浙江省宁波市象山县新桥镇东溪村七年级数学上册1.1从自然数到有理数(2)教案(新版)浙教版【精品教案】
从自然数到有理数(教案)浙教版数学七年级上册
从自然数到有理数(教案)课题 1.1从自然数到有理数(2)单元第1章从自然数到有理数学科数学年级七年级学习目标情感态度和价值观目标在与他人合作交流过程中,理解他人的思考方法和结论,针对他人所提的问题进行反思,初步形成评价与反思的意识.能力目标初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力.知识目标 1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.教学过程教学环节教师活动学生活动设计意图导入新课导入新课:一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?20℃和-15℃这两个量分别表示什么?你能表示某一天的最高气温是零上5摄氏度,回顾上节课自然数的作用.观察温度计回答问题.通过正负数的学习,树立对立统一的辩证思想;让学生在自主探究体验数的扩展的必要性.最低气温是零下5摄氏度吗?请你说说生活中还有哪些具有相反意义的词语?讲授新课1、具有相反意义的量:(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(2)意义相反的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.针对练习:判断下列说法是否正确.(1)前进和后退是两个具有相反意义的量.(2)身高增加2 cm和体重减少2 kg.(3)收入50万元和亏损20万元是两个具有相反意义的量.(4)超过标准质量5 g和低于标准质量2 g.(5)上升了10分和下降了2名是两个具有相反意义的量.2、正数和负数:为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),了解具有相反意义的量.了解正、负数的概念.为建立负数的概念做好铺垫.了解正、负数的概念,能用正、负如123,25,等数叫做正数(positive number).正数前面可以放上“+”号(常省略不写).注意:零既不是正数,也不是负数.“-”不可以省略!针对练习:1、读出下列各数,说出它们各是哪类数?,-,+75,16,50,-25%,,-155,,213,12%,0.2、(1)向东走+58 m,-60 m,0 m表示的实际意义分别是什么呢?3、有理数的分类:我们把1,2,3,4,…称为正整数;-1,-2,-3,-4,…称为负整数;根据不同分类标准对正、负数进行分类.数表示具有相反意义的量.培养学生的分类、归纳能力.1 2,23,314,,…称为正分数;12-,23-,314-,,…称为负分数.正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.有理数还可以这样分类:合作探究:(1)零是______________________________;(2)零不是_________________________;非负数是_______________________,非正数是_______________________,非负整数是_______________________,非正整数是_______________________.针对练习:判断表中各数分别属于哪一类数,在相应的空格内打“√”.4、典例分析:例下列给出的各数,哪些是正数?哪些是通过合作探究完成填空.完成例题.深入理解有理数的概念.熟练掌握有理数的概念.负数?哪些是整数?哪些是分数?哪些是有理数?,22,176+,,0,35-,-9. 针对练习:把下列各数填入相应的括号内:5122.7150.1106134219.87690.997---+++, ,, , , ,, , , , 巩固提升1、填空:(2)如果向银行存入50元记为50元,那么-元表示______________________;(3)规定增加的百分比为正,增加25%记做_______,-12%表示___________;(4)规定温度零上为正,月球白天气温高达零上123℃ ,记为__________,夜晚气温低至零下233 ℃,记为________.阿波罗11号宇航员登上月球后不得不穿着御寒又防热的太空服.2.小聪、小明、小慧三位同学分别记录了一周中各天收支情况如下表(记收入为正,单位:元):独立完成巩固提升练习.掌握所学基础知识..3.把下列各数分别填在相应的集合里:-1,13,,0,,21,-2,,+6.(1)正数集合{ …}(2)负数集合{ …}(3)正整数集合{ …}(4)分数集合{ …}.拓展提升:针对练习:如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分.小组合作完成拓展提升.通过完成拓展提升,提高应用数学知识解决问题的能力.课堂小结1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的大于零的数都是正数;正数前面添放上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3、有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.回顾本节课所学知识.理解正、负数的概念及有理数的分类.板书正数:负数:正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.。
浙教版数学七年级上册1.1《从自然数到有理数》教学设计
浙教版数学七年级上册1.1《从自然数到有理数》教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章第一节的内容。
本节内容主要介绍了有理数的概念,包括整数和分数,以及它们之间的关系。
教材通过具体的例子,让学生理解有理数的定义,掌握有理数的运算方法,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经掌握了自然数的相关知识,但对有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。
三. 教学目标1.知识与技能:让学生理解有理数的概念,掌握有理数的运算方法。
2.过程与方法:通过实际操作和思考,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:有理数的概念和运算方法。
2.难点:有理数的运算规律和应用。
五. 教学方法1.情境教学法:通过具体的例子和实际操作,让学生理解和掌握有理数的概念和运算方法。
2.问题驱动法:引导学生提出问题,通过思考和讨论,找到解决问题的方法。
3.小组合作学习:学生分组讨论和解决问题,培养团队合作意识和自主学习能力。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备教学工具,如黑板、粉笔、投影仪等。
3.准备一些实际的例子,如购物场景、运动会等,用于引导学生理解和应用有理数的概念和运算方法。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的例子,如购物场景、运动会等,引导学生思考和讨论其中的数学问题。
通过这些例子,激发学生的兴趣,引入有理数的概念。
2.呈现(10分钟)利用PPT呈现有理数的概念和运算方法,结合具体的例子,让学生理解和掌握有理数的概念和运算方法。
在此过程中,引导学生提出问题,通过思考和讨论,找到解决问题的方法。
3.操练(10分钟)学生分组进行练习,教师提供一些有关有理数的运算题目,让学生通过实际操作,巩固所学知识。
七年级数学上册《1.1从自然数到有理数》教案(新版)浙教版
从自然数到有理数教学目标1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。
2.会用正数、负数表示具有相反意义的量3.理解有理数的概念,理解有理数的分类。
教学重点有理数的概念。
教学过程一、创设情境,引入新课通过上节课的学习,我们知道了在人类的生活和生产实践中产生了自然数和分数。
随着人类的进步和实践的需要,又会产生什么样的数呢?请看下面的材料:月球表面白天气温可高达123℃,夜晚可低至-233℃. 图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
上面123℃和-233℃这两个量分别表示什么吗?二、引入新知1、在日常生活和生产实践中,我们经常会遇到具有相反意义的量,如:温度有“零上”和“零下”、路程有“向东”和“向西”、水位变化有“升高”和“降低”、经营情况有“盈利”和“亏损”具有相反意义的量的含义:一是两个量,数字部分可以不相等;二是必须要具有相反的意义,缺一不可。
2、为了表示具有相反意义的量,我们把一种意义的量规定为正,用大于零的数,如123,15,3.14等来表示,这样的数叫做正数。
正数前面可以放上正号“+”来表示(“+”常省略不写);把另一种与之意义相反的量规定为负,用大于零的数前面放上负号“-”来表示,这样的数叫做负数。
特别注意:“-”不可以省略!3、课堂练习试一试:(1)规定盈利为正,某公司去年亏损了2.5万元,记作________万元,今年盈利3.2万元,记作_______万元;(2)规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记作海拔___________米;吐鲁番盘地最低点低于海平面155米,记作海拔________________米。
练一练:(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________(3)规定增加的百分比为正,增加25%记做_______,-12%表示___________。
1.1从自然数到有理数-浙教版七年级数学上册教案
1.1 从自然数到有理数-浙教版七年级数学上册教案一、教学目标1.了解自然数、整数、有理数的基本概念;2.能将带有符号的数表示在数轴上,并比较大小;3.能够将一些现实问题转化为数学中的符号和结论。
二、教学重点1.自然数、整数、正数、负数的含义和特征;2.有理数的概念;3.能够将有理数表示在数轴上。
三、教学难点1.自然数、整数、有理数的区别和联系;2.有理数的绝对值和大小关系。
四、教学准备1.教师准备:浙教版七年级数学上册教材、课件、黑板笔等;2.学生准备:课前预习教材内容。
五、教学内容1. 数学前导知识1.1 自然数自然数是人类最早使用和认识的数,是从1开始不断往后数下去得到的数。
自然数与数轴没有负方向的关系,也就是说自然数只能从0开始一直向正方向递增。
1.2 整数整数包括自然数和0以及负数,整数在数轴上包括0点和两个方向:正方向和负方向。
正整数的绝对值大于0,负整数的绝对值等于相应正整数的绝对值。
2. 有理数有理数是可以表示成两个整数之比(分数)的数,包括正有理数、负有理数、零、整数等。
有理数可以表示成a/b的形式(其中a、b均为整数),但是要保证b不等于0。
由于有理数可以表示成分数形式,所以分数也是有理数的一种。
比如1/2、-4/5都是有理数。
3. 数轴表示通过画数轴可以更直观地表示数的大小关系。
将零点设置在数轴的中心位置,左面的点代表负整数和负分数,右面的点代表正整数和正分数,可以将有理数表示在数轴上。
4. 小结有理数是指可以写成两个整数之比的数,包括正有理数、负有理数、零、整数等。
有理数可以表示成a/b的形式,但是要保证b不等于0。
通过画数轴可以更直观地表示数的大小关系。
六、教学过程1. 导入教师可以通过提问的方式来简单介绍什么是自然数、整数以及有理数,并让学生谈谈自己对这些概念的理解。
教师可以引入例子,比如一个人存了100元,之后花掉了20元,这时让学生通过自己的口算减法告诉教师这个人现在还剩下多少钱,让学生意识到此例子中用到的是整数,特别是负整数。
(浙教版)七年级数学上册第1章第1节《从自然数到有理数》优秀教学案例(第2课时)
1.生活情境导入:通过天气预报中的温度变化,让学生感受有理数的大小比较,使学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。
2.问题导向:教师提出引导性问题,引导学生思考有理数的分类依据及其意义,设置疑问,让学生探讨有理数大小比较的方法和规律,激发学生的思考和探究欲望。
3.小组合作:组织学生进行小组讨论,共同探究有理数的分类、大小比较和减法运算规律,鼓励小组成员相互评价、交流心得,提高学生的合作能力和沟通能力。
根据新课程标准,本节课旨在让学生通过自主探究、合作交流的方式,掌握有理数的分类、大小比较方法和减法运算规律,培养学生的逻辑思维能力和解决实际问题的能力。同时,通过本节课的学习,使学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。
在教学设计上,我将以学生为主体,注重启发式教学,引导学生主动发现问题、解决问题,并通过典型例题和实际问题,使学生充分理解和掌握有理数的相关知识。同时,我将关注学生的个体差异,给予不同程度的学生有针对性的指导和帮助,确保每个学生都能在课堂上得到有效的学习。
(二)讲授新知
1.讲解有理数的分类,包括整数和分数,让学生了解各类数的特征和意义。
2.引导学生通过观察、分析、归纳有理数的大小比较方法,让学生在实践中掌握该方法。
3.讲解有理数的减法运算规律,并通过例题使学生理解和掌握有理数减法。
4.结合数轴讲解有理数的大小关系,提高学生的数形结合能力。
(三)学生小组讨论
四、教学内容与过程
(一)导入新课
1.利用生活情境导入新课,例如,通过讲解天气预报中的温度变化,让学生感受有理数的大小比较。
2.设计有趣的数学故事,如“数学家的小故事”,让学生了解有理数分类、减法运算的使用优惠券后需支付多少元?”引导学生运用有理数知识解决实际问题。
1.1 从自然数到有理数(2) 浙教版数学七年级上册教案
1.1从自然数到有理数(2)教案20℃和-15℃这两个量分别表示什么?请你说说生活中还有哪些具有相反意义的词语?在日常生活和生产实践中,我们经常会遇到具有相反意义的量,如:温度有“零上”和“零下”,路程有“向东”和“向西”,水位变化有“升高”和“降低”,经营情况有“盈利” 和“亏损”.(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量:如前进8 m与后退5 m;例如:上升与下降就不是相反意义的量,缺少数量.(2)意义相反的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.讲授新课二、提炼概念为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),如123,25,2.5等数叫做正数(positive number).正数前面可以放上“+”号(常省略不写).把另一种与之意义相反的量规定为负,在前面放上负号“−”来表示,如−233,−60,-0.5等叫做负数(negative number).注意:零既不是正数,也不是负数.对于具有相反意义的量,其中一个为正数,则与它相反意义的量就是负数.目前所学的数(除π以外)都是有理数,非负整数包括正整数和零,不能将非负整数理解为不是负整数的有理数,而“-”不可以省略!正整数、零和负整数统称整数;正分数和负分数统称分数.整数和分数统称有理数.三、典例精讲例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,,0.33,0,,-9.应为不是负整数的整数.课堂检测四、巩固训练1. 下列说法中,正确的是 ( )A.正整数和负整数统称为整数B.有理数包括正有理数和负有理数C.整数和分数统称为有理数D.有理数包括整数、分数和零答案:C2.下列关于“0”的叙述,不正确的是( )A.不是正数,也不是负数B.不是正整数,也不是负整数C.不是非正数,也不是非负数D.不是负数,是整数答案:C3.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_______克~390克.3804.下列给出的数,哪些是正数?哪些是负数?哪些是分数?哪些是整数?哪些是非负整数?哪些是负整数?哪些是负分数?哪些是有理数?12 7,-3.141 6,0,2 012,-85,-0.234 56,1%,10.1,0.67,-89.解:正数{127,2 012,1%,10.1,0.67,…}负数{-3.141 6,-85,-0.234 56,-89,…}分数{127,-3.141 6,-85,-0.234 56,1%,10.1,0.67,…}整数{0,2 012,-89,…}非负整数{0,2 012,…}负整数{-89,…}负分数{-3.141 6,-85,-0.234 56,…}有理数{127,-3.141 6,0,2 012,-85,-0.23456,1%,10.1,0.67,-89,…}5.将下列各数填入相应的集合中.227,-1,12,0,-3.01,-15,180,-43,9,-45%,1,0.62.(1)整数:__________________________________;(2)自然数:_____________________;(3)正数:________________________;(4)负数:________________________________;(5)偶数:________________;(6)奇数:________________________;(7)分数:_________________________;(8)非负数:________________________;(9)非负整数:___________________;(10)非负有理数:____________________________.-1,12,0,-15,180,-43,9,112,0,180,9,1-1,-3.01,-15,-43,-45%12,0,180-1,-15,-43,9,1课堂小结。
浙教版-数学-七年级上册-1.1 从自然数到有理数(2) 教案
1.1从自然数到有理数(2)教学目标一、知识与技能会判断一个给定的数是正数还是负数,会应用正、负数表示生活中具有相反意义的量,会将有理数正确分类.二、过程与方法利用学生身边熟悉的事物引入,学习有理数,运用有理数表示实际生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。
三、情感态度和价值观通过提供适当的情景资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中,学会交流与合作,提高创新能力;通过分析问题,解决问题,使学生体验数的发展历程. 教学重点会应用正负数表示生活中具有相反意义的量;有理数的分类。
教学难点负数的理解。
教学方法讨论法、探究法。
课前准备多媒体课件课时安排1课时教学过程一、导入新课出示图片,提出问题:某一天我国三个城市的最低气温如下:在图中你发现了你还不是很熟悉的数了吗?-10℃,5℃,15℃这几个量分别表示什么?“零上”与“零下”的意义有什么关系?学生观察分析讨论回答:-10℃不是很熟悉;-10℃表示零下10度.5℃表示零上5度.15℃表示零上15度.“零上”与“零下”是相反意义的量.引导学生用小学的数学知识不够用了(具体在什么情形时不够用了),因此必须把数的内容推广。
引入课题“有理数”二、新课学习(一)正数与负数的概念1.你能说出几对具有相反意义的量吗?学生讨论回答:零下20———零上10;降低5米———升高8米;支出100元———收入500元;向东8千米———向西6千米;盈利20﹪———亏损20﹪.这样具有相反意义的量能用我们学过的自然数和分数表示出来吗?学生回答:不能.教师讲解:为表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外),如:123.8848.13等来表示,这样的数就叫做正数,正数的前面有时也可以放上“+”(读作正号);把另一种与之意义相反的量规定为负,用过去学过的数(零除外)前面加上“-” (读作负号)来表示,如:-233.-155.-0.1.-23等,这样的数就叫做负数。
浙教版七年级数学上册1.1从自然数到有理数教学设计
新浙教版七年级数学上册从自然数到有理数(2)教课方案一、教材剖析《从自然数到有理数》是七年级学生学习数学的第一章。
本章的主要内容有有理数的观点、数轴、相反数、绝对值等,也包含分类、概括、类比、数形联合等数学思想。
本节是正式引入有理数观点的第一节。
从自然数扩展到有理数,是学生从小学阶段过渡到初中阶段的飞腾。
从今此后,我们对数的议论不在逗留在自然数或分数上,而是在有理数范围内,这也为接下来数的进一步扩大打下了基础。
能够说,有理数观点的学习是整个初中代数学的第一道门。
正、负数观点的成立对有理数观点的成立起着十分重要的作用,也为接下来学习数轴、相反数、绝对值等观点作好铺垫。
二、学情剖析本节正、负数观点的引入,是学生在小学阶段未深入认识过的,在初遇时可能感觉抽象与疑惑,教课时应经过充分的生活与生产实例让他们领会到只是自然数和分数不够用了,引入正、负数是必需且拥有实质意义的。
初一年级学生开朗好动,思想不易集中,但对新知又充满好奇心和求知欲,讲堂上应经过丰富的实例活跃讲堂氛围,把学生的开朗好动指引向对新知的渴求,调换他们的踊跃性。
三、教课目的知识技术1.经过丰富实例,领会对自然数和分数作扩大是生活与生产实质的必定需要;2.成立正、负数的观点,领会其实质意义;3.理解有理数的观点,会对有理数进行分类;4.会用正、负数或零表示生活实质中的量。
数学思虑能独立思虑,领会分类、概括的基本数学思想和谨慎的数学思想方式。
问题解决1.初步学会在详细的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实质问题,加强应意图识,提高实践能力。
2.在与别人合作和沟经过程中,能较好地理解别人的思虑方法和结论。
3.能针对别人所提的问题进行反省,初步形成评论与反省的意识。
感情态度1.讲堂中充分的生活与生产实例,让学生领会到“数学源于生活,又应用于生活”,感觉数学的适用性与宽泛用途,加强他们对数学的好奇心和求知欲;2.正、负数的表示,让学生感觉到数字的简洁美;四、教课重难点教课要点有理数观点。
1.1从自然数到有理数教学设计2022-2023学年浙教版七年级上册
1.1 从自然数到有理数教学设计一、教学目标1.理解自然数的概念及其性质;2.掌握整数的定义及其性质;3.了解有理数的概念及其运算法则;4.能够正确使用自然数、整数和有理数进行计算和比较。
二、教学内容1.自然数的概念及性质–自然数的定义–自然数的有序性–自然数的加法和乘法–自然数的应用2.整数的概念及性质–整数的定义–整数的加法和乘法–整数的顺序关系–整数的应用3.有理数的概念及性质–有理数的定义–有理数的加法和乘法–有理数的顺序关系–有理数的应用三、教学重点1.自然数、整数和有理数的定义及其性质;2.自然数、整数和有理数的加法和乘法运算。
四、教学难点1.自然数、整数和有理数的顺序关系;2.自然数、整数和有理数的应用问题解决。
五、教学过程设计5.1 导入(5分钟)通过简单的问题引导学生思考自然数的概念,并复习自然数的加法和乘法运算。
例如:如果有3个苹果,再加上4个苹果,一共有多少个苹果?如果每个苹果的价格是2元,7个苹果需要支付多少元?5.2 自然数的概念及性质(15分钟)1.引导学生回顾自然数的定义,即从1开始的数;2.引导学生发现和总结自然数的有序性,即自然数从小到大逐渐增加;3.对自然数的加法和乘法进行复习和巩固;4.通过应用题让学生了解自然数在现实生活中的应用。
5.3 整数的概念及性质(20分钟)1.引导学生思考负数的概念,并引入整数的定义;2.引导学生通过实际操作,了解整数的加法和乘法规则;3.引导学生理解整数的顺序关系,即负整数小于0,正整数大于0;4.通过应用题让学生了解整数在现实生活中的应用。
5.4 有理数的概念及性质(20分钟)1.引导学生思考无理数的概念,并引入有理数的定义;2.通过实例让学生掌握有理数的加法和乘法运算法则;3.引导学生理解有理数的顺序关系,即两个有理数之间可以进行大小比较;4.通过应用题让学生了解有理数在现实生活中的应用。
5.5 总结与练习(15分钟)1.总结自然数、整数和有理数的定义及其性质;2.练习题:计算题和应用题,巩固学生对自然数、整数和有理数的加法和乘法运算的掌握。
七年级数学上册第1章有理数1.1从自然数到有理数第2课时有理数教学设计新版浙教版
七年级数学上册第1章有理数1.1从自然数到有理数第2课时有理数教学设计新版浙教版一. 教材分析本节课的内容是浙教版七年级数学上册第1章有理数1.1从自然数到有理数第2课时有理数。
这部分内容主要包括有理数的定义、分类以及有理数的大小比较。
教材通过实例引入有理数的概念,让学生掌握有理数的分类,并能运用有理数的大小比较解决实际问题。
二. 学情分析七年级的学生已经掌握了自然数的基本概念,具备一定的逻辑思维能力。
但是,对于有理数这一抽象的概念,学生可能难以理解。
因此,在教学过程中,需要通过具体的实例和生活中的问题,引导学生理解有理数的含义,并掌握有理数的分类和大小比较。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较,并能运用有理数的大小比较解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解有理数的含义。
2.小组合作学习:让学生在小组内讨论有理数的分类和大小比较,培养学生的团队协作能力。
3.启发式教学:教师提问,引导学生思考,激发学生的学习兴趣。
4.巩固练习:通过适量的问题,让学生巩固所学知识。
六. 教学准备1.PPT课件:制作有关有理数的定义、分类和大小比较的PPT课件。
2.实例:准备一些生活中的实例,用于引导学生理解有理数。
3.练习题:准备一些有关有理数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些实例与数学中的有理数有何关系。
通过实例,引出有理数的概念。
2.呈现(10分钟)教师通过PPT课件,讲解有理数的定义、分类和大小比较。
讲解过程中,注意用简洁明了的语言,结合实例,让学生理解有理数的含义。
3.操练(10分钟)学生分组讨论,每组选择一个实例,根据有理数的定义和分类,判断实例中的数属于哪种类型。
浙教版-数学-七年级上册-1.1 从自然数到有理数(2) 教案
1.1从自然数到有理数(2)一、教学目标:1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。
2.会用正、负数表示具有相反意义的量。
3理解有理数的概念,理解有理数的分类。
二、教学重点和难点:重点:有理数的概念难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
三、教学过程:1、阅读下列教材月球表面白天气温可高达123℃,夜晚可低至-233℃. 图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
上面123℃和-233℃这两个量分别表示什么呢?在日常生活和生产实践中,我们经常会遇到具有相反意义的量,例如向前走50米,向后退30米;从银行取出2000元,存入银行3000元等都是相反意义的量。
做一做:下列各组是相反意义的量的是()A、向南走100米,向西走100米;B、存钱,取钱C、前进,后退D、上升100米,下降20米请同学举三个相反意义的量的例子。
并说说相反意义的量必须具备哪些条件?2、为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外),如123,15,3.14等来表示,这样的数叫做正数。
正数前面可加正号“+”来表示(“+”常省略不写);把另一种与之意义相反的量规定为负,用过去学过的数(零除外)前面放上负号“-”来表示. 这样的数叫做负数 负数前面可加负号“—”来表示(注意:“-”不可以省略!);零既不是正数,也不是负数!做一做(1).规定盈利为正。
某公司去年亏损2.5万元,记做 万元,今年盈利3.2万元记做 万元。
(2).规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记作海拔___________米;吐鲁番盘地最低点低于海平面154米,记作海拔________________米. (3).如果向银行存入50元记为50元,那么-30.50元表示______________________;(4)规定增加的百分比为正,增加25%记做_______,-12%表示___________。
浙教版七年级数学上册教案 1.1从自然数到有理数(2)
1.1 从自然数到有理数(2)知识技能1.通过丰富实例,体会对自然数和分数作扩充是生活与生产实际的必然需要;2.建立正、负数的概念,体会其实际意义;3.理解有理数的概念,会对有理数进行分类;4.会用正、负数或零表示生活实际中的量。
数学思考能独立思考,体会分类、归纳的基本数学思想和严谨的数学思维方式。
问题解决1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
3.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度1.课堂中充足的生活与生产实例,让学生体会到“数学源于生活,又应用于生活”,感受数学的实用性与广泛用途,增强他们对数学的好奇心和求知欲;2.正、负数的表示,让学生感受到数字的简约美;教学重难点教学重点有理数概念。
教学难点正、负数概念的建立过程。
教学方法教法讨论法、探究法。
学法教师适当引导,学生探索、交流、讨论。
(一)复习引入,温故知新复习小学学习过的数。
为建立负数的概念做铺垫。
师:大家想一想,在小学里,学习过哪些数?生:自然数、整数、分数、奇数、偶数、质数(素数)、合数。
(请同学一个一个回答)师:恩,大家学习了这么多数,那我们下面来看一个科普视频。
播放科普视频《探索月球》片段,请同学在观看的同时找一找视频中不熟悉的数字。
看看谁发现了陌生的朋友?于是发现了视频中前面带“减号”的数字,听到了“负223度”的表达。
设疑:为什么多了“减号”?导入新课《有理数》。
【《探索月球》的视频给学生扩充科普知识的同时,让学生带着问题去观赏与寻找,培养了学生有意识观察事物的能力,生动的影像更是增强了学生探究新知的兴趣,带动了课堂气氛。
】(二)交流讨论,探索新知师:视频中提到的“123度”和“-233度”分别表示什么?利用PPT 呈现以下内容(1)今日最高气温5度,最低气温零下4度;(2)小王向东行驶了3千米,向西行驶了2千米;(3)爸爸从8楼到地下1层的车库;(4)新疆乌鲁木齐市高于海平面918米,吐鲁番盆地最低点低于海平面 155米。
_七级数学上册第1章有理数1.1从自然数到有理数2教案新版浙教版08191174
1.1 从自然数到有理数( 2)一、教课目的:1.进一步理解正数、负数的意义,认识从自然数到有理数的扩展过程。
2.会用正、负数表示拥有相反意义的量。
3理解有理数的观点,理解有理数的分类。
二、教课要点和难点:要点:有理数的观点难点:成立正数、负数的观点对学生来说是数学抽象思想的一次重要飞腾。
三、教课过程:1、阅读以下教材月球表面白日气温可高达 123℃,夜晚可低至- 233℃ . 图中阿波罗 11 号的宇航员登上月球后不得不衣着既御寒又御热的太空服。
上边 123℃和- 233℃这两个量分别表示什么呢?在平时生活和生产实践中,我们常常会碰到拥有相反意义的量,比如向前走50 米,向退后30 米;从银行拿出 2 000 元,存入银行 3 000元等都是相反意义的量。
做一做:以下各组是相反意义的量的是()A、向南走 100 米,向西走 100 米; B 、存钱,取钱C、行进,退后D、上涨 100 米,降落 20米请同学举三个相反意义的量的例子。
并谈谈相反意义的量一定具备哪些条件?2、为了表示拥有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外),如123,15,3.14等来表示,这样的数叫做正数。
正数前方可加正号“+”来表示(“+”常省略不写);把另一种与之意义相反的量规定为负,用过去学过的数(零除外)前方放上负号“-”来表示.这样的数叫做负数如 233, 60,2, 0.5等,3负数前方可加负号“—”来表示(注意:“-”不能够省略!);1, 2, 3,称为负整数;1,2,5,称为负分数;234相应的,1,2,3,称为正整数;1 2 5,,,称为正分数。
零既不是正数,也不是负数!做一做(1)规定盈余为正。
某企业昨年损失 2.5 万元,记做万元,今年盈余 3.2 万元记做万元。
(2)规定海平面以上的海拔高度为正. 新疆乌鲁木齐市高于海平面918 米,记作海拔 ___________米 ;吐鲁番盆地最低点低于海平面154 米,记作海拔 ________________ 米 .(3)假如向银行存入 50 元记为 50 元,那么- 30.50 元表示 ______________________ ;(4)规定增添的百分比为正,增添25%记做 _______,- 12%表示 ___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1从自然数到有理数(2)
一、教学目标:
1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。
2.会用正、负数表示具有相反意义的量。
3理解有理数的概念,理解有理数的分类。
二、教学重点和难点:
重点:有理数的概念
难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
三、教学过程:
1、阅读下列教材
月球表面白天气温可高达123℃,夜晚可低至-233℃. 图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
上面123℃和-233℃这两个量分别表示什么呢?
在日常生活和生产实践中,我们经常会遇到具有相反意义的量,例如向前走50米,向后退30米;从银行取出2000元,存入银行3000元等都是相反意义的量。
做一做:
下列各组是相反意义的量的是()
A、向南走100米,向西走100米;
B、存钱,取钱
C、前进,后退
D、上升100米,下降20米
请同学举三个相反意义的量的例子。
并说说相反意义的量必须具备哪些条件?
2、为了表示具有相反意义的量,
我们把一种意义的量规定为正,用过去学过的数(零除外),如123,15,3.14等来表示,这样的数叫做正数。
正数前面可加正号“+”来表示(“+”常省略不写);
把另一种与之意义相反的量规定为负,用过去学过的数(零除外)前面放上负号“-”来表
示. 这样的数叫做负数 负数前面可加负号“—”来表示(注意:“-”不可以省略!);
零既不是正数,也不是负数!
做一做
(1).规定盈利为正。
某公司去年亏损 2.5万元,记做 万元,今年盈利 3.2万元记做 万元。
(2).规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记作海拔___________米;吐鲁番盘地最低点低于海平面154米,记作海拔________________米.
(3).如果向银行存入50元记为50元,那么-30.50元表示______________________;
(4)规定增加的百分比为正,增加25%记做_______,-12%表示___________。
3.请同学们把有理数进行分类
分类方法一:
整数
自然数
有理数
分数
分类方法二:
正数
等,,,,如5.03
260233----
有理数 零 整数
负数
4、例题:
下列给出的各数,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是整数?哪些是分数?哪些是有理数?
-8.4,2,176+
,0.33,0,35-,-9.
仿照上面所示例题,请把下列各数填入相应的集合内。
-3,-121,0,-73,2002,-5,31,1.32 ,-212,3
14,5,—1.2 (1)整数集合{ };(2)正数集合{ };
(3)负数集合{ };(4)正分数集合{ };
(5)负分数集合{ };(6)负整数集合{ }
(7)有理数集合{ }。
四、课堂小結:
1.什么是相反意义的量,它必须具备哪些条件?
2.什么是有理数?
3.有理数该如何分类?
五、拓展训练
1.零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?
2.如果一个数不是负数,那么这数 可能是________________.
3.如果一个不是正数,那么这个数可能是______________.
4.小聪、小明、小慧三位同学分别记录了一周中各天收支情况如下表(记收入为正,单位:元):
根据上表回答下列问题:
(1)说出小聪这一行中10,-5.20,0,-4.80,5,-3各数的实际意义.
(2)说出星期五这一列中-6,6的实际意义
(3)说出最后一列中-1,1,0的实际意义.
六、课后作业
1、作业本
2、全效学习
七、学后反思。