】1. 下列命题是真命题的是( ).A .空间中不同三点确定一个平面.空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面.空间中两两相交的三条直线确定一个平面C .一条直线和一个点能确定一个平面.一条直线和一个点能确定一个平面D .梯形一定是平面图形.梯形一定是平面图形 【答案】D 【解析】空间中不共线的三点确定一个平面,A 错;空间中两两相交不交于一点的三条直线确定一个平面,B 错;经过直线和直线外一点确定一个平面,C 错;故D 正确.正确.2. 空间两个角α,β的两边分别对应平行,且α=60°,则β为( ).A .60°B .120°C .30°D .60°或120°【答案】D 【解析】由等角定理可知β=60°或120°120°. . 【巩固】1. 如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.对. 【答案】24 【解析】如图所示,与AB 异面的直线有B 1C 1,CC 1,A 1D 1,DD 1四条,因为各棱具有相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线21212××4=24(对).2. 如图所示,在正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:的中点.求证:(1)E 、C 、D 1、F 四点共面;四点共面; (2)CE 、D 1F 、DA 三线共点.三线共点.【答案】(1)如图,连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点,的中点,∴EF ∥A 1B . 又A 1B ∥D 1C ,∴EF ∥CD 1, ∴E 、C 、D 1、F 四点共面.四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD. 同理P∈平面ADD1A1. 又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE、D1F、DA三线共点.三线共点.【解析】(1)由EF∥CD1可得;可得;(2)先证CE与D1F相交于P,再证P∈AD. 【拔高】1.下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是________.①②③【答案】①②③【解析】可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点为M、N可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;四点不共面.④中,可证Q点所在棱与面PRS平行,因此,P、Q、R、S四点不共面.2.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,在这个正四面体中,平行;①GH与EF平行;②BD与MN为异面直线;为异面直线;角;③GH与MN成60°角;垂直.④DE与MN垂直.以上四个命题中,正确命题的序号是________.②③④【答案】②③④【解析】如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.课程小结内容小结一个理解一个理解异面直线概念的理解异面直线概念的理解(1)“不同在任何一个平面内”,指这两条直线不能确定任何一个平面,因此,异面直线既不相交,也不平行.线既不相交,也不平行.(2)不能把异面直线误解为:分别在不同平面内的两条直线为异面直线.不能把异面直线误解为:分别在不同平面内的两条直线为异面直线. 两种判定方法两种判定方法异面直线的判定方法异面直线的判定方法(1)判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两直线异面.从而可得两直线异面. 课后作业【基础】1.下列命题正确的是【】下列命题正确的是【】、若两条直线和同一个平面所成的角相等,则这两条直线平行A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确。
空间中直线与平面之间的位置关系
空间中直线与平面之间的位置关系文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]空间中直线与平面之间的位置关系知识点一 直线与平面的位置关系1、直线和平面平行的定义如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行。
2、直线与平面位置关系的分类(1)直线与平面位置关系可归纳为(2)在直线和平面的位置关系中,直线和平面平行,直线和平面相交统称直线在平面外,我们用记号α⊄a 来表示a ∥α和A a =α 这两种情形.(3)直线与平面位置关系的图形画法:①画直线a 在平面α内时,表示直线α的直线段只能在表示平面α的平行四边形内,而不能有部分在这个平行四边形之外,这是因为这个用来表示平面的平行四边形的四周应是无限延伸而没有边界的,因而这条直线不可能有某部分在某外;②在画直线a 与平面α相交时,表示直线a 的线段必须有部分在表示平面a 的平行四边形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感;③画直线与平面平行时,最直观的画法是用来表示直线的线在用来表示平面的平行四边形之外,且与某一边平行。
例1、下列命题中正确的命题的个数为 。
①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有一条直线与平画平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面。
变式1、下列说法中正确的是 。
①直线l平行于平面α内无数条直线,则lααααbα⊂答案:B⊂bαα⊂变式3、若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.例2、若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解:如图5,另一条直线与平面α的位置关系是在平面内或与平面相交.图5用符号语言表示为:若a∩b=A,b⊂α,则a⊂α或a∩α=A.变式1、若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.分析:如图6,另一条直线与平面α的位置关系是与平面平行或与平面相交.图6用符号语言表示为:若a与b异面,a⊂α,则b∥α或b∩α=A.例3、若直线a不平行于平面α,且a⊄α,则下列结论成立的是( )A.α内的所有直线与a异面B.α内的直线与a都相交C.α内存在唯一的直线与a平行D.α内不存在与a平行的直线分析:如图7,若直线a不平行于平面α,且a⊄α,则a与平面α相交.图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B 相交,直线CD 与直线A′B 异面,所以A 、B 都不正确;平面ABCD内不存在与a 平行的直线,所以应选D.变式1、不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC中只可能有一条边与α相交. 其中真命题是_____________.分析:如图8,三点A 、B 、C 可能在α的同侧,也可能在α两侧,图8其中真命题是①.变式2、若直线a ⊄α,则下列结论中成立的个数是( )(1)α内的所有直线与a 异面 (2)α内的直线与a 都相交 (3)α内存在唯一的直线与a平行 (4)α内不存在与a 平行的直线分析:∵直线a ⊄α,∴a ∥α或a∩α=A.如图9,显然(1)(2)(3)(4)都有反例,所以应选A.图9答案:A.知识点二 直线与平面平行1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
空间点、直线、平面之间的位置关系
第三节 空间点、直线、平面之间的位置关系1. 平面的基本性质 四个公理 2.空间两直线的位置关系(2)平行公理: 公理4:平行于同一直线的两条直线互相平行——空间平行线的传递性。
(3)等角定理: 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
(4)异面直线所成的角:①定义:设a 、b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。
②范围:⎝⎛⎦⎤0,π2。
3.直线与平面的位置关系一、高考题3.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A .15B .56 C .55 D .224.(2016·全国卷Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A .32 B .22 C .33 D .13考点二 空间两条直线的位置关系微点小专题 方向1:异面直线的判定【例2】 (2019·益阳、湘潭调研考试)下图中,G ,N ,M ,H 分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有( )A .①③B .②③C .②④D .②③④方向2:平行垂直的判定【例3】 如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 【题点对应练】1.(方向1)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:① 直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ② 直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线。
空间直线与平面的方程与位置关系
空间直线与平面的方程与位置关系空间直线是指在三维空间中没有转折或拐角的线段。
而平面则是指在三维空间中没有厚度的二维几何形状。
本文将详细讨论空间直线与平面之间的方程以及它们的位置关系。
一、空间直线的方程在三维空间中,空间直线可以用参数方程或者一般方程来表示。
1. 参数方程参数方程给出了直线上所有点的坐标与一个或多个参数之间的关系。
对于一条通过点P₀(x₀, y₀, z₀)的直线,我们可以使用参数t来表示该直线上的任意一点P(x, y, z)的坐标,参数方程可以表示为:x = x₀ + aty = y₀ + btz = z₀ + ct其中a、b、c是直线的方向向量分量。
2. 一般方程一般方程是直线的另一种表示形式,它可以用线性等式的形式表示。
对于直线的一般方程,可以写成以下形式:Ax + By + Cz + D = 0其中A、B、C为方向向量的分量,而D则是与直线所通过的一点有关的常量。
二、平面的方程在三维空间中,平面可以用点法式方程或者一般方程来表示。
1. 点法式方程点法式方程利用平面上某一点和法向量来表示平面。
对于一个平面P,通过平面上的点P₀(x₀, y₀, z₀)且具有法向量N(a, b, c)时,点法式方程可以表示为:a(x - x₀) + b(y - y₀) + c(z - z₀) = 02. 一般方程平面的一般方程使用线性等式的形式来表示。
对于平面的一般方程,可以写成以下形式:Ax + By + Cz + D = 0其中A、B、C为平面法向量的分量,D则是与平面所通过的一点有关的常量。
三、空间直线与平面的位置关系空间直线与平面之间存在不同的位置关系,包括平行、相交和重合。
1. 平行如果直线的方向向量与平面的法向量平行(即两个向量之间的夹角为0°或180°),则直线与平面平行。
在参数方程中,可以通过检查方向向量的分量之间的比例来确定直线是否平行于平面。
在一般方程中,可以通过检查方程中的系数来确定直线是否平行于平面。
空间解析几何基础直线与平面的位置关系
空间解析几何基础直线与平面的位置关系直线与平面是空间解析几何中的基本图形,它们在空间中的位置关系是解析几何的核心内容之一。
本文将介绍直线与平面的位置关系,包括直线与平面的相交、平行以及垂直关系。
一、直线与平面的相交关系直线与平面可以有不同的相交情况,主要包括直线与平面相交于一点、直线与平面相交于一条直线和直线与平面相交于两条直线三种情况。
1. 直线与平面相交于一点当一条直线与一个平面相交于一个点时,我们称这条直线与该平面相交于一点。
该点既属于直线,也属于平面。
直线与平面相交于一点的情况比较常见,可以用许多实际生活中的例子来说明,比如一根针穿过一张纸的情况。
2. 直线与平面相交于一条直线当一条直线与一个平面相交于一条直线时,我们称这条直线与该平面相交于一条直线。
这种情况可能出现在直线与平面平行的情况下,例如一根笔放在桌子上的情况。
3. 直线与平面相交于两条直线当一条直线与一个平面相交于两条直线时,我们称这条直线与该平面相交于两条直线。
这种情况比较特殊,不太容易在实际生活中找到例子。
二、直线与平面的平行关系直线与平面的平行关系是指直线与平面在空间中没有任何交点的情况。
直线与平面平行的条件是直线上的任意一点到平面的距离等于直线上另一点到该平面的距离,也可以说直线的方向向量与平面的法向量平行。
例如,一根笔放在桌子上时,笔看起来与桌面平行。
三、直线与平面的垂直关系直线与平面的垂直关系是指直线与平面在空间中相互垂直的情况。
直线与平面垂直的条件是直线上的向量与平面上的向量垂直,也可以说直线的方向向量与平面的法向量垂直。
例如,一个立着的直角梯子放在地上时,梯子与地面垂直。
总结:直线与平面是空间解析几何中的基本图形,它们在空间中的位置关系有相交关系、平行关系和垂直关系。
相交关系包括相交于一点、相交于一条直线和相交于两条直线三种情况,平行关系是指直线与平面没有任何交点,垂直关系是指直线与平面相互垂直。
理解直线与平面的位置关系对于解析几何的学习非常重要,它们的性质和应用将在进一步的学习中得到深入探讨。
高中数学:空间点、直线、平面之间的位置关系 (17)
③a.若直线 a⊂平面 α,a,b 异面,则 b 与 α 的关系为________. b.若直线 a⊂平面 α,a,b 相交,则 b 与 α 的关系为________. 【答案】 a.平行或相交 b.相交或 b⊂α
第20页
题型二 平面与平面之间的位置关系 例 2 (1)已知平面 α,β ,且 α∥β ,直线 a⊂α,直线 b ⊂β,则直线 a 与直线 b 具有怎样的位置关系?画出图形. (2)已知平面 α,β,直线 a,b,且 a⊂α,b⊂β,α∩β= l,则直线 a 与直线 b 具有怎样的位置关系?画出图形.
B.m∥α D.m 在平面 α 外
【答案】 A
第11页
②若直线 l∩平面 α=A,直线 b⊂α,则 l 与 b 的位置关系 为________.
【答案】 相交或异面
第12页
③若直线 l∩平面 α=A,l 与直线 b 相交或异面,则 b 与 α 的位置关系为________.
【答案】 相交、平行或 b⊂α
第26页
(3)若三个平面两两相交,则它们将空间分六、七或八个部分, 如图③,④,⑤.
第27页
探究 3 本题考查了空间想象能力,分类讨论思想,相交平 面的画法.
第28页
解立体几何题时,比如直线与几个平面之间的位置关系,你 可以把手中的笔当成直线,把课桌或者课本当作平面,把教室当 作长方体,这样就将抽象的东西变得具体了.平时,动手做一些 立体模型,如长方体、立方体、圆柱、圆锥、正四面体等几何体 模型,这些都是建立空间想象力的途径.
例 1 下列说法:
①若直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导讲义讲义编号_
O
D
C
B
A
又∵112cos cos 452A BB ∠==
o
,116cos 3
B B B BO BO ∠==, ∴11112
cos 32cos cos 26
3
A B
B A BO B BO ∠∠===∠,∴130A BO ∠=o
.
说明:求直线与平面所成角的一般方法是先找斜线在平面中的射影,后求斜线与其射影的夹角另外,在条件允许的
情况下,用公式21cos cos cos θθθ=⋅求线面角显得更加方便
变式练习:
已知空间四边形ABCD 的各边及对角线相等,求AC 与平面BCD 所成角的余弦值
解析:过A 作AO ⊥平面BCD 于点O ,连接,,CO BO DO , ∵AB AC AD ==,∴O 是正三角形BCD 的外心, 设四面体的边长为a ,则3
3
CO a =
, ∵90AOC ∠=o
,∴ACO ∠即为AC 与平面BCD 所成角,
∴3
cos 3ACO ∠=
,所以,AC 与平面BCD 所成角的余弦值为33
. 例2、如图,已知AP ⊥BP ,P A ⊥PC ,∠ABP =∠ACP =60º,PB =PC =2BC ,D 是BC 中点,求AD 与平面PBC 所成
角的余弦值.
解析:∵AP ⊥BP ,P A ⊥PC ,∴AP ⊥PBC 连PD ,则PD 就是AD 在平面PBC 上的射影 ∴∠PDA 就是AD 与平面PBC 所成角 又∵∠ABP =∠ACP =60º,PB =PC =
2BC ,D 是BC 中点,
∴PD=
BC 2
7
, PA=6BC ∴AD=BC 231 ∴31
217
cos ==
∠AD
PD
PDA ∴AD 与平面PBC 所成角的余弦值为
31
217
巩固练习: 1选择题
(1)一条直线和平面所成角为θ,那么θ的取值围是( ) (A )(0º,90º) (B )[0º,90º] (C )[0º,180º] (D )[0º,180º)
解析:(1)连AC,对平面ABCD来说,A1A是垂线,A1C是斜线,AC是A1C在平面ABCD上的射影,因为AC⊥DB (正方形的性质),所以 A1C⊥DB.
同理可证A1C⊥BC1.
因为A1C⊥平面C1DB(直线与平面垂直的判定理)
(2)因为A1B=A1C1=A1D,所以BG=GC1=DG,故G是正△C1DB的外心,正三角形四心合一,所以G是正△C1DB 的中心.
(3)在正方体的对角面A1ACC1,由平面几何可知△A1GC1∽△OGC,且A1C1∶OC=A1G∶GC,所以A1G∶GC=2∶1,因此A1G=2GC.
变式练习:
已知:Rt△ABC在平面α,PC⊥平面α于C,D为斜边AB的中点,CA=6,CB=8,PC=12.求:(1)P,D两点间的距离;
(2)P点到斜边AB的距离.
解析:(1)
(2)作PE⊥AB于E,连CE则CE⊥AB.(三垂线定理的逆定理)PE就是P点到AB边的距离.
可用等积式CE·AB=AC·CB,即斜边上的高与斜边的乘积等于两直角边的乘积.
因CE·AB是Rt△ABC面积的二倍,而AC·CB也是Rt△ABC面积的二倍,所以它们相等;也可用△BCE∽△ABC,对应边成比例推出这个等积式.
注:在求直角三角形斜边上的高时会利用上述的等积式来求斜边上的高.
【课堂小练】
1、过正方形ABCD的顶点A作线段A A′⊥平面ABCD,若A A′=AB,则平面A′A B与平面A′CD所成的角度是
A. 30°
B. 45°
C. 60°
D. 90°
2、在直二面角α- l-β中,直线m⊂α,直线n⊂β,且m、n均不与l垂直,则
A. m与n不可能垂直,但可能平行
B. m与n可能垂直,但不可能平行。