三元一次方程组及其解法(代入法)
七年级数学下册《三元一次方程组的解法》教案、教学设计
五、作业布置
为了巩固学生对三元一次方程组解法的理解和应用,特布置以下作业:
1.完成课本第128页的练习题1、2、3,每个题目都要尝试使用代入法和消元法进行解答,并比较两种方法的优劣。
2.从生活中找一个涉及三元一次方程组的问题,将其转化为数学模型,并求解。要求学生写下问题的背景、转化过程以及解答步骤,并在下次课堂上进行分享。
4.通过课堂练习,学生巩固所学知识,提高解题能力。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结三元一次方程组的解法(代入法、消元法)及其关键步骤。
2.学生分享自己在解题过程中的心得体会,以及在小组讨论中的收获。
3.教师对学生的表现给予积极评价,强调数学知识在实际生活中的应用价值。
4.在讲授过程中,教师注重启发学生思考,引导学生总结代入法和消元法的解题规律。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组4-6人,要求学生针对课堂例题进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流代入法和消元法的应用心得。
3.教师巡回指导,关注每个小组的讨论情况,及时解答学生的疑问,引导学生深入探讨。
3.培养学生的合作精神,使其在合作交流中学会尊重他人、倾听他人意见,共同解决问题。
4.培养学生面对困难的勇气和信心,使其在克服困难的过程中,不断积累成功的经验,形成自信、自强的品质。
二、学情分析
七年级学生在上学期已经学习了二元一次方程组的解法,具备了一定的方程求解基础。在此基础上,本章节的三元一次方程组对学生来说,既有挑战性,又是提高他们数学思维能力的良好契机。学生在这个阶段好奇心强,求知欲旺盛,但注意力容易分散,对复杂问题的耐心和毅力有待提高。因此,在教学过程中,应注重激发学生的兴趣,引导他们主动探究,同时关注学生的个体差异,给予不同层次的学生适当的指导和支持,帮助他们克服困难,增强解决问题的信心。此外,学生的合作交流能力也需在教学过程中加以培养,使其在团队中发挥各自优势,共同进步。
三元一次方程组及其解法
三元一次方程组及其解法三元一次方程组是由三个一次方程组成的方程组,每个方程都是关于三个未知数的线性方程。
解决三元一次方程组的方法有多种,包括代入法、消元法、克莱姆法等。
本文将以消元法为例,介绍如何解决三元一次方程组。
消元法是一种代数方法,通过对方程进行逐步变换,将三元一次方程组转化为只有一个未知数的方程,从而求得其解。
下面以一个具体的三元一次方程组为例进行解答。
假设我们有以下三元一次方程组:```2x + 3y - z = 7x - 2y + 3z = 123x + 2y + z = 10```我们可以通过消元法将方程组转化为简化形式。
我们可以选择任意两个方程,并通过消元的方式将它们的某一未知数消去。
在这个例子中,我们可以选择第一和第二个方程。
我们通过第一行乘以2,第二行乘以3,然后将它们相加,将x消去:```4x + 6y - 2z = 143x - 6y + 9z = 36```将上述两个方程相加,我们得到:```7x + 7z = 50```接下来,我们再选择另外两个方程进行消元。
我们可以选择第一行乘以3,第三行乘以2,然后将它们相加,将x消去:```6x + 9y - 3z = 216x + 4y + 2z = 20```将上述两个方程相减,我们得到:```5y - 5z = 1```现在我们得到了两个只包含y和z的方程,接下来我们可以通过解这两个方程得到y和z的值。
这里我们可以选择将第二个方程乘以5,然后与第一个方程相减,将z消去:```5y - 5z = 125y - 25z = 25```将上述两个方程相减,我们得到:```-20y = -24```解得y = 1.2。
将y = 1.2代入其中一个方程,我们可以求得z的值:```5(1.2) - 5z = 16 - 5z = 1-5z = -5```解得z = 1。
将y = 1.2和z = 1代入其中一个方程,我们可以求得x的值:```2x + 3(1.2) - 1 = 72x + 3.6 - 1 = 72x = 7 - 3.6 + 12x = 4.4```解得x = 2.2。
解三元一次方程的方法及步骤
解三元一次方程的方法及步骤
三元一次方程组是指含有三个未知数,且每个未知数的次数都为1的方程组。
解三元一次方程组的基本方法是消元法,常用的消元法有以下两种:
一、代入法
步骤:
1.从三元一次方程组中选取一个方程,解出其中一个未知数;
2.将解出的未知数代入其他两个方程,得到一个二元一次方程组;
3.解二元一次方程组,求出另外两个未知数;
4.将求出的三个未知数代入原方程组中任一一个方程,检验是否正确。
二、加减法
步骤:
1.对三元一次方程组的方程进行适当的加减,消去一个未知数;
2.得到一个二元一次方程组,解出另外两个未知数;
3.将求出的两个未知数代入原方程组中任一一个方程,求出第三个未知数;
4.将求出的三个未知数代入原方程组中任一一个方程,检验是否正确。
三、总结
解三元一次方程组,可以根据具体情况选择合适的方法进行求解。
代入法比较直观,但计算量较大;加减法计算量较小,但需要对系数进行适当的变换。
三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标。
解法1:代入法,消x.把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤由③、⑤得⎩⎨⎧=+=⑤③38344y x yx解得 2.y ⎨=⎩把x=8,y=2代入①得z=2.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型二:缺某元,消某元型.例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x 分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
三元一次方程及其解法
精心整理三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3.三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一例1“消x 解法∴x y z ⎧⎪⎨⎪⎩类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得5x+5y+5z=60④④-②得4x+3y=38⑤由③、⑤得⎩⎨⎧=+=⑤③38344y x y x解得8,2.x y =⎧⎨=⎩把x=8,y=2代入①得z=2.∴8,2,2.x y z =⎧⎪=⎨⎪=是原方程组的解.例2典型例题举例:解方程组19,21.y z x z ⎪+=⎨⎪+=⎩②③解:由①+②+③得2(x+y+z)=60,即x+y+z=30.④④-①得z=10,④-②得y=11,④-③得x=9,∴9,11,10.x y z =⎧⎪=⎨⎪=⎩是原方程组的解.根据方程组的特点,由学生归纳出此类方程组为:类型三:轮换方程组,求和作差型.例3:解方程组⎨⎧=+-=②①21327:2:1::z y x z y x解法7,可设为解法把k=1,代入y=2k ,得y=2;把k=1,代入z=7k ,得z=7.∴1,2,7.x y z =⎧⎪=⎨⎪=⎩是原方程组的解.典型例题举例:解方程组⎪⎩⎪⎨⎧===++③②①4:5:2:3:111z y x y z y x分析1:观察此方程组的特点是方程②、③中未知项间存在着比例关系,由例3的解题经验,易选择将比例式化成关系式求解,即由②得x=23y ;由③得z=45y .从而利用代入法求解。
解法1:略.分析2:受例3解法2的启发,想使用设参数的方法求解,但如何将②、③转化为x:y:z 的形15例4分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一) 消元的选择1.选择同一个未知项系数相同或互为相反数的那个未知数消元;2.选择同一个未知项系数最小公倍数最小的那个未知数消元。
三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2。
三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x"的目标. 解法1:代入法,消x 。
把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8。
∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解。
根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z ,也能达到消元构成二元一次方程组的目的。
解法2:消z 。
①×5得 5x+5y+5z=60 ④ ④—② 得 4x+3y=38 ⑤由③、⑤得⎩⎨⎧=+=⑤③38344y x yx解得 2.y ⎨=⎩把x=8,y=2代入①得z=2。
∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型二:缺某元,消某元型。
例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x 分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
七年级下册数学8.4 三元一次方程组的解法
x z y,
x 2
则 7 x y z 2,
解得
y
7,
x y z 14.
z 5.
∴2×100+7×10+5=275,即这个三位数 为275.
x : y 3 : 2,
①
4. 解方程组
y
:
z
5
:
4,
②
x y z 66. ③
∴原方程组的解为
y
1 2
,
z 3.
课堂小结
三元一次 方程组
定义
含有3个未知数 含未知数的项的次数都是1 一共有三个方程
解答思路 化“三元”为“二元”
拓展延伸
在等式y=ax2+bx+c中,当x=1时,y=-2;当x=-1时,
y=20;当 x 3 与 x 1 时,y的值相等,求a、b、
8.4 三元一次方程组的解法
•R·七年级下册
情景导入
提问
前面我们学习了二元一次方程组及其解法.有些含
有两个未知数的问题,可以列出二元一次方程组来
解决,实际上,有不少问题含有更多未知数,这时
又该怎么解决呢?
可以设3个未知数吗?
这节课我们就来学习三元一次方程组及其解法.
• 学习目标: 1.知道什么是三元一次方程组. 2.会用代入消元法和加减消元法解简单的三元 一次方程组.
大5,乙数的 1 等于丙数的 1 ,求这三个数.
3
2
解:设甲、乙、丙三数分别为x、y、z,
x y z 35,
x 10
则 2x y 5,
解得
三元一次方程组解法总结与练习
三元一次方程组一、三元一次方程组之特殊型类型一:有表达式,用代入法型.例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x”的目标。
类型二:缺某元,消某元型. 针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
类型三:轮换方程组,求和作差型.例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
典型例题举例:解方程组20,19,21.x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③类型四:遇比例式找关系式,遇比设元型.例3:解方程组⎩⎨⎧=+-=②①21327:2:1::z y x z y x分析:观察此方程组的特点是未知项间存在着比例关系,把比例式化成关系式求解典型例题举例:解方程组⎪⎩⎪⎨⎧===++③②①4:5:2:3:111z y x y z y x 二、三元一次方程组之一般型例4:解方程组34,6,2312.x y z x y z x y z -+=⎧⎪++=⎨⎪+-=⎩①②③分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一)消元的选择1.选择同一个未知项系数相同或互为相反数的那个未知数消元;2.选择同一个未知项系数最小公倍数最小的那个未知数消元。
(二)方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。
解方程组:⎪⎩⎪⎨⎧∆∨=-+∆=++∨=+-③②①1232643z y x z y x z y x 典型例题举例解方程组2439,32511,56713.x y z x y z x y z ⎧++=∨⎪⎪-+=∨∆⎨⎪-+=∆⎪⎩ ①②③分析:通过比较发现未知项y 的系数的最小公倍数最小,因此确定消y 。
三元一次方程组的一般形式和代入消元法求解过程
三元一次方程组的一般形式和代入消元法求解过程方程组中含有三个未知数,每个方程中含未知数旳项旳次数都是共有三个方程,这就构成了一个三元一次方程组.三兀一次方程组旳一般形式为:Nx+b i y+C i Z=d i ①J a2X+by+C2Z=d2 ②a3X+b3y+C3Z=d3 ③可以采用类似二元一次方程组旳代入消元旳方法求解.将①变形可得:d仁a i x- b i y z= C ④将④式代入②、③式中可得d i - a i X- b i y a2X+b2y+C2 Cd i - a i X- b i ya i x+b3y+C3 C =d3 ⑥整理可得:C2a i C2b i C2d i(吐C i ) X+ (b2-C i ) y= d2-C i(a3- C3a i C3b i"CT ) x+(b3-~Cr ) y =d3_C3d iC ii,并且一=d2这样就将一个三元一次方程组转化成了一个二元一次方程组. 解这个二元一次方程组可得:再将以上x、y旳解代入①或②或③式中可解得:a ib z d s- a bd?- a2bd3+ a2b3d i+ a s bd- a 3b?d iasbc iz= a i b?C3- a i b3C2- a ?b i C3+ a?b3C i+ a 3b i C2-即方程组旳解为:d i b2C3- d i b3C2- d2b i C3+ dbc计x = a i b2C3- a i b3C2- a 2b i C3+ a2b3C i+ a 3b i C2- asbca i d2C3- a i d s C2- a 2d i C3+ a?d3C i+ a 3d 1C2- a 3d?cy= a i b2C3- a 1 b3C2- a 2b i C3+ a2b3C i+ a 3b i C2- asbc ia^bd- a i b s d2- a2b i d s+a i b2C3- a 1 b3C2- a 2b i C3+ a2b3C i+ a 3b i C2- asbc i可以看出,三元一次方程组和二元一次方程组一样,当知道了每个方程中未知数旳系数和等号右边旳常数项时,方程解可以由这些数直接计算得到.因此我们可以用分离系数旳方法求解三元一次方程组.。
解三元一次方程组的方法
解三元一次方程组的方法三元一次方程组是指含有三个未知数的一次方程组,通常可以表示为如下形式:a1x + b1y + c1z = d1。
a2x + b2y + c2z = d2。
a3x + b3y + c3z = d3。
要解决这样的方程组,我们可以采用以下方法:1. 三元一次方程组的解法。
首先,我们可以使用消元法来解决三元一次方程组。
消元法的基本思想是通过加减乘除等运算,将方程组中的某个未知数逐步消去,最终得到只含有一个未知数的方程,然后通过代入法或者其他方法求解出该未知数的值,再逐步回代,最终得到所有未知数的值。
2. 三元一次方程组的求解步骤。
接下来,我们来具体介绍一下解三元一次方程组的步骤:(1)首先,我们可以通过消元法将方程组化为只含有两个未知数的方程组,具体的消元方法可以根据具体的方程组情况来选择,可以是加减消元法、乘除消元法等。
(2)然后,我们可以继续使用消元法,将方程组化为只含有一个未知数的方程,同样可以根据具体情况选择合适的消元方法。
(3)接着,我们可以通过代入法或者其他方法求解出最后一个未知数的值。
(4)最后,将求得的未知数的值逐步回代到原方程组中,验证是否满足所有方程,如果满足,则得到了方程组的解,如果不满足,则需要重新检查计算过程。
3. 三元一次方程组的解的表示形式。
最后,我们来看一下三元一次方程组的解的表示形式。
一般来说,三元一次方程组的解可以表示为一个有序三元组,即(x, y, z),其中x、y、z分别代表三个未知数的值,通过解方程组得到的有序三元组就是方程组的解。
总结:通过以上方法,我们可以解决三元一次方程组的问题,关键是灵活运用消元法和代入法,逐步化简方程组,最终得到方程组的解。
希望本文对解三元一次方程组有所帮助,谢谢阅读!。
三元一次方程组的解法
三元一次方程组的解法三元一次方程组的解法(三元一次方程组的解法公式)--藕池网一般三元一次方程有三个未知数,三个方程:x,y,z,首先简化题目,消去一个未知数。
首先,平衡第一个和第二个方程并减去它们,然后消除第一个未知数。
然后,将其简化,成为一个新的二元线性方程。
然后,在平衡第二个和第三个方程后,我们想对它们进行约简,然后消去一个未知数,得到一个新的二元线性方程。
然后我们用消元法平衡两个二元线性方程组的约化,然后就可以求解其中一个未知数了。
然后将答案代入其中一个二元线性方程组得到另一个未知量,再将求解的两个未知量代入其中一个三元线性方程组得到最后一个未知量。
例如:①5x-4y+4z = 13②2x+7y-3z = 19③3x+2y-z =18②*①-5 *②:(10x-8y+8z)-(10x+35y-15z)= 26-95④43y-2333y。
④-43 *⑤:(731y-391 z)-(731y-301 z)= 1173-903 z =-3 .这是⑤的第一个替代:17y-7(-3)=21 y=0。
这是把z =-3,y=0代入①的第二种解法。
三元一次方程怎么解?所谓三元,就是有三个未知数,比如a,b,c,或者x,y,z等等。
三元一次方程只能用三个方程组成的方程组求解。
第一步用换元法消除一个未知数,第二步用换元法消除另一个未知数,即求一个未知数的值,然后解二元线性方程组,同样的方法求第二个和第三个未知数的值。
这是解决方案的结尾。
知道如何解三元线性方程组。
通过学习解三元线性方程组,提高逻辑思维能力。
培养抽象概括的数学能力。
重点难点:三元线性方程组的求解。
解决问题的技巧。
重点难点分析:1。
三元线性方程组的概念。
三元一次方程是三个未知数的积分方程,每个未知数的次数为1。
比如x+y-z=1,2a-3b+c=0等。
都是三元线性方程组。
2.三元线性方程组的概念。
一般情况下,由几个三元一次方程组成的方程组称为三元一次方程组。
三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标。
解法1:代入法,消x.把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤由③、⑤得⎩⎨⎧=+=⑤③38344y x yx解得8,2.x y =⎧⎨=⎩把x=8,y=2代入①得z=2.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型二:缺某元,消某元型.例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x 分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
三元一次方程组及解法
要点一、三元一次方程及三元一次方程组的概念1. 三元一次方程的定义:含有三个相同的未知数,并且含有未知数的项的次数都是1的整式方程.如x+y—z=1,2a—3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2)三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
要点诠释:(1)三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{"合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元"化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答",而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设"、“答"两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组类型一、三元一次方程及三元一次方程组的概念1. 下列方程组不是三元一次方程组的是().A.B.C.D.【思路点拨】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【答案】B【解析】解:由题意知,含有三个相同的未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A、满足三元一次方程组的定义,故A选项错误;B、x2—4=0,未知量x的次数为2次,∴不是三元一次方程,故B选项正确;C、满足三元一次方程组的定义,故C选项错误;D、满足三元一次方程组的定义,故D选项错误;故选B.【总结升华】三元一次方程组中的方程不一定都是三元一次方程,并且有时需对方程化简后再根据三元一次方程组的定义进行判断类型二、三元一次方程组的解法2. 解三元一次方程组【思路点拨】特点:①,③是比例形式,策略:引入参数k.【答案与解析】解法一:由①,设,则x=3k+1,y=4k+2,代入②,③得,解之,得.从而x=7,y=10.故原方程组的解为,解法二:由③得,则y=5k,z=3k.代入①、②得:,解得,故原方程组的解为.【总结升华】若某一方程是比例形式,则先引入参数,后消元3. 已知方程组的解使得代数式x—2y+3z的值等于—10,求a的值.【思路点拨】由题意可知,此方程组中的a是已知数,x、y、z是未知数,先解方程组,求出x,y,z(含有a的代数式),然后把求得的x、y、z代入等式x-2y+3z=—10,可得关于a的一元一次方程,解这个方程,即可求得a的值【答案与解析】解法一:②-①,得z—x=2a④③+④,得2z=6a,z=3a把z=3a分别代入②和③,得y=2a,x=a.∴.把x=a,y=2a,z=3a代入x—2y+3z=10得a—2×2a+3×3a=-10.解得.解法二:①+②+③,得2(x+y+z)=12a.即x+y+z=6a④④—①,得z=3a,④—②,得x=a,④—③,得y=2a.∴,把x=a,y=2a,z=3a代入x—2y+3z=10得a-2×2a+3×3a=—10.解得.【总结升华】当方程组中三个方程的未知数的系数都相同时,可以运用此题解法2中的技巧解这类方程组。
7.3.1三元一次方程组及其解法(代入)
,
z
3 2
代入②,得
5 y ( 3) 0
2
2
y=1
所以,原方程组的解是
x y
5 2 1
z
3
2
合作探究3
3x 4 y 3z 3.................① 2x 3y 2z 2.................② 5x 3y 4z 22.............③
分析:三个方程中未知数的系数都不是1或 -1,用代入消元法比较麻烦,可考虑用加 减消元法求解。
在三元化二元时,对于具体方法的选取应 该注意选择最恰当、最简便的方法。
x+y+z=2, x-y+z=0, x-z=4.
解: ①+②,得 2x+2z=2 ,
化简,得 x+z=1 ④ x-z=4 ③
∴
x+z= 1 ④
③+④,得 2x=5
x 5
5
2
把 x= 2
代入③,得
5z4
2
z3 2
① ②
③
把x
5 2
下面我们讨论:如何解三元一
次方程组?
观察方程组:
x y z 12, ①
x
2
y
5z
22,
②
x 4 y.
③
消元
消元
三元一次方程组
二元一次方程组
一元一次方程
解法:消x 由③代入①②得
解得
y 2, z 2.
5y z 12, ④ 6y 5z 22. ⑤
把y=2代入③,得x=8.
x 8,
④
③十④,得:19x= 114,
所以 x=6 把x=6代入②得:
30+6y=42,
三元一次方程及其解法
三元一次方程及其解法三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标。
解法1:代入法,消x.把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤由③、⑤得⎩⎨⎧=+=⑤③38344y x y x∴9,11,10.x y z =⎧⎪=⎨⎪=⎩是原方程组的解. 根据方程组的特点,由学生归纳出此类方程组为: 类型三:轮换方程组,求和作差型.例3:解方程组⎩⎨⎧=+-=②①21327:2:1::z y x z y x分析1:观察此方程组的特点是未知项间存在着比例关系,根据以往的经验,看见比例式就会想把比例式化成关系式求解,即由x:y=1:2得y=2x ; 由x:z=1:7得z=7x.从而从形式上转化为三元一次方程组的一般形式,即2,7,2321.y x z x x y z =⎧⎪=⎨⎪-+=⎩①②③,根据方程组的特点,可选用“有表达式,用代入法”求解。
三元一次方程组解法
认识提高:用加减法解三元一次方程组 的关键是什么?
如何消去一元 组合成含2个相同未知数的二元一次方程组
消元 组合
提高认识
1、数学思想:类比思想
2、解三元一次方程组的关键是: 无论用代入法还是加减法 都要想办法如何消去一元 组合成含2个相同未知数的二元一次方程组
消元 组合
z -3
写解
说一说:下列三元一次方程组用代入法 如何消元组合成二元一次方程组?
x 2 y -1 ①
y
z
5
②
x z 3 ③
4x - 9z 17z 2 ③
认识提高:用代入法解三元一次方程组 的关键是什么?
如何消去一元 组合成含2个相同未知数的二元一次方程组
消元 组合
说说加减消元法:
3(2x+3y)=3×12
用加减法解方程组:
2x 3y 12, ① 3x 4y 17. ②
解:由①×3得:6x+9y=36 ③
由②×2得: 6x+8y=34 ④
由③-④得:(6x+9y)-(6x+8y)=36-34 把y=2代入①解得得,y=2
由②+③得:(2x-y+z)+(2x+y-3z)=4+10
整理得:4x-2z=14 ⑤
加减
3x - z 9 ④ 消元
把④、⑤组成二元一次方程组得: 4x - 2z 14 ⑤ 组合
解把这个zx 二代-23解元入得一①得:次:y方=2程-+3组y-得2(:-3)zx=5-23
整理得:-y+z=0 ⑥
- 3y 5z -6 ⑤
把⑤、⑥组成二元一次方程组得:- y z 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:解方程组:
2x 3y 4z 3...........①
3x 2 y z 7.............②
x
2
y
3z
1.............③
解:由方程②,得
z=7-3x+2y…………… ④
将④分别代入方程①和③,得
2x 3y 4(7 3x 2y) 3 x 2y 3(7 3x 2y) 1
x 2y 4
思考:二元一次方程组 解的?
2x
y
是怎么
3
对于三元一次方程组,同样可以先消去 一个(或两个)未知数,转化为二元一次 方程组(或一元一次方程)求解。
注意到方程③中,x是用含y和z的代数式 来表示的,将它分别代入方程①、②,得 到
2 y 2z 10...........① 4 y 3z 18...........②
2.代入,将变形后的关系式代入另两个方程 ,消去一个未知数,得到一个二元一次方程组
3.解这个二元一次方程组,求得两个未知数 的值;
4.将这两个未知数的值代入变形后的关系式 中,求出另一个未知数的值;
5.写出方程组的解。
1.解下列方程组:
x y z 6, (1)3x y 2z 12,
三元一次方程组:由三个一次方程组成的 含有三个未知数的方程组,叫做三元一次方 程组。
怎样解三元一次方程组呢?
x y z 10...........① 3x y 18...............② x y z...................③
在上一节中,我们学习了二元一次方程组的 解法,其中的基本思想是:通过“消元”,消去一 个未知数,将方程组转化为一元一次方程求解。 方法有代入消元法和加减消元法。
1、解二元一次方程组的方法有_代__入_法__和__加_减__法____ (1)若方程组的其中一个方程的某个未知数的系
数为1或-1时,用 代入 消元比较方便。
(2)若方程组中两个方程的同一个未知数系数相 等或互为相反数时,用 加减 消元比较简单。
2、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
x y 3z 4.
3x 2 y 5
(2)
y
5z
-11,
3z-4x 2.
本节课,你学到了些什么?
课堂作业
课本41页 习题7.3第一题(1)(2)(3)
整理,得
2x y 5 5x 2y 11
解这个二元一次方程组,得
x 1
y
3
代入④,得
z=7-3-6=-2
所以原方程组的解是
x 1
y
3
z 2
代入法解三元一次方程组的一般步骤:
1.变形,从方程组中选一个系数比较简单的 方程,将这个未知数用含另一(或两)个未知 数的代数式表示出来;
这个问题可以用多种方法(算术法、列出 一元一次方程或二元一次方程组)来解决。
小明同学提出了一个新的思路: 问题中有三个未知数,如果设这个队在第 二轮比赛中胜,平,负的场数分别为x,y, z,又将怎样呢?
分别根据已知条件直接找出等量关系,列出方程,得
x y z 10
3x y 18
x yz
x y z 10
3x y 18
x yz
像 这样的含有三个未知数,并且每个未知
数的次数都是1的整式方程,叫做三元一次方程。
将这三个方程用大括号括起来就组成了三 元一次方程组 x y z 10...........①
3x y 18...............② x y z...................③
一元
3、用代入法解二元一次方程组
x 2y 4 2x y 3
学习目标
1.知道三元一次方程组的含义
2.会用代入消元法解简单的三元一次 方程组
自学梳理
阅读教材第37页,完成下列问题 问题1.利用已学知识,你能列出方程或方 程组吗? 问题2.观察所列方程,它与之前认识的方 程相同吗?你来命名这类方程,它可以叫做 什么名字? 问题3.你能将三元一次方程组转化为二元 一次方程组吗? 问题4.你能说说解三元一次方程组的思路 吗?