分类汇编:平面直角坐标系

合集下载

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是平面上最常用的坐标系统之一,用于描述平面上的点和其它几何图形的位置。

它由两条相互垂直的直线组成,分别称为x轴和y轴,它们的交点被称为原点。

一、坐标系介绍坐标系是用来刻画空间中各点位置的系统,而平面直角坐标系是坐标系中的一种。

平面直角坐标系的构成:1. x轴:水平的直线,向右延伸为正方向,向左延伸为负方向。

2. y轴:垂直于x轴的直线,向上延伸为正方向,向下延伸为负方向。

3. 原点:x轴和y轴的交点,被称为坐标系的原点。

二、坐标的表示方法在平面直角坐标系中,每个点可以表示为一个有序数对,即(x, y),其中x表示横坐标,y表示纵坐标。

1. 横坐标:横坐标表示点在x轴上的位置。

在原点的右边为正方向,左边为负方向。

2. 纵坐标:纵坐标表示点在y轴上的位置。

在原点的上方为正方向,下方为负方向。

三、点的位置关系根据坐标系的定义,我们可以判断点的位置关系。

1. 同一直线上的点:如果两个点的横坐标相等,纵坐标不同时,它们在同一条直线上,且与原点的距离相等。

2. 垂直关系:如果两个点的纵坐标相等,横坐标不同时,它们在同一条垂直线上,且与原点的距离相等。

3. 斜率:直线斜率是用来描述直线的倾斜程度的,斜率为0表示水平线,无限大表示垂直线。

4. 象限:根据点的坐标正负关系,可以将平面分为四个象限。

第一象限:x>0,y>0;第二象限:x<0,y>0;第三象限:x<0,y<0;第四象限:x>0,y<0。

四、点、线和图形的表示方法在平面直角坐标系中,我们可以使用坐标来表示点、线和图形。

1. 表示点:一个点的位置可以使用有序数对(x, y)来表示。

如点A(2, 3)表示横坐标为2,纵坐标为3的点A。

2. 表示线段:线段由两个端点组成,可以使用两个点的坐标来表示。

如线段AB由两个点A(2, 3)和B(4, 5)表示。

3. 表示直线:直线的方程可以使用斜率截距形式或一般式来表示。

平面直角坐标系

平面直角坐标系

平面直角坐标系简介平面直角坐标系是数学中一种常见的坐标系,用于描述平面上的点的位置。

它由两条相互垂直且共同交于原点的直线构成,分别称为x轴和y轴。

通过x、y轴上的数值,可以确定平面上的每一个点的坐标。

坐标轴平面直角坐标系由两个垂直的坐标轴组成,分别是x轴和y轴。

x轴是从左到右水平延伸的直线,y轴是从下到上垂直延伸的直线。

两轴交于原点O,原点是坐标系的起点,它的坐标为(0, 0)。

坐标轴上的点的坐标是由数值决定的,正方向上的数值代表右移或上移,负方向上的数值代表左移或下移。

x轴上的正方向可以取右移,y轴上的正方向可以取上移。

在平面上的点的位置是通过坐标值的组合来表示的。

坐标值在平面直角坐标系中,每个点的位置都有唯一的坐标值来确定。

一个坐标值由两个实数(x, y)组成,x表示该点在x轴上的位置,y表示该点在y轴上的位置。

坐标值的顺序可以是(x, y)或者y,x。

根据坐标轴和原点的位置,可以将坐标值分为四个象限。

第一象限的点具有正的x和y值,第二象限的点具有负的x值和正的y值,第三象限的点具有负的x 和y值,第四象限的点具有正的x和负的y值。

坐标变换平面直角坐标系除了可以用来表示点的位置外,还可以进行坐标变换。

坐标变换包括平移、旋转、缩放和倾斜等操作,这些操作可以改变坐标轴的位置和方向,从而达到变换坐标的目的。

平移是将整个坐标系在平面上沿着一个方向移动一定的距离。

例如,将坐标系向右平移3个单位,则所有点的x坐标都会增加3个单位。

类似地,将坐标系向上平移2个单位,则所有点的y坐标都会增加2个单位。

旋转是将整个坐标系绕原点或者其他点旋转一定的角度。

例如,将坐标系逆时针旋转90度,则x轴会变为新的y轴,y轴会变为新的-x轴。

通过旋转,可以改变坐标系中点的位置。

缩放是将整个坐标系沿着x轴和y轴的方向分别进行比例缩放。

例如,对x轴进行2倍缩放,则所有点的x坐标都会乘以2,从而使整个坐标系在x轴方向拉长。

类似地,对y轴进行2倍缩放,则所有点的y坐标都会乘以2,从而在y轴方向拉长。

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

平面直角坐标系与点的坐标一.选择题1.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2018•山东聊城市•3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC 边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3. (2018•乌鲁木齐•4分)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.4.(2018•金华、丽水•3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

专题09平面直角坐标系和函数基础(7大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01点的坐标 (1)二、考点02点所在的象限 (4)三、考点03坐标与图形 (6)四、考点04点坐标的规律探索 (13)五、考点05函数解析式 (18)六、考点06自变量和函数值 (20)七、考点07函数图像 (26)考点01点的坐标一、考点01点的坐标1.(2024·湖南·中考真题)在平面直角坐标系xOy中,对于点P x,y,若x,y均为整数,则称点P为“整点”.特别地,当y x(其中)的值为整数时,称“整点”P为“超整点”,已知点P2a−4,a+3在第二象限,下列说法正确的是()A.a<−3B.若点P为“整点”,则点P的个数为3个C.若点P为“超整点”,则点P的个数为1个D.若点P为“超整点”,则点P到两坐标轴的距离之和大于102.(2023·山东聊城·中考真题)如图,在直角坐标系中,各点坐标分别为A−2,1,B−1,3,C−4,4.先作关于x轴成轴对称的,再把平移后得到.若B22,1,则点2A坐标为()A.1,5B.1,3C.5,3D.()5,53.(2023·浙江台州·中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“车”所在位置的坐标为−2,2,则“炮”所在位置的坐标为().A.3,1B.1,3C.4,1D.3,24.(2022·黑龙江大庆·中考真题)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为()A.4πB.82C.8蟺D.1625.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为()0,1,点B的坐标为2,2,则点C的坐标为.6.(2023·贵州·中考真题)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是−2,7,则龙洞堡机场的坐标是.7.(2023·山东东营·中考真题)如图,一束光线从点A−2,5出发,经过y轴上的点B0,1反射后经过点C m,n,则2m−n的值是.8.(2023·山东枣庄·中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为(−3,2),(4,3),将银杏叶绕原点顺时针旋转90?后,叶柄上点A对应点的坐标为.9.(2022·山东德州·中考真题)如图,线段AB,CD端点的坐标分别为A−1,2,B3,−1,C3,2,D−1,5,且,将CD平移至第一象限内,得到C'D'(C',D'均在格点上).若四边形ABC'D'是菱形,则所有满足条件的点D'的坐标为.10.(2022·山东烟台·中考真题)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.考点02点所在的象限二、考点02点所在的象限11.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=−34x+4上,坐标x,y是二元一次方程5x−6y= 33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2024·四川广元·中考真题)如果单项式−x2m y3与单项式2x4y2−n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限13.(2024·贵州·中考真题)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为−2,0,0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限14.(2023·内蒙古·中考真题)若实数m,n是一元二次方程x2−2x−3=0的两个根,且m<n,则点m,n 所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限15.(2023·辽宁沈阳·中考真题)二次函数y=−(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限16.(2023·贵州·中考真题)已知,二次数y=ax2+bx+c的图象如图所示,则点(),P a b所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限17.(2023·湖南永州·中考真题)已知点M2,a在反比例函数y=k x的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限18.(2023·浙江·中考真题)在平面直角坐标系中,点P−1,m2+1位于()A.第一象限B.第二象限C.第三象限D.第四象限19.(2023·江苏盐城·中考真题)在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限20.(2020·湖南邵阳·中考真题)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.a,b B.−a,b C.−a,−b D.a,−b21.(2022·内蒙古包头·中考真题)在一次函数中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限22.(2024·四川遂宁·中考真题)反比例函数y=k−1x的图象在第一、三象限,则点k,−3在第象限.23.(2023·湖南·中考真题)在平面直角坐标系中,点P−3,−2所在象限是第象限.24.(2023·新疆·中考真题)在平面直角坐标系中有五个点,分别是A1,2,B−3,4,C−2,−3,D4,3,E2,−3,从中任选一个点恰好在第一象限的概率是.25.(2023·山东日照·中考真题)若点M m+3,m−1在第四象限,则m的取值范围是.26.(2022·四川广安·中考真题)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.27.(2023·山东淄博·中考真题)若实数m,n分别满足下列条件:(1)2m−12−7=−5;(2)n−3>0.试判断点P2m−考点03坐标与图形三、考点03坐标与图形28.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC各顶点的坐标分别是O0,0,A1,2,B3,3,C5,0,则四边形OABC的面积为()A.14B.11C.10D.929.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向()或负方向(a<0).平移a 个单位长度,再沿着y轴正方向()或负方向(b<0)平移b个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作−2,1.②加法运算法则:a,b+c,d=a+c,b+d,其中a,b,c,d为实数.若3,5+m,n=−1,2,则下列结论正确的是()A.m=2,n=7B.m=−4,n=−3C.m=4,n=3D.m=−4,n=330.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q 的坐标为()A.3,0B.0,2C.3,2D.1,231.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D32.(2024·甘肃临夏·中考真题)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为3,4,则顶点A的坐标为()A.−4,2B.−3,4C.−2,4D.−4,333.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为6,0,将绕着点B顺时针旋转60掳,得到,则点C的坐标是()A.33,3B.3,33C.6,3D.3,634.(2023·湖南益阳·中考真题)如图,在平面直角坐标系xOy 中,有三点A 0,1,B 4,1,C 5,6,则()A .12BCD 35.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .62−4C .213−2D .236.(2023·湖北武汉·中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112=+-S N L ,其中N,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30,()()20,10,0,0B O ,则内部的格点个数是()A .266B .270C .271D .28537.(2023·山西·中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M 均为正六边形的顶点.若点P,Q 的坐标分别为()(),0,3--,则点M 的坐标为()A .33,−2B .33,2C .(2,33-D .(2,33--38.(2023·江苏苏州·中考真题)如图,在平面直角坐标系中,点A 的坐标为9,0,点C 的坐标为0,3,以,OA OC 为边作矩形OABC .动点E,F 分别从点,O B 同时出发,以每秒1个单位长度的速度沿,OA BC 向终点A,C 移动.当移动时间为4秒时,的值为()A .10B .910C .15D .3039.(2022·青海·中考真题)如图所示,A 22,0,AB =32,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .()32,0B .2,0C .−2,0D .−32,040.(2022·江苏苏州·中考真题)如图,点A 的坐标为0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为m,3,则m 的值为()A43B.221C.53D.421341.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为,点E在边CD上.将沿BE折叠,点C落在点F处.若点F的坐标为,则点E的坐标为.42.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第一象限交于点H,画射线OH,若H2a−1,a+1,则a=.43.(2024·四川广元·中考真题)若点Q x,y满足1x+1y=1xy,则称点Q为“美好点”,写出一个“美好点”的坐标.44.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,点B坐标8,4,连接OB,将OB绕点O逆时针旋转90掳,得到OB ',则点B '的坐标为.45.(2023·四川甘孜·中考真题)如图,在平面直角坐标系xOy 中,菱形AOBC 的顶点B 在x 轴的正半轴上,点A 的坐标为(1,,则点C 的坐标为.46.(2023·辽宁鞍山·中考真题)如图,在平面直角坐标系中,矩形AOBC 的边OB ,OA 分别在x 轴、y 轴正半轴上,点D 在BC 边上,将矩形AOBC 沿AD 折叠,点C 恰好落在边OB 上的点E 处.若OA =8,OB =10,则点D 的坐标是.47.(2023·山东·中考真题)如图,在平面直角坐标系中,点A,B 在反比例函数(0)k y x x=>的图象上.点A 的坐标为m,2.连接OA,OB,AB .若OA =AB,鈭燨AB =90掳,则k 的值为.48.(2023·四川·中考真题)如图,在平面直角坐标系中,已知点A 1,0,点B 0,−3,点C 在x 轴上,且点C在点A右方,连接AB,BC,若,则点C的坐标为.49.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A、B,C、D的坐标分别为7,8,2,8,10,4,5,4.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分,写出点E的坐标.50.(2024·江西·中考真题)如图,是等腰直角三角形,,双曲线y=>0,x>0经过点B,过点A4,0作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为______;(2)求BC所在直线的解析式.51.(2023·江苏镇江·中考真题)已知,在平面直角坐标系xOy中,点A的坐标为3,0,点B的坐标为m,n,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,EF=2.(1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段EF绕点()0,1顺时针旋转90掳,E,F的对应点分别是E',F'.当线段E'F'与点B所在的某个函数图象有公共点时,求m的取值范围.52.(2023·江苏镇江·中考真题)如图,正比例函数y=−3x与反比例函数的图象交于A,B1,m两点,点C在x轴负半轴上,.(1)m=______,k=______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.考点04点坐标的规律探索四、考点04点坐标的规律探索53.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点1,0中心对称.若点A10.1,y1,A20.2,y2,A30.3,y3,……,A191.9,y19,A202,y20都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则的值是()A .1-B .−0.729C .0D .154.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1按上述规则连续平移3次后,到达点P 32,2,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A .6,1或7,1B .()15,7-或8,0C .6,0或8,0D .5,1或7,155.(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,A 3−2,−1,则顶点A 100的坐标为()A .()31.34B .()31,34-C .32,35D .32,056.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai x i ,y i ,其中,且x i ,y i是整数.记n n n a x y =+,如1(0,0)A ,即a 1=0,A 2(1,0),即a 2=1,A 3(1,−1),即,以此类推.则下列结论正确的是()A .a 2023=40B .a 2024=43C .a (2n−1)2=2n −6D .a (2n−1)2=2n −457.(2023·辽宁阜新·中考真题)如图,四边形OABC 1是正方形,曲线叫作“正方形的渐开线”,其中,,,,…的圆心依次按O ,A ,B ,C 1循环.当OA =1时,点C 2023的坐标是()A.B.C.D.58.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3经过第1次运算得到点3,10,经过第2次运算得到点10,5,以此类推.则点1,4经过2024次运算后得到点.59.(2023·湖南怀化·中考真题)在平面直角坐标系中,为等边三角形,点A的坐标为1,0.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转60掳,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转60掳,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为,点A2023的坐标为.60.(2024·黑龙江绥化·中考真题)如图,已知A11,−3,A23,−3,A34,0,A46,0,A57,3,A69,3,A710,0,A811,−3…,依此规律,则点A2024的坐标为.61.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形OMNP顶点M的坐标为3,0,是等边三角形,点B坐标是1,0,在正方形OMNP内部紧靠正方形OMNP的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为A1,A1的坐标是2,0;第二次滚动后,A 1的对应点记为2A ,2A 的坐标是2,0;第三次滚动后,2A 的对应点记为A 3,A 3的坐标是3−……,则A 2024的坐标是.62.(2023·山东东营·中考真题)如图,在平面直角坐标系中,直线l :y =3x −3与x 轴交于点A 1,以OA 1为边作正方形A 1B 1C 1O 点C 1在y 轴上,延长C 1B 1交直线l 于点2A ,以C 1A 2为边作正方形A 2B 2C 2C 1,点C 2在y轴上,以同样的方式依次作正方形A 3B 3C 3C 2,…,正方形A 2023B 2023C 2023C 2022,则点2023B 的横坐标是.63.(2023·四川广安·中考真题)在平面直角坐标系中,点在x 轴的正半轴上,点在直线y =x??上,若点A 1的坐标为2,0,且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为.64.(2022·江苏南京·中考真题)如图,在平面直角坐标系,横、纵坐标均为整数的点按如下规律依序排列:(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),…按这个规律,则(6,7)是第个点.考点05函数解析式五、考点05函数解析式65.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1D.y=4x+166.(2024·广西·中考真题)激光测距仪L发出的激光束以的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.B.d=3脳105t C.D.67.(2022·辽宁大连·中考真题)汽车油箱中有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当时,y与x的函数解析式是()A.y=0.1x B.y=−0.1x+30C.y=300x D.y=−0.1x2+30x68.(2022·内蒙古呼和浩特·中考真题)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为.69.(2024·广东深圳·中考真题)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?70.(2023·吉林·中考真题)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q 分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC−CD向终点D匀速运动.连接PO并延长交边CD于点M,连接QO并延长交折线DA−AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(04x<<),四边形PQMN的面积为y cm)(2(1)BP的长为__________cm,CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时,直接写出x的值.考点06自变量和函数值六、考点06自变量和函数值71.(2024·上海·中考真题)函数f(x)=2−x x−3的定义域是()A.2x=B.C.x=3D.72.(2024·四川巴中·中考真题)函数y=x+2自变量的取值范围是()A.x>0B.2x>-C.D.73.(2023·浙江·中考真题)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t−5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.274.(2023·湖北黄石·中考真题)函数y=x的取值范围是()A.B.C.且D.75.(2023·江苏无锡·中考真题)函数y=1x−2中自变量x的取值范围是()A.x>2B.x≥2C.x≠2D.x<276.(2012·浙江衢州·中考真题)函数y=x−1的自变量x的取值范围在数轴上可表示为()A .B .C .D .77.(2024·湖北·中考真题)铁的密度约为7.9kg/cm 3,铁的质量m kg 与体积V cm 3成正比例.一个体积为10cm 3的铁块,它的质量为kg .78.(2024·四川内江·中考真题)在函数y =1x 中,自变量x 的取值范围是;79.(2024·黑龙江大兴安岭地·中考真题)在函数y =x 的取值范围是.80.(2023·黑龙江哈尔滨·中考真题)在函数y =2x−8中,自变量x 的取值范围是.81.(2023·宁夏·中考真题)如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:x /克024610y /毫米1014182230由表中数据的规律可知,当x =20克时,y =毫米.82.(2023·上海·中考真题)函数f x =1x−23的定义域为.83.(2023·云南·中考真题)函数110y x =-的自变量x 的取值范围是.84.(2022·上海·中考真题)已知f (x )=3x ,则f (1)=.85.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有V mL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为___________cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为___________cm(结果保留小数点后一位).86.(2023·辽宁阜新·中考真题)某中学数学兴趣小组的同学们,对函数y=a x−b+c(a,b,c是常数,)的性质进行了初步探究,部分过程如下,请你将其补充完整.(1)当a=1,b=c=0时,即y=x,当时,函数化简为y=x;当x<0时,函数化简为y=______.(2)当a=2,b=1,c=0时,即y=2x−1.①该函数自变量x和函数值y的若干组对应值如下表:…−21 01234……620246…其中m=______.②在图1所示的平面直角坐标系内画出函数y=2x−1的图象.(3)当a=−2,b=1,c=2时,即y=−2x−1+2.①当时,函数化简为y=______.②在图2所示的平面直角坐标系内画出函数y=−2x−1+2的图象.(4)请写出函数y=a x−b+c(a,b,c是常数,)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)87.(2023·湖南郴州·中考真题)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(),记录容器中加入的水的质量,得到下表:托盘B与点C的距离x/cm3025201510容器与水的总质量y1/g1012152030加入的水的质量y2/g5*******把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.(1)请在该平面直角坐标系中作出y2关于x的函数图象;(2)观察函数图象,并结合表中的数据:①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;②求y2关于x的函数表达式;③当时,y 1随x的增大而___________(填“增大”或“减小”),y2随x的增大而___________(填“增大”或“减小”),y2的图象可以由y1的图象向___________(以“上”或“下”或“左”或“右”)平移得到.(3)若在容器中加入的水的质量y 2(g)满足,求托盘B与点C的距离x(cm)的取值范围.88.(2022·广东深圳·中考真题)二次函数y=12x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.=122=12−32+60,03,1,124,1322,25,8−1,122,132−2,21,8(1)m 的值为;(2)在坐标系中画出平移后的图象并求出y =−12x 2+5与y =12x 2的交点坐标;(3)点()()1122,,,P x y Q x y 在新的函数图象上,且P,Q 两点均在对称轴的同一侧,若y1>y 2,则x 1x 2(填“>”或“<”或“=”)考点07函数图象七、考点07函数图象89.(2024·安徽·中考真题)如图,在中,,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.90.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A.B.C.D.91.(2024·甘肃·中考真题)如图1,动点P从菱形ABCD的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.5D.2292.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2A B.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多93.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.494.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%95.(2024·江西·中考真题)将常温中的温度计插入一杯的热水(恒温)中,温度计的读数与时间x min的关系用图象可近似表示为()A.B.C.D.96.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1cm/s 的速度匀速运动至点B,图②是点P运动时,的面积y cm2随时间x(s)变化的函数图象,则该三角形的斜边AB的长为()A.5B.7C.32D.2397.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=23cm,,现将菱形EFGH以1cm/s 的速度沿BC方向匀速运动,当点E运动到CD上时停止,在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S cm2与运动时间t s之间的函数关系图象大致是()A.B.C.D.98.(2023·四川攀枝花·中考真题)如图,正方形ABCD的边长为4,动点P从点B出发沿折线BCDA做匀速运动,设点P运动的路程为x,的面积为y,下列图象能表示y与x之间函数关系的是()。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。

本文将详细介绍平面直角坐标系的定义、性质及应用。

一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。

x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。

两条轴的交点称为原点,记作O。

平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。

二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。

2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。

3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。

三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。

1. 方程:通过坐标系可以解决一元和两元方程的问题。

对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。

2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。

在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。

3. 向量:向量是平面直角坐标系中的重要概念之一。

向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。

向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。

总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。

它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。

平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。

《平面直角坐标系》知识点整理

《平面直角坐标系》知识点整理

《平面直角坐标系》知识点整理一、平面直角坐标系平面直角坐标系:在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。

建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫象限、第二象限、第三象限、第四象限,如图所示.说明:两条坐标轴不属于任何一个象限。

点的坐标:对于平面直角坐标系内任意一点P,过点P分别向x轴和y轴作垂线,垂足在x轴,y轴对应的数a,b分别叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。

点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。

常见考法由点的位置确定点的坐标,由点的坐标确定点的位置;求某些特殊点的坐标。

误区提醒求点的坐标时,容易将横、纵坐标弄反,还容易忽略坐标符号;思考问题不周,容易出现漏解。

【典型例题】点p关于x轴的对称点p1的坐标是,点p 关于原点o的对称点P2的坐标是。

【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故本题应当填,。

一、目标与要求解有序数对的应用意义,了解平面上确定点的常用方法。

培养学生用数学的意识,激发学生的学习兴趣。

掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

发展学生的形象思维能力,和数形结合的意识。

坐标表示平移体现了平面直角坐标系在数学中的应用。

二、重点掌握坐标变化与图形平移的关系;有序数对及平面内确定点的方法。

三、难点利用坐标变化与图形平移的关系解决实际问题;利用有序数对表示平面内的点。

四、知识框架五、知识点、概念总结有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作其中a表示横轴,b表示纵轴。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是数学上常用的一种表示平面点位置的方法。

它由两条相互垂直的坐标轴组成,通常被称为x轴和y轴。

在平面直角坐标系中,每一个点可以由一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。

一、坐标轴和坐标平面平面直角坐标系以一个平面为基准面,通过在基准面上选择两条相互垂直的线段作为坐标轴,构成直角坐标系。

x轴和y轴分别与基准面的一个定点O相交于点O,被称为坐标原点。

二、坐标值在平面直角坐标系中,每一条坐标轴被划分为无限个等分,用来表示点在该轴上的位置。

任意一点的坐标值都是由该点在x轴和y轴上的投影决定的。

三、点的位置平面直角坐标系中的点可以分为四个象限:第一象限、第二象限、第三象限和第四象限。

第一象限位于x轴和y轴的正方向,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向,第四象限位于x轴的正方向和y轴的负方向。

四、距离和斜率在平面直角坐标系中,可以通过坐标值计算两点之间的距离和斜率。

两点之间的距离可以通过使用勾股定理计算,而斜率则可以通过斜率公式计算,斜率公式为:m = (y2 - y1) / (x2 - x1),其中m为斜率,(x1,y1)和(x2, y2)分别为两点坐标。

五、图形的表示在平面直角坐标系中,不同的图形可以通过将点的集合按照一定规则进行连接而得到。

例如,直线可以由两个点确定,抛物线可以由若干个点确定,圆可以由一个点和半径确定等。

总结:平面直角坐标系是表示平面点位置的常用方法,通过坐标轴和坐标值可以准确地表示点在平面上的位置。

在平面直角坐标系中,可以计算两点之间的距离和斜率,同时可以通过连接点来表示不同的图形。

平面直角坐标系是数学中一个重要的概念,被广泛应用于几何学、代数学等领域。

最新初中数学函数之平面直角坐标系分类汇编及解析(1)

最新初中数学函数之平面直角坐标系分类汇编及解析(1)

最新初中数学函数之平面直角坐标系分类汇编及解析(1)一、选择题1.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.点P(1﹣2x ,5x ﹣1)在第四象限,则x 的范围是( )A .15x <B .12x <C .1152x <<D .12x > 【答案】A【解析】【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【详解】解:∵点P (1﹣2x ,5x ﹣1)在第四象限,120510x x ->⎧∴⎨-<⎩, 解得:15x <, 故选:A .【点睛】本题考查了点的位置和解一元一次不等式组,能根据题意得出不等式组是解此题的关键.3.如果点P (3x+9,12x ﹣2)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )A .B .C .D .【答案】C 【解析】解:由点P(3x+9,1 2 x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.4.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.()2,23B.()2,2-C.()2,23-D.()1,3-【答案】C【解析】【分析】连接OF,设EF交y轴于G,那么∠GOF=30°;在Rt△GOF中,根据30°角的性质求出GF,根据勾股定理求出OG即可.【详解】解:连接OF,在Rt△OFG中,∠GOF=13603026⨯=oo,OF=4.∴GF=2,3∴F(-2,23).故选C.【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.5.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A.(3,1) B.(-1,1) C.(3,5) D.(-1,5)【答案】C【解析】解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1,∴点B的坐标为(3,1),∴点C的横坐标为:3,纵坐标为:1+4=5,∴点C的坐标为(3,5).故选C.点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.6.已知点A的坐标为(a+1,3﹣a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3,则a=±6D.若点A在第四象限,则a的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A.若点A在y轴上,则a+1=0,解得a=﹣1,故本选项错误;B.若点A在一三象限角平分线上,则a+1=3﹣a,解得a=1,故本选项正确;C.若点A到x轴的距离是3,则|3﹣a|=3,解得a=6或0,故本选项错误;D.若点A在第四象限,则a+1>0,且3﹣a<0,解得a>3,故a的值不可以为﹣2;故选:B.【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.7.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上B.直线y=x上C.双曲线y=1xD.抛物线y=x2上【答案】C【解析】【分析】【详解】解:A、若此点坐标是(0,0)时,在直线y=-x上,故本选项错误;B、若此点坐标是(0,0)时,在直线y=x上,故本选项错误;C、因为双曲线y=1x上的点必须符合xy=1,故x、y同号与已知矛盾,故本选项正确;D、若此点坐标是(0,0)时,在抛物线y=x2上,故本选项错误.故选C.【点睛】本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.8.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有()个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【详解】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D .【点睛】此题主要考查了关于x 轴、y 轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.9.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,其中,点A 在第二象限,点,B C 在x 轴、y 轴上.若正方形ABOC 的面积为36,则点A 的坐标是( )A .()6,6-B .()6,6-C .(6,6-D .6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.10.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.11.点P(a,b)在第四象限,则点P 到x 轴的距离是( )A .aB .bC .|a|D .|b|【答案】D【解析】∵点P (a ,b )在第四象限,∴b <0,∴点P 到x 轴的距离是|b|.故选D .12.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .438,2⎛⎫- ⎪ ⎪⎝⎭C .234,2⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴3∵MN 是AB 的垂直平分线,∴BE=12AB=2, ∴BP=43cos303BE ==︒ ∴34323.∴点P的坐标为23 4,2⎛⎫+⎪ ⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.13.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A.(2,0) B.(-1,-1) C.( -2,1) D.(-1, 1)【答案】D【解析】【分析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.15.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A′的坐标是( )A .(2,3)B .(6,1)C .(2,1)D .(3,3)【答案】A【解析】 【分析】 先写出点A 的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A 变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13, 则点A 的对应点A ′坐标是(2,3).故选A.【点睛】 本题考查的是坐标,熟练掌握坐标是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A 6B 13C 3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3, ∴OH =2,CH =3,∴OC 22OH CH +2223+13∴菱形OABC 的面积=OA·CH =313故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f (1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)【答案】C【解析】【分析】根据f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b),可得答案.【详解】由已知条件可得h(f(g(3,-4)))= h(f(-4,3))= h(4,3)=(-4,-3)故选:C【点睛】本题考查了点的坐标,利用f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b)是解题关键.18.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P(1﹣a,2a+6)在第四象限,∴10 260aa->⎧⎨+<⎩解得a<﹣3.故选A.【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .()23,2B .()4,2C .(4,23D .(2,23 【答案】C【解析】【分析】 由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到2223AD OA '-=于是得到结论.【详解】∵AD ′=AD=4, AO=12AB=2,∴OD′=∵C′D′=4,C′D′∥AB,∴C′(4,),故选C.【点睛】考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是指利用两个垂直的数轴(x轴和y轴)来确定平面上的点位置的一种坐标系统。

它是数学中常用的一种工具,用于描述平面上的几何图形和解决各种问题。

在平面直角坐标系中,点的位置由两个数值(x,y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

一、坐标轴平面直角坐标系由两条互相垂直的坐标轴组成,分别是x轴和y轴。

坐标轴的交点称为原点,记作O。

x轴向右延伸为正方向,向左延伸为负方向。

y轴向上延伸为正方向,向下延伸为负方向。

x轴和y轴的单位长度可以任意选择,常用的单位长度是1。

二、坐标表示在平面直角坐标系中,每个点的位置都可以用一个有序数对(x,y)表示。

x表示点在x轴上的位置,可以是正数、负数或零。

y表示点在y轴上的位置,也可以是正数、负数或零。

由于存在四个象限,具体的位置表示可能是不同的。

三、象限划分平面直角坐标系将平面划分为四个象限,如下所示:第一象限:x轴和y轴的正半轴构成,x和y均为正数。

第二象限:x轴的负半轴和y轴的正半轴构成,x为负数,y为正数。

第三象限:x轴和y轴的负半轴构成,x和y均为负数。

第四象限:x轴的正半轴和y轴的负半轴构成,x为正数,y为负数。

四、坐标变换在平面直角坐标系中,可以进行坐标变换来描述图形的移动、旋转和缩放等操作。

常见的坐标变换包括平移、旋转和缩放。

平移:平移是将图形沿着x轴或y轴方向进行移动。

平移图形的x坐标和y坐标分别加上相应的平移量。

旋转:旋转是将图形绕着原点或其他点旋转一定角度。

旋转图形可以利用旋转矩阵进行计算。

缩放:缩放是将图形在x轴和y轴方向上进行拉伸或压缩。

缩放图形可以将图形的每个点的x坐标和y坐标分别乘以缩放因子。

五、应用领域平面直角坐标系被广泛应用于各个学科和领域中。

在几何学中,平面直角坐标系被用于描述图形的性质和计算图形的面积、周长等。

在物理学中,平面直角坐标系用于描述物体的运动轨迹和力的作用方向等。

在经济学和社会科学中,平面直角坐标系被用于建立数学模型和分析数据等。

平面直角坐标系

平面直角坐标系

平面直角坐标系什么是平面直角坐标系平面直角坐标系是一个二维的坐标系,由两条相互垂直的坐标轴所组成。

通常用来描述平面内的几何现象,常见于数学、物理、工程等领域。

坐标轴平面直角坐标系由两条互相垂直的坐标轴构成,称为X轴和Y轴。

X轴是水平方向的,与纵向的Y轴垂直。

它们通过坐标原点O相交,坐标原点是坐标系中最靠近两条轴交叉点的点。

轴上的点表示轴向的数值,点的位置与它所表示的数值有直接的对应关系,因此点与数值可以互相转换。

坐标系中的点在平面直角坐标系中,每个点的位置可以用它在X轴和Y轴上的坐标表示。

设点P的坐标为(x,y),表示点P在X轴上的坐标为x,在Y轴上的坐标为y。

P点在坐标系上的位置就是以O点为起点,延水平方向向右移动x个单位,再延竖直方向向上移动y个单位到达的点。

坐标系上的距离坐标系中的两个点之间的距离可以用勾股定理计算。

设两个点的坐标分别为A(x1,y1)和B(x2,y2),则它们之间的距离为$d = \\sqrt{(x_2 - x_1)^2 + (y_2- y_1)^2}$。

因此,坐标系中任意两个点都可以通过它们的坐标计算出它们之间的距离。

坐标系中的几何形状平面直角坐标系中可以用一些基本的几何形状来描述平面内的几何现象,例如:点一个点可以表示为一个坐标值(x, y)。

直线一条直线可以用斜率和截距表示。

斜率表示直线在坐标系中的倾斜程度,截距表示直线与Y轴的交点位置。

圆一个圆可以表示为圆心坐标和半径大小。

圆心坐标表示圆心在坐标系中的位置,半径表示圆的大小。

矩形一个矩形可以表示为两个对角点的坐标值。

一个对角点表示矩形的左上角或右下角,另一个对角点表示矩形的右上角或左下角。

坐标系中的变换在平面直角坐标系中,可以进行一些坐标变换来描述几何形状的变化。

例如:平移平移是指将一个几何形状沿着水平和竖直方向上移动一定的距离。

对于一个点(x,y),进行平移变换时可以表示为(x + a, y + b),其中a和b表示在水平和竖直方向上移动的距离。

2013年中考数学试卷分类汇编-平面直角坐标系

2013年中考数学试卷分类汇编-平面直角坐标系

平面直角坐标系1、(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2、(2013•遂宁)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.解答:解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选C.点评:本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.3、(2013泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.4、(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4B.5C.6D.8考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:作出图形,利用数形结合求解即可.解答:解:如图,满足条件的点M的个数为6.故选C.点评:本题考查了等腰三角形的判定,利用数形结合求解更形象直观.5、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评: 本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.6、(2013•湘西州)如图,在平面直角坐标系中,将点A (﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( )A . (﹣2,﹣3)B . (﹣2,6)C . (1,3)D . (﹣2,1)考点:坐标与图形变化-平移. 分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可. 解答:解:根据题意,从点A 平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1, 故点A′的坐标是(1,3).故选C .点评:此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.7、(2013•孝感)在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO 缩小,则点E 的对应点E′的坐标是( )A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)考点: 位似变换;坐标与图形性质.专题: 作图题.分析: 根据题意画出相应的图形,找出点E 的对应点E′的坐标即可.解答: 解:根据题意得:则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D.点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.8、(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)考点:坐标与图形变化-旋转.3718684专题:数形结合.分析:如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.解答:解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.点评:本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.9、(2013安顺)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),故点在第四象限.故选D.点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、(2013年广东湛江)在平面直角坐标系中,点A ()2,3-在第( )象限..A 一 .B 二 .C 三 .D 四解析:在平面直角坐标系中,点的横纵坐标共同决定点所在的象限,点()()(),,,++-+--、、、 (),+-分别在第一、二、三、四象限,∴选D11、(2013年深圳市)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( )A.33B.-33C.-7D.7 答案:D解析:因为P 、Q 关于原点对称,所以,a =-13,b =20,a +b =7,选D 。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系,又称直角坐标系或笛卡尔坐标系,是在数学和物理学中常用的坐标系统之一。

它以两条相互垂直的数轴(通常是水平的 x 轴和垂直的 y 轴)作为基准,用来确定平面上的点的位置。

这个坐标系的引入,使得我们可以方便地表示、计算和研究平面上各个点的位置和关系。

一、坐标轴平面直角坐标系中的坐标轴通常是水平的 x 轴和垂直的 y 轴。

在坐标轴上,我们选取一个点作为原点(O),两条轴相交于原点,原点的位置被定义为坐标轴的交点。

二、坐标表示在平面直角坐标系中,每个点都可以用一个有序对 (x, y) 来表示。

其中,x 表示与 x 轴的水平距离,称为横坐标;y 表示与 y 轴的垂直距离,称为纵坐标。

三、象限划分平面直角坐标系将平面划分为四个象限,分别称为第一象限、第二象限、第三象限和第四象限。

在第一象限中,x 和 y 的值都为正;在第二象限中,x 的值为负,y 的值为正;在第三象限中,x 和 y 的值都为负;在第四象限中,x 的值为正,y 的值为负。

在坐标系中,我们可以通过坐标的正负值和象限来确定点所在的位置。

例如,点 (3, 4) 位于第一象限,点 (-2, 3)位于第二象限,点 (-5, -1) 位于第三象限,点 (4, -2) 位于第四象限。

四、距离和斜率在平面直角坐标系中,我们可以通过坐标来计算点之间的距离和直线的斜率。

1. 距离公式:设两点 A(x1, y1) 和 B(x2, y2),它们之间的距离可以使用勾股定理来计算:AB = √((x2-x1)^2 + (y2-y1)^2)2. 斜率公式:设直线上两点 A(x1, y1) 和 B(x2, y2),直线的斜率可以使用以下公式计算:k = (y2-y1) / (x2-x1)根据以上公式,我们可以根据给定的坐标计算点之间的距离,或确定直线的斜率,帮助我们解决各种几何和物理问题。

五、应用平面直角坐标系广泛应用于几何、物理、经济学等学科中。

平面直角坐标系与函数基础知识(解析版)--2024年中考数学真题分类汇编

平面直角坐标系与函数基础知识(解析版)--2024年中考数学真题分类汇编

平面直角坐标系与函数基础知识一、单选题1.(2024·江西·中考真题)将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数y℃与时间x min的关系用图象可近似表示为()A. B. C. D.【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C选项图象符合条件,故选:C.2.(2024·甘肃·中考真题)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为15,16,那么有序数对记为12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【分析】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据15,16可得,横从上面从右向左看,纵从右边自下而上看,故12,17对应的是半亩八十四步,故选D.3.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向(a≥0)或负方向(a<0).平移a 个单位长度,再沿着y轴正方向(b≥0)或负方向(b<0)平移b 个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作-2,1.②加法运算法则:a,b,其中a,b,c,d为实数.+c,d=a+c,b+d若3,5,则下列结论正确的是()+m,n=-1,2A.m=2,n=7B.m=-4,n=-3C.m=4,n=3D.m=-4,n=3【答案】B【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出3+m=-1,5+n=2,即可求解.【详解】解:∵a,b=-1,2+m,n,3,5+c,d=a+c,b+d∴3+m=-1,5+n=2解得:m=-4,n=-3故选:B.4.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q的坐标为()A.3,0D.1,2C.3,2B.0,2【答案】C【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P的坐标可得出横、纵轴上一格代表一个单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P的坐标为2,1,∴点Q的坐标为3,2,故选:C.5.(2024·四川广元·中考真题)如果单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出m,n的值,再确定点m,n的位置即可【详解】解:∵单项式-x2m y3与单项式2x4y2-n的和仍是一个单项式,∴单项式-x2m y3与单项式2x4y2-n是同类项,∴2m=4,2-n=3,解得,m=2,n=-1,∴点m,n在第四象限,故选:D6.(2024·四川广安·中考真题)向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y(单位:帕),时间为x(单位:秒),则y关于x的函数图象大致为()A. B.C. D.【答案】B【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h随时间x变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h随时间x的增大而增长缓慢,用时较长,即压强y随时间x的增大而增长缓慢,用时较长,最上面容器最小,则压强y随时间x的增大而增长变快,用时最短.故选:B.7.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.y =3xB.y =4xC.y =3x +1D.y =4x +1【答案】B 【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴y =x +x +2x =4x ,故选:B .8.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是O 0,0 ,A 1,2 ,B 3,3 ,C 5,0 ,则四边形OABC 的面积为()A.14B.11C.10D.9【答案】D 【分析】本题考查了坐标与图形,过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,根据A 、B 、C 的坐标可求出OM ,AM ,MN ,BN ,CN ,然后根据S 四边形OABC =S △AOM +S 梯形AMNB +S △BCN 求解即可.【详解】解∶过A 作AM ⊥OC 于M ,过B 作BN ⊥OC 于N ,∵O0,0,A1,2,B3,3,C5,0,∴OM=1,AM=2,ON=BN=3,CO=5,∴MN=ON-OM=2,CN=OC-ON=2,∴四边形OABC的面积为S△AOM+S梯形AMNB+S△BCN=12×1×2+12×2+3×2+12×3×2=9,故选:D.9.(2024·广西·中考真题)激光测距仪L发出的激光束以3×105km s的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.d=3×1052t B.d=3×105t C.d=2×3×105t D.d=3×106t 【答案】A【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:d=12×3×105⋅t=3×1052t,故选:A.10.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A. B.C. D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.11.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%【答案】D【分析】本题考查从图像上获取信息,能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可【详解】A、从图像上可以看到,加入絮凝剂的体积在0.5mL达到最大净水率,之后净水率开始降低,不符合题意,选项错误;B、未加入絮凝剂时,净水率为12.48%,故不符合题意,选项错误;C、当絮凝剂的体积为0.3mL时,净水率增加量为84.60%-76.54%=8.06%,絮凝剂的体积为0.4mL时,净水率增加量为86.02%-84.60%=1.42%;故絮凝剂的体积每增加0.1mL,净水率的增加量不相等,不符合题意,选项错误;D 、根据图像可得,加入絮凝剂的体积是0.2mL 时,净水率达到76.54%,符合题意,选项正确;故选:D12.(2024·湖南·中考真题)在平面直角坐标系xOy 中,对于点P x ,y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当y x(其中xy ≠0)的值为整数时,称“整点”P 为“超整点”,已知点P 2a -4,a +3 在第二象限,下列说法正确的是()A.a <-3B.若点P 为“整点”,则点P 的个数为3个C.若点P 为“超整点”,则点P 的个数为1个D.若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10【答案】C【分析】本题考查了新定义,点到坐标轴的距离,各象限内点的特征等知识,利用各象限内点的特征求出a 的取值范围,即可判断选项A ,利用“整点”定义即可判断选项B ,利用“超整点”定义即可判断选项C ,利用“超整点”和点到坐标轴的距离即可判断选项D .【详解】解:∵点P 2a -4,a +3 在第二象限,∴2a -4<0a +3>0 ,∴-3<a <2,故选项A 错误;∵点P 2a -4,a +3 为“整点”,-3<a <2,∴整数a 为-2,-1,0,1,∴点P 的个数为4个,故选项B 错误;∴“整点”P 为-8,1 ,-6,2 ,-4,3 ,-2,4 ,∵1-8=-18,2-6=-13,3-4=-34,4-2=-2∴“超整点”P 为-2,4 ,故选项C 正确;∵点P 2a -4,a +3 为“超整点”,∴点P 坐标为-2,4 ,∴点P 到两坐标轴的距离之和2+4=6,故选项D 错误,故选:C .13.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y =x 3-3x 2+3x -1的图象,发现它关于点1,0 中心对称.若点A 10.1,y 1 ,A 20.2,y 2 ,A 30.3,y 3 ,⋯⋯,A 191.9,y 19 ,A 202,y 20 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则y 1+y 2+y 3+⋯⋯+y 19+y 20的值是()A.-1B.-0.729C.0D.1【答案】D【分析】本题是坐标规律题,求函数值,中心对称的性质,根据题意得出y1+y2+y3+⋯y9+y11⋯+y19= 0,进而转化为求y10+y20,根据题意可得y10=0,y20=1,即可求解.【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1,∴0.1+1.92=0.2+1.82=⋅⋅⋅0.9+1.12=1,∴y1+y2+y3+⋯y9+y11⋯+y19=0,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20,而A101,0即y10=0,∵y=x3-3x2+3x-1,当x=0时,y=-1,即0,-1,∵0,-1关于点1,0中心对称的点为2,1,即当x=2时,y20=1,∴y1+y2+y3+⋯⋯+y19+y20=y10+y20=0+1=1,故选:D.14.(2024·山东威海·中考真题)同一条公路连接A,B,C三地,B地在A,C两地之间.甲、乙两车分别从A地、B地同时出发前往C地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y(km)与时间x(h)的函数关系.下列结论正确的是()A.甲车行驶83h与乙车相遇 B.A,C两地相距220kmC.甲车的速度是70km/hD.乙车中途休息36分钟【答案】A【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得AB 两地之间的距离为40-20=20(km )两车行驶了4小时,同时到达C 地,如图所示,在1-2小时时,两车同向运动,在第2小时,即点D 时,两车距离发生改变,此时乙车休息,E 点的意义是两车相遇,F 点意义是乙车休息后再出发,∴乙车休息了1小时,故D 不正确,设甲车的速度为akm /h ,乙车的速度为bkm /h ,根据题意,乙车休息后两车同时到达C 地,则甲车的速度比乙车的速度慢,a <b∵2b +20-2a =40即b -a =10在DE -EF 时,乙车不动,则甲车的速度是40+201=60km/h ,∴乙车速度为60+10=70km/h ,故C 不正确,∴AC 的距离为4×60=240千米,故B 不正确,设x 小时两辆车相遇,依题意得,60x =2×70+20解得:x =83即83小时时,两车相遇,故A 正确故选:A .15.(2024·四川凉山·中考真题)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A. B.C. D.【答案】C【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.【详解】解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度h上升的很快,然后很慢,最后又上升的更快点,故选:C.16.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2AB.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多【答案】C【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当P=440W时,I=2A,故选项A正确,但不符合题意;根据图2知:Q随I的增大而增大,故选项B正确,但不符合题意;根据图2知:Q随I的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C错误,符合题意;根据图1知:I随P的增大而增大,又Q随I的增大而增大,则P越大,插线板电源线产生的热量Q越多,故选项D正确,但不符合题意;故选:C.17.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.4【答案】C【分析】本题考查利用函数图像解决实际问题,正确的读懂图像给出的信息是解题的关键.利用图象信息解决问题即可.【详解】解:由图象可知:体育场离该同学家2.5千米,故(1)正确;该同学在体育场锻炼了30-15=15(分钟),故(2)正确;该同学的跑步速度为2.5÷15=16(千米/分钟),步行速度为2.5÷65-30=14(千米/分钟),则跑步速度是步行速度的16÷114=73倍,故(3)错误;若该同学骑行的平均速度是跑步平均速度的1.5倍,则该同学骑行的平均速度为1.5×16=14(千米/分钟),所以a=14×103-88=3.75,故(4)正确,故选:C.18.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=-34x+4上,坐标x,y是二元一次方程5x-6y=33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】本题考查了一次函数图象上点的特征,解二元一次方程组等知识,联立方程组y=-34x+45x-6y=33 ,求出点P的坐标即可判断.【详解】解∶联立方程组y=-34x+4 5x-6y=33 ,解得x =6y =-12,∴P 的坐标为6,-12,∴点P 在第四象限,故选∶D .19.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1 按上述规则连续平移3次后,到达点P 32,2 ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则点Q 的坐标为()A.6,1 或7,1B.15,-7 或8,0C.6,0 或8,0D.5,1 或7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照Q 16的反向运动理解去分类讨论:①Q 16先向右1个单位,不符合题意;②Q 16先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 .【详解】解:由点P 32,2 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到P 42,3 ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到P 41,3 ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位⋯⋯,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点Q 16-1,9 ,则按照“和点”Q 16反向运动16次求点Q 坐标理解,可以分为两种情况:①Q 16先向右1个单位得到Q 150,9 ,此时横、纵坐标之和除以3所得的余数为0,应该是Q 15向右平移1个单位得到Q 16,故矛盾,不成立;②Q 16先向下1个单位得到Q 15-1,8 ,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到Q 16,故符合题意,那么点Q 16先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为-1+7,9-8 ,即6,1 ,那么最后一次若向右平移则为7,1 ,若向左平移则为5,1 ,故选:D .二、填空题20.(2024·湖北·中考真题)铁的密度约为7.9 kg/cm3,铁的质量m kg成正比例.与体积V cm3一个体积为10 cm3的铁块,它的质量为kg.【答案】79【分析】本题考查了正比例函数的应用.根据铁的质量m kg成正比例,列式计算与体积V cm3即可求解.【详解】解:∵铁的质量m kg成正比例,与体积V cm3∴m关于V的函数解析式为m=7.9V,当V=10时,m=7.9×10=79kg,故答案为:79.21.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3,经过第2次运算得到点10,5,以经过第1次运算得到点3,10此类推.则点1,4经过2024次运算后得到点.【答案】2,1【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点1,4,经过1次运算后得到点为1×3+1,4÷2,即为4,2经过2次运算后得到点为4÷2,2÷1,,即为2,1经过3次运算后得到点为2÷2,1×3+1,,即为1,4⋯⋯,发现规律:点1,4,经过3次运算后还是1,4∵2024÷3=674⋯2,∴点1,4,经过2024次运算后得到点2,1故答案为:2,1.三、解答题22.(2024·浙江·中考真题)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A档4000米小丽16:10~16:50第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米(1)求A,B,C各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.【答案】(1)80米/分,120米/分,160米/分(2)5分(3)42.5【分析】此题考查函数图象获取信息,一元一次方程的应用,读懂图象中的数据是解本题的关键.(1)由小明的跑步里程及时间可得A档速度,再根据C档比B档快40米/分、B档比A档快40米/分可得B,C档速度;(2)结合图象求出小丽每段跑步所用时间,再根据总时间即可求解;(3)由题意可得,此时小丽在跑第三段,所跑时间为a-10-15-10-5=a-40(分),可得方程80a=3000+160a-40,求解即可.【详解】(1)解:由题意可知,A档速度为4000÷50=80米/分,则B档速度为80+40=120米/分,C档速度为120+40=160米/分;(2)小丽第一段跑步时间为1800÷120=15分,小丽第二段跑步时间为3000-1800÷120=10分,小丽第三段跑步时间为4600-3000÷160=10分,则小丽两次休息时间的总和=50-10-15-10-10=5分;(3)由题意可得:小丽第二次休息后,在a分钟时两人跑步累计里程相等,此时小丽在跑第三段,所跑时间为:a-10-15-10-5=a-40(分)可得:80a=3000+160a-40,解得:a=42.5.23.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有VmL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为cm(结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为cm(结果保留小数点后一位).【答案】(1)1.0(2)见详解(3)1.2,8.5【分析】本题考查了函数的图像与性质,描点法画函数图像,求一次函数解析式,已知函数值求自变量,正确理解题意,熟练掌握知识点是解题的关键.(1)设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,则可求V=40h1,代入V= 40即可求解;(2)画h2与V之间的关系图象时,描点,连线即可,画h1与V的关系图像时,由于V=40h1是正比例函数,故只需描出两点即可;(3)①当V=320ml时,h1=320=8cm,由图象可知高度差CD≈1.2cm;②在V=320ml左右两侧找40到等距的体积所对应的高度相同,大致为8.5cm.【详解】(1)解:由题意得,设V与h1的函数关系式为:V=kh1k≠0,由表格数据得:100=2.5k,解得:k=40,∴V=40h1,∴当V=40时,40h1=40,∴h1=1.0cm;(2)解:如图所示,即为所画图像,=8cm,由图象可知高度差CD≈1.2cm,(3)解:①当V=320ml时,h1=32040故答案为:1.2;②由图象可知当两个水杯的水面高度相同时,估算高度约为8.5cm,故答案为:8.5.。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是一种常用的坐标系统,用于描述平面上的几何图形和点的位置关系。

它由两个互相垂直的坐标轴组成,分别称为X轴和Y轴。

每个点在这个坐标系中都可以由一个有序对 (x, y) 表示,其中 x 表示点在X轴上的位置,y表示点在Y轴上的位置。

在平面直角坐标系中,点的位置可以通过坐标进行准确描述。

X轴和Y轴的交点被称为坐标原点,用符号 O 表示。

X轴向右延伸的方向为正方向,Y轴向上延伸的方向为正方向。

根据这个规定,可以得出以下性质:1. 同一平面上的两点可以通过直线连接。

一条直线可以由平面上的两个点确定。

2. X轴和Y轴上的点的坐标有特殊含义。

当某点的Y坐标为0时,说明该点在X轴上;当某点的X坐标为0时,说明该点在Y轴上。

3. 平面上的点可以分为四个象限。

第一象限包含所有X坐标和Y坐标都为正数的点;第二象限包含所有X坐标为负数、Y坐标为正数的点;第三象限包含所有X坐标和Y坐标都为负数的点;第四象限包含所有X坐标为正数、Y坐标为负数的点。

4. 两个点的距离可以通过坐标计算得出。

设两点分别为A(x1, y1) 和 B(x2, y2),则点 A 到点 B 的距离为 d =√((x2 - x1)^2 + (y2-y1)^2)。

平面直角坐标系在几何学和代数学中有广泛的应用。

通过坐标表示,我们可以方便地计算两点之间的距离、两条线段的交点、图形的面积等。

它简化了几何图形的描述和计算,使得解决几何问题更加直观和高效。

在平面直角坐标系中,我们也可以进行坐标变换和平移。

通过改变坐标轴的位置和方向,我们可以将一个图形在平面上进行平移、旋转和缩放。

这种灵活性使得平面直角坐标系成为数学和工程学科中不可或缺的工具。

总之,平面直角坐标系是一种简单有效的坐标系统,用于描述平面上点的位置关系和几何图形的性质。

通过坐标的运算和计算,我们可以方便地解决各种几何和代数问题。

这种坐标系统在数学、物理、工程等领域中被广泛使用,并为解决实际问题提供了有力的工具。

(完整版)平面直角坐标系知识点归纳

(完整版)平面直角坐标系知识点归纳

平面直角坐标系知识点归纳1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0坐标轴上的点不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;5、 在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为(3) 点P 到原点O 的距离为PO = 22b a6、 平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;XX7、 对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P (n m ,)在第一、三象限的角平分线上,则n m=,即横、纵坐标相等; b) 若点P (n m ,)在第二、四象限的角平分线上,则nm -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 基本练习:练习1:在平面直角坐标系中,已知点P (2,5-+m m )在x 轴上,则P 点坐标为 练习2:在平面直角坐标系中,点P (4,22-+m )一定在 象限;练习3:已知点P ()9,12--a a 在x 轴的负半轴上,则P 点坐标为 ;练习4:已知x 轴上一点A (3,0),y 轴上一点B (0,b ),且AB=5,则b 的值为 ; 练习5:点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P 的坐标为 ;关于原点的对称点Q 的坐标为 。

平面直角坐标系知识点

平面直角坐标系知识点

平面直角坐标系知识点平面直角坐标系是解析几何中非常重要的一个概念,它是二维空间中经常用到的坐标系之一。

它的出现使得在平面上的点可以用有序的数字对来表示,从而方便进行计算和表示几何图形。

下面我们将详细介绍平面直角坐标系的定义、性质和应用。

一、平面直角坐标系的定义平面直角坐标系是由两个互相垂直的坐标轴构成的。

通常情况下,我们把水平的坐标轴称为x轴,竖直的坐标轴称为y轴。

这两个轴的交点称为坐标原点O。

每个点P都可以由与x轴的距离和与y轴的距离分别表示,记作P(x, y),其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

二、平面直角坐标系的性质1. 坐标轴的正向和负向:平面直角坐标系中,x轴从左向右延伸,正方向为右方,负方向为左方;y轴从下向上延伸,正方向为上方,负方向为下方。

2. 坐标轴的单调性:在平面直角坐标系中,随着x坐标的增大,点的位置会向右移动;随着y坐标的增大,点的位置会向上移动。

3. 坐标轴的交点:坐标原点O是各个坐标轴的交点,它的坐标为O(0,0)。

4. 坐标轴的单位长度:在实际应用中,我们通常将单位长度在x轴和y轴上分别表示为Δx和Δy。

两个单位长度的比值称为坐标轴的比例尺。

5. 相关性:平面直角坐标系中,两个点P(x1,y1)和Q(x2,y2)之间的距离d可以用勾股定理表示:d = √[(x2-x1)² + (y2-y1)²]。

6. 坐标轴的划分:我们可以将x轴和y轴分别划分为若干个等分点,以方便表示坐标。

三、平面直角坐标系的应用平面直角坐标系广泛应用于解析几何、物理学、工程学等领域,具有重要的实际应用意义。

1. 几何图形的表示:平面直角坐标系可以方便地表示各种几何图形,如点、线段、直线、圆等。

通过坐标系可以计算图形的属性,如长度、角度、面积等。

2. 位置关系的描述:通过平面直角坐标系,我们可以方便地描述点与点、点与线、线与线之间的位置关系。

例如,通过坐标系可以判断两个点是否重合、两条线是否相交等。

平面直角坐标系知识点总结

平面直角坐标系知识点总结

平面直角坐标系知识点总结平面直角坐标系是数学中一个重要的概念,它在几何图形的分析与研究中起到了关键作用。

在本文中,我们将对平面直角坐标系的概念、性质以及常见的应用进行总结。

通过阅读本文,读者将更好地理解和应用平面直角坐标系。

1. 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的数轴(x轴和y轴)所确定的坐标系统。

其中,x轴被称为横轴,y轴被称为纵轴。

x轴和y轴的交点称为坐标原点O,它是平面直角坐标系的起点。

通过在每个轴上引入单位长度,我们可以对平面上的点进行精确的描述。

2. 平面直角坐标系的性质- 平面直角坐标系中的任意一点都可以通过一对有序实数(x, y)来表示,这对实数分别表示点在x轴和y轴上的投影长度,称为该点的坐标。

- 坐标原点O的坐标为(0, 0)。

横轴上的点的坐标形式为(x, 0),纵轴上的点的坐标形式为(0, y)。

- 平面上两点的距离可以通过坐标计算公式来确定。

对于两个点A(x₁, y₁)和B(x₂, y₂),它们之间的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。

- 平面上两条线段垂直的条件是它们的斜率互为相反数。

3. 平面直角坐标系的应用- 几何图形的位置表示:通过平面直角坐标系,我们可以精确地确定几何图形在平面上的位置。

通过计算坐标,我们可以判断图形的相对位置、大小和形状。

- 直线方程的表示:平面直角坐标系能够方便地将直线的方程表示出来。

一般地,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y轴的截距。

- 坐标变换:平面直角坐标系中,我们可以对坐标进行平移、旋转、缩放等变换操作。

这些操作对于解决几何问题和数学推导具有重要意义。

总结:通过本文的介绍,我们对平面直角坐标系的定义、性质以及应用有了更深入的了解。

平面直角坐标系不仅仅是一个几何概念,它在数学和实际问题的求解中具有广泛的应用。

希望读者通过阅读本文,能够更好地理解和运用平面直角坐标系,为进一步的数学学习和问题解决提供帮助。

平面直角坐标系

平面直角坐标系

平面直角坐标系在数学中,平面直角坐标系是一种常用的坐标系,用于描述平面上的点的位置。

它由两条垂直于彼此的直线所构成,其中一条被称为x 轴,另一条被称为y轴。

本文将介绍平面直角坐标系的概念、性质以及在数学和几何中的应用。

一、平面直角坐标系的定义平面直角坐标系由两条垂直于彼此的直线组成,其中x轴和y轴相交于一个点,被称为坐标原点O。

x轴和y轴将平面分成四个象限,分别为第一象限、第二象限、第三象限和第四象限。

平面直角坐标系中的每个点都可以用一对有序实数(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

这种表示方式被称为点的坐标。

二、平面直角坐标系的性质1. 对称性:平面直角坐标系关于坐标原点O对称,即如果点P(x, y)在坐标系中,则点P'(-x, -y)也在坐标系中。

2. 距离:平面直角坐标系中,两点P1(x1, y1)和P2(x2, y2)之间的距离可以通过勾股定理计算:d = √[(x2 - x1)² + (y2 - y1)²]3. 倾斜角:平面直角坐标系中,直线与坐标轴之间的夹角被称为倾斜角。

对于x轴,倾斜角为0°或180°;对于y轴,倾斜角为90°或270°。

4. 坐标轴:x轴和y轴分别垂直于彼此,且不相交。

三、平面直角坐标系的应用1. 图形绘制:平面直角坐标系可以用于绘制平面上的各种几何图形,如点、线段、直线、多边形等。

通过给定坐标,可以准确地确定图形的位置和大小。

2. 函数图像:平面直角坐标系常用于绘制函数图像。

函数图像是由平面上满足某一特定函数关系的点组成的曲线或线段。

通过在坐标系中绘制函数的图像,可以直观地了解函数的性质和变化规律。

3. 解析几何:平面直角坐标系在解析几何中具有重要的应用。

通过使用坐标系,可以进行直线的方程、圆的方程、角的度量等相关计算。

4. 数据分析:平面直角坐标系也被广泛应用于数据分析和可视化。

最新初中数学函数之平面直角坐标系分类汇编附解析(1)

最新初中数学函数之平面直角坐标系分类汇编附解析(1)

最新初中数学函数之平面直角坐标系分类汇编附解析(1)一、选择题1.在平面直角坐标系中,已知Rt ABC ∆中的直角顶点C 落在第一象限,()0,0A ,()10,0B ,且6BC =,则C 点的坐标是( )A .()6.4,4.8B .()8,6C .()8,4.8D .()3.6,4.8【答案】A【解析】【分析】作CD ⊥OB 交OB 于D ,由勾股定理求出AC 的长,根据面积法求出CD 的长,再根据勾股定理求出OD 的长,即可求出点C 的坐标.【详解】作CD ⊥OB 交OB 于D ,∵()10,0B ,∴OB=10,∵∠C=90°,∴AC=221068-=, ∵1122OC BC OB CD ⋅=⋅, ∴8×6=10CD ,∴CD=4.8, ∴OD= 228 4.8 6.4-=,∴C 点的坐标是 ()6.4,4.8.故选A.【点睛】本题考查了图形与坐标的性质,勾股定理,以及面积法求线段的长,根据面积法求出CD 的长是解答本题的关键.2.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,∴点P的纵坐标是2或2-,横坐标是3,∴点P的坐标是(3,2)或(3,2-),故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键. 3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.在平面直角坐标系内,若点P(3﹣m,m﹣1)在第二象限,那么m的取值范围是()A .m >1B .m >3C .m <1D .1<m <3【答案】B【解析】【分析】 由第二象限点的横坐标为负数、纵坐标为正数得出关于m 的不等式组,解之可得答案.【详解】∵点P (3﹣m ,m ﹣1)在第二象限,∴3-010m m ⎧⎨-⎩<①>②, 解不等式①,得:m >3,解不等式②,得:m >1,则m >3,故选:B .【点睛】本题主要考查象限内点的坐标符号特点及解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .(2,23B .()2,2-C .(2,23-D .(3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.6.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围( ) A .m <3B .m >−1C .−1<m <3D .m ≥0【答案】C【解析】【分析】根据点P (m -3,m +1)在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解不等式组即可得m 的取值范围.【详解】解:∵点P (m -3,m +1)在第二象限, ∴可得到:3010m m -<⎧⎨+>⎩, 解得:13m -<<,∴m 的取值范围为13m -<<,故选:C .【点睛】本题考查了坐标在象限内的符号,以及不等式组的解法,属于基础题.7.已知点() ,3A a 、点()3, B b -关于y 轴对称,点(),P a b --在第( )象限 A .一B .二C .三D .四【答案】C【解析】【分析】根据点A 、点B 关于y 轴对称,求出a ,b 的值,然后根据象限点的符号特点即可解答.【详解】∵点() ,3A a 、点()3, B b -关于y 轴对称,∴a=3,b=3,∴点P 的坐标为()3, 3 --,∴点P 在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.8.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .()2019,3C .()2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(41,3),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯=12345(1(2,0),(3,(4,0),,P P P P P ∴L1244(41n n P n P ++∴+4+34+4(42,0),(43,(44,0)n n n P n P n +++201945043=⨯+Q∴2019秒时,点P 的坐标为(2019,故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.9.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案. 详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.10.下列说法中,正确的是( )A .点P (3,2)到x 轴距离是3B .在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C .若y =0,则点M (x ,y )在y 轴上D .在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A 、点P (3,2)到x 轴距离是2,此选项错误;B 、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C 、若y =0,则点M (x ,y )在x 轴上,此选项错误;D 、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确; 故选D .【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)【答案】C【解析】【分析】 先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C .12.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .4382⎛⎫ ⎪ ⎪⎝⎭C .2342⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴3∵MN 是AB 的垂直平分线,∴BE=12AB=2, ∴BP=43cos303BE ==︒ ∴34323. ∴点P 的坐标为23423⎛⎫+ ⎪ ⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A′的坐标是( )A .(2,3)B .(6,1)C .(2,1)D .(3,3)【答案】A【解析】 【分析】 先写出点A 的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.16.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【答案】C【解析】【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴是解题关键.17.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.18.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<,解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.如图,点P 在第二象限,OP 与x 轴负半轴的夹角是α,且35,cos 5OP α==,则P 点的坐标为()A .()3,4B .()3,4-C .()4,3-D .()3,5-【答案】B【解析】【分析】 过点P 作PA ⊥x 轴于A ,利用35,cos 5OP α==求出OA ,再根据勾股定理求出PA 即可得到点P 的坐标.【详解】过点P 作PA ⊥x 轴于A , ∵35,cos 5OP α==, ∴3cos 535OA OP α=⋅=⨯=, ∴22PA OP OA =-=4,∵点P 在第二象限,∴点P 的坐标是(-3,4)故选:B.【点睛】此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐标的符号特点.。

2022年一模分类汇编—新定义解析版

2022年一模分类汇编—新定义解析版

2022年一模分类汇编——新定义1.我们规定:在平面直角坐标系xOy 中,如果点P 到原点O 的距离为a ,点M 到点P 的距离是a 的整数倍,那么点M 就是点P 的k 倍关联点.(1)当点1P 的坐标为()1.5,0-时,①如果点1P 的2倍关联点M 在x 轴上,那么点M 的坐标是 ;①如果点(),M x y 是点1P 的k 倍关联点,且满足 1.5x =-,35y -≤≤.那么k 的最大值为________;(2)如果点2P 的坐标为(1,0),且在函数y x b =-+的图象上存在2P 的2倍关联点,求b 的取值范围.【答案】(1)①(1.5,0)或(﹣4.5 ,0),① 3(2)1-b ≤1+【解析】【分析】(1)①根据点1P 的坐标为()1.5,0-,点1P 的2倍关联点M 在x 轴上,利用关联点的定义即可求解;①根据点(),M x y 是点1P 的k 倍关联点,且满足 1.5x =-,35y -≤≤,列出不等式,即可求解; (2)根据当直线y x b =-+与①2P 相切时,即直线1y x b =-+和2y x b =-+,b 分别取最大值b 1和最小值b 2,分两种情况解答即可.(1)解:①①点1P 的坐标为()1.5,0-,① 点1P 到原点的距离为1.5,① a =1.5,①点1P 的2倍关联点M 在x 轴上①2a =3①点M 的横坐标为-1.5+3=1.5或﹣1.5-3=﹣4.5①点M 的坐标是(1.5,0)或(﹣4.5 ,0)故答案为:(1.5,0)或(﹣4.5 ,0)①①点(),M x y 是点1P 的k 倍关联点,且满足 1.5x =-,35y -≤≤①a =1.5①点M 的坐标是(-1.5,1.5k )当30y -≤≤时,即0 1.53k ≤-≤,解得02k ≤≤,当05y ≤≤时,即0 1.55k ≤≤,解得1003k ≤≤, ① k 的取值范围为1003k ≤≤, ① k 是整数,①k 的最大值是3故答案为:3(2)解:①点2P 的坐标为(1,0)①a =1,①2P 的2倍关联点在以点2P (1,0)为圆心,半径为2 的圆上①在函数y x b =-+的图象上存在2P 的2倍关联点,①当直线y x b =-+与①2P 相切时,即直线1y x b =-+和2y x b =-+,b 分别取最大值b 1和最小值b 2,如图所示,在Rt ①2P AB 中,①2P AB =90°,①AB 2P =45°,A 2P =2①sin①AB 2P =22AP P B①22sin 45AP P B ==︒①点B 的坐标是(1+0)代入1y x b =-+得﹣(1+b 1=0解得b 1=1+①直线AB为1y x =-++在Rt ①2P CD 中,①2P DC =90°,①DC 2P =45°,D 2P =2①sin①DC 2P =22DP P C①22sin 45DP P C ==︒①点C 的坐标是(1-0)代入2y x b =-+得﹣(1-b 2=0解得b 2=1-①直线CD为1y x =-+-①1-b ≤1+【点睛】本题主要考查了坐标系中的点之间的距离,一次函数的图像和性质,圆的切线、解直角三角形等知识,数形结合是解决此题的关键.2.在平面直角坐标系xOy 中,给出如下定义:点P 为图形G 上任意―点,将点P 到原点O 的最大距离与最小距离之差定义为图形G 的“全距”.特别地,点P 到原点O 的最大距离与最小距离相等时,规定图形G 的“全距”为0.(1)如图,点()A ,)B . ①原点O 到线段AB 上一点的最大距离为______,最小距离为______;①当点C 的坐标为()0,m 时,且ABC 的“全距”为1,求m 的取值范围;(2)已知OM =2,等边△DEF 的三个顶点均在半径为1的M 上.请直接写出△DEF 的“全距”d 的取值范围.【答案】(1)①2,1;①-1≤ m ≤ 2且m ≠ 1(2)13d ≤≤【解析】【分析】(1)①根据新定义,可得原点O 到线段AB 上一点的最大距离为原点O 到点A 或点B 的距离,由两点间公式求得即可,最小的距离是原点O 到线段AB 中点(0,1)的距离;①当点C 的坐标为()0,m 时,且ABC 的“全距”为1时,有两种情况讨论如下:当点C 在线段AB 上方时,当点C 在线段AB 下方时,分别表示出“全距”,求解即可;(2)由题意得,原点O 到等边△DEF 上一点的最大距离为原点O 到M 与线段OM 延长线的交点的距离,原点O 到等边△DEF 上一点的最小距离为原点O 到M 与线段OM 的交点的距离,求解即可.(1)① 点()A ,)B原点O 到线段AB 上一点的最大距离为原点O 到点A 或点B 的距离2d ∴最小的距离是原点O 到线段AB 中点(0,1)的距离,1d ∴=故答案为:2,1;①当点C 的坐标为()0,m 时,且ABC 的“全距”为1∴ 有两种情况讨论如下:当点C 在线段AB 上方时三角形上一点到原点的最大距离为点C 到原点的距离d m ∴=三角形上一点到原点的最小距离为线段AB 中点(0,1 )到原点的距离1d ∴=此时若“全距”为1,即m - 1 = 1则m = 2当点C 在线段AB 下方时,三角形上一点到原点的最大距离为线段A B 上点A 或点B 到原点O 的距离2d ∴三角形上一点到原点的最小距离为点C 到原点的距离d m ∴=此时若“全距”为1,即2-|m |= 1解得m =±1假设m = 1,则A ,B ,C 三点不构成三角形,故m =-1综上所述,m 的取值范围是一1≤ m ≤ 2且m ≠ 1(2)OM =2,等边△DEF 的三个顶点均在半径为1的M 上∴ 等边△DEF 的三个顶点与M 的交点不存在O 、M 、D (或E 或F )三点共线的情况∴原点O 到等边△DEF 上一点的最大距离为原点O 到M 与线段OM 延长线的交点的距离即123d =+=∴原点O 到等边△DEF 上一点的最小距离为原点O 到M 与线段OM 的交点的距离即211d =-=综上,“全距”d 的取值范围为13d ≤≤ .【点睛】本题是新定义类题目,涉及两点间距离公式、点与线段的位置关系、点与圆的位置关系,准确理解新定义是解题的关键.3.在平面直角坐标系xOy 中,①O 的半径为r ,对于平面上任一点P ,我们定义:若在①O 上存在一点A ,使得点P 关于点A 的对称点点B 在①O 内,我们就称点P 为①O 的友好点.(1)如图1,若r 为1.①已知点P 1(0,0),P 2(﹣1,1),P 3(2,0)中,是①O 的友好点的是 ;①若点P (t ,0)为①O 的友好点,求t 的取值范围;(2)已知M (0,3),N (3,0),线段MN 上所有的点都是①O 的友好点,求r 取值范围.【答案】(1)①23P P ,;①31t -≤<-或13t <≤(2)1r ≤<【解析】【分析】(1)由①O 友好点的定义可判段出结果;点P 应在半径为13r <≤的圆环内.(2)根据定义可列出不等式组,解出可得到结果.(1)①由题意知:当2OP r r -≤时,P 为①O 的友好点.12311,11,OP 1 1.OP OP -=--=--= ①①O 的友好点是2,3P P .①根据友好点的定义,只要点在半径13r <≤圆环内都是①O 的友好点,31t ∴-≤<-或13t <≤.(2)①M (0,3),N (3,0),①圆心O 到线段MN①在x 轴上点N 到①O 最左侧的距离为3,r -①根据题意可列不等式组得32223r r r r r r ≤⎧⎪⎪≤⎪⎨⎪<⎪⎪<⎩- 解得13r r r r ≥⎧⎪⎪≥⎪⎨⎪<⎪⎪<⎩ ①不等式组解集为:1r ≤<①r的取值范围为:1r ≤<【点睛】 本题考查圆综合题,中心对称,列不等式组等知识,解题的关键是学会利用特殊点,特殊位置解决问题.4.在平面直角坐标系xOy 中,①O 的半径为1,T (0,t )为y 轴上一点,P 为平面上一点.给出如下定义:若在①O 上存在一点Q ,使得①TQP 是等腰直角三角形,且①TQP =90°,则称点P 为①O 的“等直点”,①TQP 为①O 的“等直三角形”.如图,点A ,B ,C ,D 的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,①O的“等直点”是;(2)当t=3时,若①TQP是①O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.【答案】(1)A、B、D【解析】【分析】(1)根据坐标的特点及“等直三角形”的定义作图即可判断;(2)根据题意作图,设Q(x,y),求出P点坐标,进而求出CP、OQ,故可求解.(1)如图,①AQ1T,①BQ2T,①DQ3T是等腰直角三角形,Q1Q2Q3在①O上,故为等直点”故答案为:A、B、D;(2)如图,依题意作①O的“等直三角形”①TQP①TQ =PQ ,①TQP =90°过Q 点作MH //x 轴,交y 轴于M 点,过点P 作PH ①MH 于H 点①①TMQ =①QHP =90°①①TQM +①MTQ =①TQM +①HQP =90°①①MTQ =①HQP①①TMQ ①①QHP (AAS )①TM =QH ,MQ =HP设Q (x ,y )①HM =MQ +QH =MQ +TM =x +3-y ,PH =MQ =x①P (x -y +3,x +y )①C (3,0)①PC①OQ①CP OQ .【点睛】此题主要考查直角坐标系、圆与全等三角形综合,解题的关键是熟知等腰直角三角形的性质、勾股定理的应用.5.定义:P 、Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线设b 的“冰雪距离”.已知(0,0)O ,(1,1)A ,(,)B m n ,(,2)C m n +是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当2m =,1n =时,如图1,线段BC 与线段OA 的“冰雪距离”是①当2m =时,线段BC 与线段OA 的“冰雪距离”是1,则n 的取值范围是(2)如图2,若点B 落在圆心为A ,半径为1的圆上,当n ≥1时,线段BC 与线段OA 的“冰雪距离”记为d ,结合图象,求d 的最小值;(3)当m 的值变化时,动线段BC 与线段OA 的“冰雪距离”始终为1,线段BC 的中点为M .求点M 随线段BC .运动所走过的路径长,【答案】(1)1,11n -≤≤;(2)2; (3)24π++【解析】【分析】(1)①结合图形可判断AB 为“冰雪距离”,①注意到A 到BC 的距离为1,可知点A 到BC 的垂足正好在线段B C 上;(2)结合图象观察B 在移动时,d 的变化情况,判断出取最小值的点,再计算;(3)找出BC 运动的情况,注意点M 运动的路径长与点B 、C 运动的路径长相同,转化为求点B 或C 运动的路径长即可.(1)解:①当2m =,1n =时,(2,1)B ,(2,3)C ,线段BC 与线段OA 的“冰雪距离”为1AB =;①当2m =时,点A 到线段BC 距离是1,若线段BC 与线段OA 的“冰雪距离”为1,则点A 到BC 的垂线的垂足在线段BC 上,①12n n ≤≤+,即11n -≤≤.(2)解:如图:2(0,1)B 是圆A 与y 轴的切点,1(1B -+满足190B AO ∠=︒.当B 在B 1右侧时,“冰雪距离”为12d B A ≥=, 当B 在12B B 上时,“冰雪距离”d 为点B 到OA 的距离,结合图象可知,当且仅当B 在B 2时,d . (3)解:如图,当点B 位于图中DI ,线段HI ,HG 时,线段BC 和线段OA 的“冰雪距离”始终为1,当点C 位于图中DE ,线段EF ,FG 时,线段BC 和线段OA 的“冰雪距离”始终为1当线段BC 由图中B 1D 向上平移得到DC 3时,或由B 2G 向上平移得到GC 4时,线段BC 和线段OA 的“冰雪距离”始终为1,对应中点M 所走过的路线长为:24π++【点睛】本题考查圆与动点问题,解题的关键在于找出满足条件的运动轨迹,求出临界点的值,在讨论运动路径时需要学生理解运动过程并能够动手作图.6.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90°得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为______;①若点B 的坐标为()3,1,则点A 的坐标为______;(2)()3,3E -,()2,3F -,(),0G a .线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F ′.①求点E '的坐标(用含a 的式子表示);①若①O 的半径为2,E F ''上任意一点都在①O 内部或圆上,直接写出满足条件的EE '的长度的最大值.【答案】(1)①(3,0);①(1-,3)(2)①(3+a ,3+a );【解析】【分析】(1)①①根据“垂直图形”的定义解决问题即可.(2)①构造全等三角形,利用全等三角形的性质求解即可.①如图3中,观察图象可知,满足条件的点E ′在第一象限的①O 上.求出点E ′的坐标即可解决问题.(1)解:①观察图像可知:点B的坐标为(3,0);①观察图像可知:点A的坐标为(1-,3);故答案为:①(3,0);①(1-,3);(2)解:①如图2中,过点E作EP①x轴于P,过点E′作E′H①x轴于H.①①EPG=①EGE′=①GHE′=90°,①①E+①PGE=90°,①PGE+①E′GH=90°,①①E=①E′GH,①EG=GE′,①①EPG①①GHE′(AAS),①EP=GH=3,PG=E′H=a+3,①OH=3+a,①E′(3+a,3+a).①如图,观察图象可知,满足条件的点E′在第一象限的①O上.①E ′(3+m ,3+m ),OE ′=2,①3+m ,①m 3,①E ′,①EE【点睛】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.已知平面直角坐标系xOy 中,对于线段MN 及P 、Q ,若45MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称Q 是点P 的线段45MN -︒对经点.(1)设点()0,2A ,①()14,0Q ,()22,2Q ,()32Q ,其中为某点P 的线段45OA -︒对经点的是___________.①选出①中一个符合题意的点Q ,则此时所对应的对称中心P 的坐标为.①已知()0,1B ,设B 的半径是r ,若B 上存在某点P 的线段45OA -︒对经点,求r 的取值范围.(2)已知()0,C t ,()()0,0D t t ->,若点()4,0Q 同时是相异两点1P ,2P 的线段45CD -︒对经点,直接写出t 的取值范围.【答案】(1)①1Q ,3Q ①()2,0或112⎛⎫+ ⎪ ⎪⎝⎭或312⎛⎫ ⎪ ⎪⎝⎭①1r <≤(2))4223t ≤≤. 【解析】【分析】 (1)①按定义,根据“定角定弦”确定出P 点轨迹及对称点的轨迹(优弧),逐一判断即可;①根据两点间距离公式,根据Q 点确定出P 点坐标,再根据中心对称性质推理出O ’,A ’坐标,判断Q 是否在其上即可;①根据题意作出P 点轨迹及对称后点O ’,A ’轨迹,判断出r 的最大值,为通过圆心M 的直径的线段,借助勾股定理求解;(2)根据()0,C t ,()()0,0D t t ->坐标,确定出P 点轨迹及圆心位置,借助辅助线,推理出Q 点位置与F 、T 的位置关系,得到不等式组,求解.(1)解:①由①APO =45°知,P 点轨迹为以E (1,1)或(-1,1)为圆心,以AE 的长为半径的两个优弧上,题目中给的Q 点坐标均在y 轴右侧,则其对应的P 点轨迹为右侧优弧如图1所示,由题意知,AE =EH =EF ,①P +1,纵坐标取值范围为:1y设P (m ,n ),由PE (m -1)2+(n -1)2=2,①22220m m n n -+-=A (0,2)关于P 对称的点为A ’(2m ,2n -2)O (0,0)关于P 对称的点为O ’(2m ,2n )①线段A ’O ’y 轴当Q 1(4,0)在A ’O ’上时,2m =4,即m =2①n =0或n =2,即此时P (2,0)或P (2,2)对应的A ’(4,-2),O ’(4,0),Q 2在O ’A ’上,符合题意或对应的A ’(4,2),O ’(4,4),Q 2不在O ’A ’上,不符合题意当Q 2(2,2)在A ’O ’上时,2m =2,即m =1①2212120n n -⨯+-=,n n =1P (1,,A ’(,O ’(,Q 2不在O ’A ’上,不符题意当()32Q 在A ’O ’上时,2m m①22220n n -⨯+-=⎝⎭⎝⎭,解得:n =32或n =12此时P ,3212)A ’(2),O ’(2)或A ’(2),O ’(2)①Q 3在A ’O ’上,满足题意综上所述,答案为:Q 1、Q 3.①由①知,Q 1对应的P 点坐标为(2,2);Q 3对应的P 点的坐标为:,3212) ①由上知,设P(m,n),由PE(m-1)2+(n-1)2=2,A(0,2)关于P对称的点为A’(2m,2n-2)O(0,0)关于P对称的点为O’(2m,2n)P点轨迹为以E为半径的优弧如图2,O关于P对称的点为O’,OP:OO’=1:2,OE:OM=1:2,①①OEP①①OMO’①PE:O’M=1:2① O’的轨迹为以M(2,2)为圆心,以为半径的优弧同理,A’的轨迹为以(2,0)为圆心,以3,故连接BM交圆M于N,此时BN的长度最大,该最大值为r的最大值,①r由图知,r>1综上所述,满足题意的r的取值范围为:1<r(2)解:由题意,知:P的轨迹为以(0,t为半径的优弧上(蓝色),如图4,D关于P 对称的D ’的轨迹为以(2t ,-t )为圆心,以为半径的优弧上C关于P 对称的C ’的轨迹为以(2t ,t )为圆心,以为半径的优弧上作y 轴平行线,当该直线与红色优弧相切时,交x 轴于F ,则OF =2t tC ’的轨迹交x 轴于T ,则OT =OH +HT =2t t ,①点()4,0Q 同时是相异两点1P ,2P 的线段45CD -︒对经点,①OT ≤4≤OF即2t ≤4≤2t t ,解得:)4223t ≤≤【点睛】本题考查了等腰直角三角形、中心对称、勾股定理、圆等相关知识,理解题意并确定出动点轨迹是解题关键.8.在平面直角坐标系xOy 中,O 的半径为1,已知点A ,过点A 作直线MN .对于点A 和直线MN ,给出如下定义:若将直线MN 绕点A 顺时针旋转,直线MN 与O 有两个交点时,则称MN 是O 的“双关联直线”,与O 有一个交点P 时,则称MN 是O 的“单关联直线”,AP 是O 的“单关联线段”.(1)如图1,()0,4A ,当MN 与y 轴重合时,设MN 与O 交于C ,D 两点.则MN 是O 的“______关联直线”(填“双”或“单”);AC AD的值为______;(2)如图2,点A 为直线34y x =-+上一动点,AP 是O 的“单关联线段”.①求OA 的最小值;①直接写出①APO 面积的最小值.【答案】(1)双,35或53;【解析】【分析】(1)根据“双关联直线”定义即可判断,需要利用分类讨论的思想求解;(2)①过O 作直线34y x =-+的垂线交于A 点,明白此时的OA 为最小值,利用等面积法求解;①当OA 与直线垂直时,AP 是O 的“单关联线段”即AP 是O 的切线时,面积最小,因为有条直角边为1,当斜边最短时,面积最小.(1)解:当MN 与y 轴重合时,与O 有两个交点,由“双关联直线”定义知,MN 是O 的“双关联直线”,设MN 与O 交于C ,D 两点,当C 点在y 轴正半轴时,3,5AC AD ==,35AC AD ∴=, 当C 点在y 轴负半轴时,5,3AC AD ==,53AC AD ∴=, 故答案为:双,35或53; (2)解:①过O 作直线34y x =-+的垂线交于A 点,即可得到OA 的最小值;当0,4x y ==, 当40,3y x ==, 1484233BOC S ∴=⨯⨯=,由勾股定理得:BC =,1823BOC S OA =⨯=解得:OA =①当OA 与直线垂直时,AP 是O 的“单关联线段”即AP 是O 的切线时,面积最小,因为有条直角边为1,当斜边最短时,面积最小,如下图:AP ===112APO S ∴=⨯=. 【点睛】本题考查了新定义问题,垂线段距离最短、一次函数与几何问题、切线的性质、勾股定理,解题的关键是掌握相应的知识,利用分类讨论及数形结合的思想进行求解.9.在平面直角坐标系xOy 中,对于两个点P ,Q 和图形W ,如果在图形W 上存在点M ,N (M ,N 可以重合)使得PM QN =,那么称点P 与点Q 是图形W 的一对平衡点.(1)如图1,已知点(0,3)A ,()2,3B ;①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;①在13,02P ⎛⎫ ⎪⎝⎭,2(1,4)P ,3(3,0)P -这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图2,已知O 的半径为1,点D 的坐标为(5,0).若点(,2)E x 在第一象限,且点D 与点E 是O 的一对平衡点,求x 的取值范围;(3)如图3,已知点(3,0)H -,以点O 为圆心,OH 长为半径画弧交x 的正半轴于点K .点(,)C a b (其中0b ≥)是坐标平面内一个动点,且5OC =,C 是以点C 为圆心,半径为2的圆,若HK 上的任意两个点都是C 的一对平衡点,直接写出b 的取值范围.【答案】(1)①3①1P;(2x≤(35≤≤b【解析】【分析】(1)①观察图象d的最小值是OA长,最大值是OB长,由勾股定理得出结果;①由题意知P1;(2)如图,可得OE1=3,解得此时x OE2=7,解得x(3)由点C在以O为圆心5为半径的上半圆上运动,推出以C为圆心2为半径的圆刚好与弧HK相切,此时要想弧HK上任意两点都是圆C的平衡点,需要满足CK≤6,CH≤6,分两种情形分别求出b的值即可判断.【详解】解:(1)①由题意知:OA=3,OB d的最小值是3①根据平衡点的定义,点P1与点O是线段AB的一对平衡点,故答案为3P1;(2)如图2中,由题意点D到①O的最近距离是4,最远距离是6,①点D与点E是①O的一对平衡点,此时需要满足E1到①O的最大距离是4,即OE1=3,可得x==同理:当E 2到①的最小距离为是6时,OE 2=7,此时x=综上所述,满足条件的x(3)①点C 在以O 为圆心5为半径的上半圆上运动,①以C 为圆心2为半径的圆刚好与弧HK 相切,此时要想弧HK 上任意两点都是圆C 的平衡点需要满足CK ≤6,CH ≤6,如图3-1中,当CK =6时,作CM ①HK 于M .则()222222536a b a b ⎧+=⎪⎨-+=⎪⎩,解得:1133a a b b ⎧⎧=-=-⎪⎪⎪⎪⎨⎨⎪⎪=⎪⎪⎩⎩, 如图3-3中,当CH =6时,同法可得a =13,b, 在两者中间时,a =0,b =5,观察图象可知:满足条件的b5b ≤≤.【点睛】本题属于圆综合题,考查了点P 与点Q 是图形W 的一对平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题,属于中考压轴题.10.在平面直角坐标系xOy 中,点P 不在坐标轴上,点P 关于x 轴的对称点为P 1,点P 关于y 轴的对称点为P 2,称△P 1PP 2为点P 的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),①T的圆心为T(2,2),半径为2.若点B的“关联三角形”与①T有公共点,直接写出m的取值范围;(3)已知①O的半径为r,OP=2r,若点P的“关联三角形”与①O有四个公共点,直接写出①PP1P2的取值范围.【答案】(1)4(2)0<m≤4(3)0°<①OP1P<30°或60°<①OP1P<90°【解析】【分析】(1)根据“关联三角形”的定义求得A1(1,-2),A2(-1,2),利用三角形的面积公式求解即可;(2)找到四边形OADC是①T的外接四边形,且D(2,2),画出图形,利用“关联三角形”的定义、数形结合即可求解;(3)分两种情况,当PP2与①O相切时,PP1与①O相切时,利用“关联三角形”的定义、数形结合即可求解.(1)解:①点A(1,2)关于x轴的对称点为A1(1,-2),点A关于y轴的对称点为A2(-1,2),①S△A A1 A2的面积=12×2×4=4;(2)解:①①T的圆心为T(2,2),半径为2.①四边形OADC是①T的外接四边形,①D(2,2),①点B的“关联三角形”与①T有公共点,且点B(m,n),①0<m≤4;(3)解:当PP2与①O相切于点E时,如图:①OE=r,OP=2r,①①OPE=30°,①①OPP1=①OP1P=60°,①当60°<①OP1P<90°时,点P的“关联三角形”与①O有四个公共点;当PP1与①O相切于点F时,如图:①OF =r ,OP =2r ,①①OPE =①OP 1P =30°,①当0°<①OP 1P <30°时,点P 的“关联三角形”与①O 有四个公共点;综上,点P 的“关联三角形”与①O 有四个公共点,①PP 1P 2的取值范围为:0°<①OP 1P <30°或60°<①OP 1P <90°.【点睛】本题考查了轴对称的性质,含30度角的直角三角形的性质,切线的性质,数形结合是解题的关键. 11.对于平面直角坐标系xOy 中的点C 及图形G ,有如下定义:若图形G 上存在A ,B 两点,使得ABC 为等腰直角三角形,且90ABC ∠=︒,则称点C 为图形G 的“友好点”.(1)已知点(0,0)O ,(4,0)M ,在点1(0,4)C ,2(1,4)C ,3(2,1)C -中,线段OM 的“友好点”是_______;(2)直线y x b =-+分别交x 轴、y 轴于P ,Q 两点,若点(2,1)C 为线段PQ 的“友好点”,求b 的取值范围;(3)已知直线(0)y x d d =+>分别交x 轴、y 轴于E ,F 两点,若线段EF 上的所有点都是半径为2的O 的“友好点”,直接写出d 的取值范围.【答案】(1)C 1、C 3(2)1≤b <3或b >3(3)2≤d ≤2【解析】【分析】(1)根据“友好点”的定义逐个判断即可;(2)分两种情况讨论,直线PQ 在点C 上方或下方.过B 作PQ 的垂线,垂足为B ,交x 轴于H ,根据题目中的定义知:BQ 或BP 的长度要大于或等于BC 的长度,求解即可;(3)首先分析得到E 点的运动范围,作出图形知OE ≥2,当EH 平分①FEO 时,其中H (2,0),是其最大临界值,根据勾股定理求出最大值为2,即得结论.(1)解:如图所示,由题意知三角形OC1M为等腰直角三角形,C1符合题意;过C2作C2A①OM于A,则AM=3,C2A=4,三角形AMC2不是等腰三角形,C2不符合题意;过C3作C3B①OM于B,则C3B=AB=1,三角形ABC3是等腰直角三角形,符合题意;故答案为:C1、C3.(2)解:分两种情况讨论,当直线PQ在C点上方时,过C作CB①PQ于B,延长BC交x轴于H,如图所示,则△BPH为等腰直角三角形,BP=BH>BC,故在线段PQ上必存在A点,使得①ABC=90°,AB=BC,将x=2,y=1代入y=-x+b得:b=3,即b>3;当直线PQ在C点下方时,过C作CB①PQ于B,CB延长线交x轴于H,则当BQ≥BC时,符合题意,当直线PQ过H点时,BQ=BC,如图所示,此时,-1+b=0,即b=1,即1≤b<3,综上所述,b的取值范围为:1≤b<3或b>3.(3)解:通过分析可知,当直线EF在下图中的位置之间运动时,符合要求,此时,OE=OF=2,即d=2,此时,①HEO =22.5°,即EH 为①EHF 的平分线,过H 作HM ①EF 于M ,则HM =OH =2,①FM =2,由勾股定理得:FH =即OE =OF =2,即d =2①2≤d ≤2.【点睛】本题考查了新定义的问题,涉及到一次函数与圆的性质的综合应用,所用到的数学思想方法为数形结合、分类讨论,该题综合性较强.解题关键是读懂题意,借助定义作出符合题意的图形.12.在平面直角坐标系xOy 中,对于点()11,P x y ,给出如下定义:当点()22,Q x y 满足1212x x y y +=+时,称点Q 是点P 的等和点.已知点()2,0P .(1)在()10,2Q ,()22,1Q --,()31,3Q 中,点P 的等和点有______;(2)点A 在直线4y x =-+上,若点P 的等和点也是点A 的等和点,求点A 的坐标;(3)已知点(),0B b 和线段MN ,对于所有满足1BC =的点C ,线段MN 上总存在线段PC 上每个点的等和点.若MN 的最小值为5,直接写出b 的取值范围.【答案】(1)()10,2Q ,()31,3Q ;(2)()3,1A ;(3)26b -≤≤.【解析】【分析】(1)根据新定义计算即可;(2)由(1)可知,P 的等和点纵坐标比横坐标大2,根据等和点的定义,A 的横坐标比纵坐标大2,由此可得方程,求解即可;(3)因为线段MN 上总存在线段PC 上每个点的等和点.且MN 的最小值为5,所以PC 的最大距离不能超过5,故可转化成求PC 的最大值问题,讨论:当点B 在P 的左侧时或两者重合时;当点B 在P 的右侧时;两种情况中的PC 最大值,解不等式即可.(1)解:由题意可知:①20=02++,①点Q 1是点P 的等和点;①()2201-+≠+-,①点Q 2不是点P 的等和点;①12=3+0+,①点Q 3是点P 的等和点;①点P 的等和点有()10,2Q ,()31,3Q ,(2)解:设(),4A a a -+,由(1)可知,P 的等和点纵坐标比横坐标大2,①点P 的等和点也是点A 的等和点,①A 的横坐标比纵坐标大2,则42a a =-++,解之得:3a =,故()3,1A ,(3)解:由题意可知:①线段MN 上总存在线段PC 上每个点的等和点.且MN 的最小值为5,①PC 的最大距离不能超过5,当点B 在P 的左侧时或两者重合时,即2b ≤,如图,此时,当()1,0C b -时,PC 有最大距离为()215b --≤,解之得:2b ≥-,①22b -≤≤;当点B 在P 的右侧时,即2b >,如图,此时,当()1,0C b +时,PC 有最大距离为125b +-≤,解之得:6b ≤,①26b ≤≤;综上所述:26b -≤≤.【点睛】本题考查新定义,涉及到平面直角坐标系,坐标轴上两点之间的距离,一次函数,解题的关键是理解题意,根据题意进行求解,(3)较难,需理解题意将其转化为求PC 最大值问题.13.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;①线段A1B1①AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,①C与y轴相切于点D,若①E的半径为32,圆心E在直线l:y=+①E的所有点都是关于①C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,①M的半径为3,点M到原点的距离为5,点N是①M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且①M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.【答案】(1)①P1,P4;①1A(2,6)(2)3924Ex≤≤(3)9625【解析】【分析】(1)①根据定义即可直接判断;①由线段A1B1①AB,即得出11112OA ABOA A B==,即可得出答案;(2)分两种极限状态求解:①当①E与y轴相切时,设切点为F,连接EF;①当①E与OI相切时.利用切线的性质,锐角三角函数即可求解;(3)过点O作①M的两条切线OH和OP,切点分别为H和P.过点N分别作OP、OH的对称点,F、E,连接EF,NE,NF,设NE交OH于点G,NF交OP于点Q.根据定义,切线的性质,锐角三角函数和轴对称的性质,且判断出EF为①NQT的周长的最小值即可求解.(1)(1)①①1OP 与线段AB 无公共点,2OP 与线段AB 有公共点,3OP 与线段AB 有公共点,4OP 与线段AB 无公共点,①关于线段AB 的“阳光点”是P 1,P 4.故答案为:P 1,P 4;①①线段A 1B 1①AB , ①1112142OA AB OA A B ===. ①点A 1在B 1的上方,①1A (2,6).故答案为:1A (2,6);(2)根据两种极限讨论:①当①E 与y 轴相切时,设切点为F ,连接EF ,①EF y ⊥轴.①①E 的半径为32, ①32EF =, ①此时E 点横坐标为32; ①设直线l 分别与x 轴,y 轴交于点G ,H ,连接CD ,CO ,过点O 作①C 的另一条切线OI ,切点为I ,直线OI 与直线l 交于点J .当①E 与OI 相切时,过点E 作EK y ⊥轴于点K ,如图,①①C 与y 轴相切于点D ,①CD y ⊥轴.①C (1,①tan CD COD OD ∠==, ①30COD ∠=︒.①①C 与OI 相切于点I ,①30COI COD ∠=∠=︒,①60HOJ ∠=︒.①直线l 分别与x 轴,y 轴交于点G ,H ,①G (4,0),H (0,,①tan OG OHG OH ∠==, ①30OHG ∠=︒,①90OJH ∠=︒,即HG OJ ⊥,①①E 与直线OJ 相切,且点J 为切点, ①32EJ =.在Rt OHJ 中,cos 6HJ OH OHJ =⋅∠==, ①39622HE HJ EJ =-=-=, ①1924KE HE ==, ①此时E 点横坐标为94.综上可知点E 在l 上①情况的位置运动到①情况的位置都符合题意, ①3924E x ≤≤; (3)如图,过点O 作①M 的两条切线OH 和OP ,切点分别为H 和P .①①M 上的所有点都是关于①NQT 的“阴影点”,①点Q 在切线OP 上,点T 在切线OH 上,由题意得:OM =5,MH =3,①OH 为①M 的切线,①MH OH ⊥,①4OH ==,3sin 5MH MOH OH ∠==. ①点N 是①M 上到原点距离最近的点,①ON =OM -MN =5-3=2.如图,过点N 分别作OP 、OH 的对称点,F 、E ,连接EF ,NE ,NF ,设NE 交OH 于点G ,NF 交OP 于点Q .①NQ =QF ,NT =TE ,12NG EG NE ==,12DE DF EF ==. ①NQT C NQ NT QT QF TE QT EF =++=++=.即EF 为①NQT 的周长的最小值. ①3sin 5NG MOH ON ∠==,ON =2, ①65NG =,①125NE =. ①4sin sin 5DE OH DNE OMH NE OM ∠==∠==, ①41255DE =, 解得:4825DE =, ①9625EF =. 即①NQT 的周长的最小值为9625; 【点睛】 本题为圆的综合题.考查对新定义的理解,切线的应用,解直角三角形以及勾股定理等知识,为中考压轴题.理解新定义,并利用数形结合的思想是解题关键.14.如图1,①I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交①I 于P ,Q 两点(Q 在P ,H 之间).我们把点P 称为①I 关于直线a 的“远点”,把PQ ·PH 的值称为①I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的①O 与两坐标轴交于点A ,B ,C ,D .①过点E 作垂直于y 轴的直线m ﹐则①O 关于直线m 的“远点”是点__________________(填“A ”,“B ”,“C ”或“D ”),①O 关于直线m 的“特征数”为_____________;①若直线n的函数表达式为4y =+,求①O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 、中,直线l 经过点M (1,4),点F 是坐标平面内一点,以F径作①F .若①F 与直线l 相离,点N (–1,0)是①F 关于直线l 的“远点”,且①F 关于直线l 的“特征数”是l 的函数解析式.【答案】(1)①D ;10;① ①O 关于直线n 的“特征数”为6;(2)12977y x =-+或5y x =-+ 【解析】【分析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;①过圆心O 作OH ①直线n ,垂足为点H ,交①O 于点P 、Q ,首先判断直线n 也经过点E (0,4),在Rt EOF 中,利用三角函数求出①EFO =60°,进而求出PH 的长,再根据“特征数”的定义计算即可;(2)连接NF 并延长,设直线l 的解析式为y =kx +b 1,用待定系数法得到114=k b n mk b +⎧⎨=+⎩①②,再根据两条直线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y =1k-x +b 2,用待定系数法同理可得2210=b k m n b k ⎧+⎪⎪⎨⎪=-+⎪⎩④⑤,消去b 1和b 2,得到关于m 、n 的方程组41n mk k m n k k -=-⎧⎪⎨-=+⎪⎩;根据①F 关于直线l 的“特征数”是NA=(m +1)2+n 2=2,把222411421k k m k k n k ⎧--=⎪⎪+⎨-⎪=⎪+⎩代入,求出k 的值,便得到m 、n 的值即点A 的坐标,再根据待定系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.(1)解:(1)①①O 关于直线m 的“远点”是点D ,①O 关于直线m 的“特征数”为·DB DE =2×5=10;①如下图:过圆心O 作OH ①直线n ,垂足为点H ,交①O 于点P 、Q ,①直线n的函数表达式为4y =+,当x =0时,y =4;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编
平面直角坐标系
1、(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上
11
P2,则P2点的坐标为()
A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
考点:坐标与图形变化-旋转;坐标与图形变化-平移.
分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.
解答:解:∵A点坐标为:(2,4),A1(﹣2,1),
∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),
∵点P1绕点O逆时针旋转180°,得到对应点P2,
∴P2点的坐标为:(1.6,1).
故选:C.

6、(2013•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()
8、(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,
是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
考点:坐标与图形变化-平移.
分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.
解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),
故点在第四象限.
故选D.
点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.
10、(2013年广东湛江)在平面直角坐标系中,点A ()2,3-在第( )象限.
.A 一 .B 二 .C 三 .D 四
解析:在平面直角坐标系中,点的横纵坐标共同决定点所在的象限,点()()(),,,++-+--、、、
(),+-分别在第一、二、三、四象限,∴选D
11、(2013年深圳市)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( )
A.33
B.-33
C.-7
D.7 答案:D
解析:因为P 、Q 关于原点对称,所以,a =-13,b =20,a +b =7,选D 。

12、(2013台湾、11)坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标为何?( ) A .(﹣9,3) B .(﹣3,1) C .(﹣3,9) D .(﹣1,3) 考点:点的坐标.
分析:根据点到x 轴的距离等于纵坐标的长度求出点A 的纵坐标,再根据点到y 轴的距离等于横坐标的长度求出横坐标,即可得解. 解答:解:∵A 点到x 轴的距离为3,A 点在第二象限, ∴点A 的纵坐标为3, ∵A 点到y 轴的距离恰为到x 轴距离的3倍,A
点在第二象限, ∴点A 的横坐标为﹣9, ∴点A 的坐标为(﹣9,3). 故选A .
点评:本题考查了点的坐标,主要利用了点到x 轴的距离等于纵坐标的长度,点到y 轴的距离等于横坐标的长度,需熟练掌握并灵活运用.
13、(绵阳市2013年)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是(3,3)。

[解析]依题,可建立平面直角坐标系,如下图:
15题图
平移后可得右眼B(3,3)
14、(2013聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1
(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)
考点:规律型:点的坐标.
专题:规律型.

16、(2013•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4
个长度单位后得到点A′的坐标为(2,﹣2).
所以点B的坐标也是向右平移5个单位后再向上平移1个单位得)4,6(/B
轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).
22、(2013•黔东南州)平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0).
23、(2013•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使
的值为25.
25、(2013安顺)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.
考点:坐标与图形变化-旋转.
分析:画出旋转后的图形位置,根据图形求解.
解答:解:AB旋转后位置如图所示.
B′(4,2).
点评:本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.
26、(2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有6个,写出其中一个点P的坐标是(5,0).
等腰三角形的判定;坐标与图形性质.。

相关文档
最新文档