新人教版八年级数学竞赛教程附练习汇总(共15套)
人教版 八年级数学上册 竞赛专题:直角三角形(含答案)
人教版 八年级数学上册 竞赛专题:直角三角形(含答案)【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________.(2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________.(太原市竞赛试题)解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手.【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础.【例3】如图,P 为△ABC 边BC 上的一点,且PC =2PB ,已知∠ABC =45°,∠APC =60°,求∠ACB 的度数.(“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB 的度数,综合运用条件PC =2PB 及∠APC =60°,构造出含30°的直角三角形是解本例的关键.【例4】如图,在△ABC 中,∠C =90°,∠A =30°,分别以AB ,AC 为边在△ABC 的外侧DCBC作等边△ABE 和等边△ACD ,DE 与AB 交于F ,求证:EF =FD.(上海市竞赛试题)解题思路:已知FD 为Rt △FAD 的斜边,因此需作辅助线,构造以EF 为斜边的直角三角形,通过全等三角形证明.【例5】如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证:222BD AB BC +=(北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.【例6】斯特瓦尔特定理:如图,设D 为△ABC 的边BC 上任意一点,a ,b ,c 为△ABC 三边长,则222b BDc DC AD BD DC a+=-⋅.请证明结论成立.解题思路:本题充分体现了勾股定理运用中的数形结合思想.能力训练A 级1.如图,D 为△ABC 的边BC 上一点,已知AB =13,AD =12,AC =15,BD =5,则BC =_____________.BACCBB2.如图,在Rt △ABC 中∠C =90°,BE 平分∠ABC 交AC 于E ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则AC =_____________cm.3.如图,四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠B =90°,则∠DAB =_____________.(上海市竞赛试题)4.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为_____________.(湖北省预赛试题)5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30 º,那么这个三角形的形状是( )A.直角三角形B. 钝角三角形C. 锐角三角形D.不能确定(山东省竞赛试题)6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC ,则AC 边上的高为( )第1题D 第2题第3题ABC第4题DBB.C.D.(福州市中考试题)7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑( ) A. 15分米 B. 9分米 C. 8分米 D. 5分米8.如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB =4,AD =5,那么BC CD等于( ) A.1 B. 2C.D.549. 如图,△ABC 中,AB =BC =CA ,AE =CD ,AD ,BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ.(北京市竞赛试题)第6题C第7题第8题AC10. 如图,△ABC 中,AB =AC.(1)若P 是BC 边上中点,连结AP ,求证:22BP CP AB AP ⋅=-(2)P 是BC 边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)若P 是BC 边延长线上一点,线段AB ,AP ,BP ,CP 之间有什么样的关系?请证明你的结论.11.如图,直线OB 是一次函数2y x =图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.12.已知:如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,求△BED 的面积.(山西省中考试题)B 级1.若△ABC 的三边a,b,c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为_____________.2.如图,在等腰Rt △ABC 中,∠A =90°,P 是△ABC 内的一点,PA =1,PB =3,PC,则∠CPA =_____________.BD3. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____________.4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( ) A. CF >GB B. CF =GB C. CF <GB D. 无法确定5. 在△ABC 中,∠B 是钝角,AB =6,CB =8,则AD 的范围是( ) A. 8<AC <10 B. 8<AC <14 C. 2<AC <14 D. 10<AC <14(江苏省竞赛试题)6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )A. 1个B. 2个C. 3个D.4个(浙江省竞赛试题)7.如图,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB ,AC边上的点,且DE ⊥DF ,若BE =12,CF =5,求△DEF 的面积.(四川省联赛试题)8.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:222EF BE CF =+第2题A第4题D ABDBCDB(江苏省竞赛试题)9.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.(全国联赛试题)10.如图,在△ABC 中,∠B AC =45°,AD ⊥BC 于D ,BD =3,CD =2,求△ABC 面积.(天津市竞赛试题)11.如图,在△ABC 中,∠B AC =90°,AB =AC ,E ,F 分别是BC 上两点,若∠EAF =45°,试推断BE ,CF ,EF 之间数量关系,并说明理由.12.已知在Rt △ABC 中,∠ACB =90°,AC =BC ,∠MCN =45°. (1)如图1,当M ,N 在AB 上时,求证:222MN AM BN =+(2)如图2,将∠MCN 绕点C 旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)BCA C图1NAB M图2N BM参考答案例1 (1)12或30;6或30; 提示:()22125x x ++=,得3x =;由()22251x x +=+,得12x =,(2)103提示:作DE ⊥AB 于E ,设CD =x ,则BE =13-5=8,DE =x ,BD =12-x ,由()222812x x +=-,得103x =. 例2 B 提示:过B 作BD ⊥AC 延长线于D 点,设CD =x ,BD =y ,可求得:x =y ,则∠BCD =45°,故∠BCA =135°.例3 ∠ACB =75° 提示:过C 作CQ ⊥AP 于Q ,连接BQ ,则AQ =BQ =CQ .例4 提示:过E 作EG ⊥AB 于G ,先证明Rt △EAG ≌Rt △ABC ,再证明△EFG ≌△DF A .例5 连接AC∵AD =DC ,∠ADC =60°,∴△ADC 是等边三角形,DC =CA =AD ,以BC 为边向四边形外作等边三角形BCE ,即BC =BE =CE , 则∠BCE =∠EBC =∠CEB =60°,∴∠ABE =∠ABC +∠EBC =90°,连接AE ,则22222AE AB BE AB BC =+=+,易证△BDC ≌△EAC ,得BD =AE ,故222BD AB BC =+. 例6 过A 作AE ⊥BC 于E ,设DE =x ,BD =u ,DC =v ,AD =t ,则()()2222222AE b v x c u x t x =--=-+=-,故2222t b v ux =-+,2222t c u ux =--,消去x 得222b u c v t uv u v +=-+,即222b BD c CDAD BD DC a+=-⋅. A 级1.14 2.3 3.135°4. 提示:延长AD 至E ,使DE =AD ,连接BE ,则△ACD ≌△EBD ,∴BE =AC =13,AE =12,又AB =5,则∠BAD =90°,5.D 6.C 7.C 8.B 9.提示:△ADC ≌△BEA ,∠BPQ =60°. 10.(1)(2)略 (3)提示:AB ,AP ,BP ,CP ,之间的关系是22AP AB BP CP -=⋅ 11.提示:满足提议的点有4个,作别分别为:8161,,,,,1552⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭; 12.10.B 级1.60132.135° 提示:将△P AC 绕A 点顺时针旋转90°, 3.32或42 提示:分类讨论。
八年级数学竞赛题及答案解析(K12教育文档)
八年级数学竞赛题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛题及答案解析(word版可编辑修改)的全部内容。
八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2。
下列各式中计算正确的是( )A 。
9)9(2-=- B.525±= C.3311()-=- D.2)2(2-=-3。
若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 9 4。
下列计算正确的是( ) A 。
ab ·ab =2abC.3—=3(a ≥0) D 。
·=(a ≥0,b ≥0)5。
满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C 。
三边长之比为3∶4∶5 D 。
三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7。
将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A.(4, -3) B 。
人教版 八年级数学上册 竞赛专题分式方程(含答案)
人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
八年级(上)数学竞赛试题及答案(新人教版)
八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (8)doc初中数学 (1)
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (8)doc 初中数学 (1)第2试一、选择题〔每题6分,共30分〕1.如图,三个图形的周长相等,那么〔 〕〔A 〕b a c 〔B 〕c b a 〔C 〕b c a 〔D 〕a b c2a2aaabbbc cccc c cc2.b a ,那么)()(3b x a x ++--的值等于〔 〕 〔A 〕))(()(b x a x a x +++- 〔B 〕))(()(b x a x a x +++〔C 〕)()()(b x a x a x ++-+- 〔D 〕))(()(b x a x a x ++-+ 3.假设关于x 的方程ax =--12有三个整数解,那么a 的值是〔 〕〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 4.AD 与BE 是ABC ∆的角平分线,E D ,分不在AC BC ,上,假设BC BE AB AD ==,,那么=∠C 〔 〕(A ) 690〔B 〕0)9623( 〔C 〕0)13900( 〔D 〕不能确定5.正数b a ,满足87222233-=+-+ab ab b a ab b a ,=-22b a 〔 〕〔A 〕1 〔B 〕3 〔C 〕5 〔D 〕不能确定二、填空题〔每题6分,共30分〕6.如图,三角形数表第82行的第3个数是______________________.ABCDE……12345678910111213141516(第6题)953351016第7题7.如图,16×9的矩形分成四块后可拼成一个正方形,该正方形的周长为_________. 8.n a a a ,,,21 是正整数,且n a a a 21,,1021=+++n a a a,2422221=+++n a a a 那么=),,,(21n a a a ______________________________.9.今天是星期日,假设改日是第一天,那么第333333122000200120022003+-+-+- 天是星期__________________.10.在2×2的正方形表中填入4个不同的非零平方数,使每一行、每一列的和差不多上平方数。
数学竞赛8年级试卷【含答案】
数学竞赛8年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是无理数?A. √9B. √16C. πD. 1/22. 二元一次方程组 x + y = 5, 2x y = 3 的解是?A. x = 2, y = 3B. x = 3, y = 2C. x = 1, y = 4D. x = 4, y = 13. 函数 y = 2x + 3 的图像是一条直线,它的斜率是?A. 2B. 3C. -2D. -34. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 正方形D. 直角三角形5. 下列哪个数是8的立方根?A. 2B. 4C. 6D. 8二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 两个负数相乘的结果是正数。
()3. 0的任何次幂都是0。
()4. 对角线互相垂直的四边形一定是菱形。
()5. 一元二次方程 ax^2 + bx + c = 0 的判别式是 b^2 4ac。
()三、填空题(每题1分,共5分)1. 平方根定义:如果一个数x的________等于a,那么x是a的平方根。
2. 一元二次方程的解公式是:x = [-b ± √(b^2 4ac)] / 2a,这个公式被称为__________。
3. 两个函数如果满足 f(x) = g(x) 对所有x都成立,那么这两个函数是__________。
4. 如果一个三角形的两边之和等于第三边,那么这个三角形是__________。
5. 圆的面积公式是__________。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是等差数列?给出一个等差数列的例子。
3. 解释一下函数的单调性。
4. 什么是相似三角形?相似三角形有哪些性质?5. 如何计算一个圆的周长?五、应用题(每题2分,共10分)1. 解方程:2x 5 = 3x + 2。
2. 计算下列表达式的值:√(27) + √(48) √(125)。
【数学】人教版数学八年级培优和竞赛教程15三角形总复习
【关键字】数学15、三角形总复习【知识精读】1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。
三角形一章在平面几何中占有十分重要的地位。
从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、笔直等问题。
因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。
因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。
【分类解析】1. 三角形内角和定理的应用例1. 如图1,已知中,于D,E是AD上一点。
求证:证明:由AD⊥BC于D,可得∠CAD=∠ABC又则可证即说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。
2. 三角形三边关系的应用例2. 已知:如图2,在中,,AM是BC边的中线。
求证:证明:延长AM到D,使MD=AM,连接BD在和中,在中,,而说明:在分析此问题时,首先将求证式变形,得,然后通过倍长中线的方法,相当于将绕点旋转180°构成旋转型的全等三角形,把AC、AB、2AM转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。
很自然有。
请同学们自己试着证明。
3. 角平分线定理的应用例3. 如图3,∠B=∠C=90°,M是BC的中点,DM平分∠ADC。
求证:AM平分DAB。
证明:过M作MG⊥AD于G,∵DM平分∠ADC,MC⊥DC,MG⊥AD∴MC=MG(在角的平分线上的点到角的两边距离相等)∵MC=MB,∴MG=MB而MG⊥AD,MB⊥AB∴M在∠ADC的平分线上(到一个角的两边距离相等的点,在这个角的平分线上)∴DM 平分∠ADC说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG =MB 。
人教八年级数学竞赛试题
人教八年级数学竞赛试题一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...(无限循环)D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形3. 已知一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
这个数列的第10项是多少?A. 144B. 145C. 146D. 1474. 一个圆的半径为r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 4πr^25. 一个长方体的长、宽、高分别为a、b、c,它的体积是多少?A. abcB. a + b + cC. 2(ab + bc + ac)D. 3(a + b + c)6. 一个函数f(x) = 3x^2 - 2x + 1,当x = 2时,f(x)的值是多少?A. 7B. 8C. 9D. 107. 一个正整数n,如果它能够被2整除,但不能被3整除,那么n的最小值是多少?A. 2B. 4C. 6D. 88. 一个数的平方根是它本身,这个数是什么?A. 0B. 1C. -1D. 2二、填空题(每题5分,共30分)9. 如果一个数的立方根等于它本身,那么这个数可以是_________。
10. 一个数的绝对值是它本身,这个数可以是正数或_________。
11. 如果一个分数的分子和分母都乘以同一个数,那么这个分数的值_________。
12. 已知一个数列的前三项为2, 3, 5,从第四项开始,每一项都是前两项的平均值。
这个数列的第5项是_________。
13. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是_________。
14. 如果一个数的相反数是-5,那么这个数是_________。
三、解答题(每题15分,共30分)15. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。
人教版八年级数学培优竞赛
目录第1讲全等三角形的性质与判定(P2----11)第2讲角平分线的性质与判定(P12----16)第3讲轴对称及轴对称变换(P17----24)第4讲等腰三角形(P25----36)第5讲等边三角形(P37----42)第6讲实数(P43----49)第7讲变量与函数(P50----54)第8讲一次函数的图象与性质(P55----63)第9讲一次函数与方程、不等式(P64----68) 第10讲一次函数的应用(P69----80)第11讲幂的运算〔P81----86)第12讲整式的乘除((P87----93)第13讲因式分解及其应用(P94----100)第14讲分式的概念•性质与运算(P101----108) 第15讲分式的化简求值与证明(P109----117)第16讲分式方程及其应用(P118----125)第17讲反比例函数的图像与性质(P126----138) 第18讲反比例函数的应用(P139----146)第19讲勾股定理(P147-----157)第20讲平行四边形(P158-----166)第21讲菱形矩形(P167-----178)第22讲正方形(P179-----189)第23讲梯形(P190-----198)第24讲数据的分析(P199-----209)模拟测试一模拟测试二模拟测试三B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形〔 〕 A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比拟明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB 〔SAS 〕 ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC 〔HL 〕应选C . 【变式题组】 01.〔天津〕以下判断中错误的选项是〔 〕A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A FC ED B 02.〔丽水〕命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,那么△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF 〔如下图〕.⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D 〞记为①,“∠OEF =∠OFE 〞记为②,“AB =DC 〞记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题〔选择“真〞或“假〞填入空格〕.【例2】AB =DC ,AE =DF ,CF =FB . 求证:AF =DE . 【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF 〔SSS 〕 ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,假设BO =AC ,BC =7,CD =2,那么AO 的长为〔 〕 A .2 B .3 C .4 D .5A E第1题图A BC DE BCDO第2题图A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,那么BD =__________. 03.〔北京〕:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B 〔E 〕、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠F AC =∠CDF ∵∠AOD =∠F AC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA【变式题组】 01.〔绍兴〕如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.假设∠CDE =48°,那么∠APD 等于〔 〕 A .42° B .48° C .52° D .58°02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,以下结论中错误的选项是〔 〕A .△ABC ≌△DEFB .∠DEF =90°B 〔E 〕OC F 图③DAAFECB DC . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如以下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵假设PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】〔第21届江苏竞赛试题〕,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠P AQ =90°,∠P AD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠P AD =90° ∵∠CAQ +∠P AD =90°,∴AP ⊥AQEFB ACD G第2题图21ABCPQE FD【变式题组】01.如图,AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是〔 〕A .2a bm + B .2a bm - C .bm D .am03.如图,五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,那么五边形ABCDE 的面积为__________演练稳固·反应提高01.〔海南〕图中的两个三角形全等,那么∠α度数是〔 〕A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,那么∠ACA /的度数是〔 〕A .20°B .30°C .35°D .40° 03.〔牡丹江〕尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是〔 〕 A .SAS B .ASA C .AAS D .SSS第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图D04.〔江西〕如图,AB =AD ,那么添加以下一个条件后,仍无法判定△ABC ≌△ADC 的是〔 〕A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的选项是〔 〕A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC于N ,小华说:“一定有△ABC ≌△AED .〞小明说:“△ABM ≌△AEN .〞那么〔 〕 A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,那么∠DFB 的度数为_______. 09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,假设AB =2, CD =6,那么AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵假设AC =12cm , 求BD 的长.13.〔吉林〕如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F ,请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵假设DE =a ,求梯形DABE 的面积.〔温馨提示:补形法〕15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE=DF .D B A C EF A E B F DC16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等〔证明略〕; 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.〔请你将以下证明过程补充完整〕⑵归纳与表达:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,那么图中全等三角形有〔 〕 A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,以下结论中:①∠A =∠B ②DE =CE ,③连接DE , 那么OE 平分∠AOB ,正确的选项是〔 〕 A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 那么DE 的长等于〔〕A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是〔 〕A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,那么∠ABC =_______. 06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出以下结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.〔填序号〕F第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABCDA 1B 1C 1D 1AEF C DB AE B DC 07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵假设把条件“BF =AC 〞和结论“BE ⊥AC 〞互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC =∠EAD .求证:∠CED =90°.ABE D CAB C DE10.〔沈阳〕将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB=90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵假设将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出〔1〕中结论是否仍然成立;⑶假设将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为〔1〕中结论还成立吗?假设成立,写出证明过程;假设不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学竞赛教程附练习汇总(共15套)1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---32222)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯= =⨯=987136813689873. 在多项式恒等变形中的应用例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果。
解:()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+- 把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6。
4. 在代数证明题中的应用例:证明:对于任意自然数n,323222n n n n ++-+-一定是10的倍数。
分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。
323233222222n n n n n n n n ++++-+-=+--=+-+=⨯-⨯3312211035222n n n n ()()对任意自然数n,103⨯n 和52⨯n 都是10的倍数。
∴-+-++323222n n n n 一定是10的倍数5、中考点拨:例1。
因式分解322x x x ()()---解:322x x x ()()---=-+-=-+322231x x x x x ()()()()说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。
例2.分解因式:412132q p p ()()-+-解:412132q p p ()()-+- =-+-=--+=--+412121211212213222q p p p q p p q pq ()()()[()]()()说明:在用提公因式法分解因式前,必须对原式进行变形得到公因式,同时一定要注意符号,提取公因式后,剩下的因式应注意化简。
题型展示:例1. 计算:200020012001200120002000⨯-⨯精析与解答:设2000=a ,则20011=+a∴⨯-⨯200020012001200120002000=+++-++=+⨯-+⨯=+⨯-=a a a a a a a a a a a a [()()]()()()()()()1000011110000110001110001110001100010说明:此题是一个有规律的大数字的运算,若直接计算,运算量必然很大。
其中2000、2001重复出现,又有200120001=+的特点,可通过设未知数,将复杂数字间的运算转化为代数式,再利用多项式的因式分解化简求值,从而简化计算。
例2. 已知:x bx c 2++(b 、c 为整数)是x x 42625++及3428542x x x +++的公因式,求b 、c 的值。
分析:常规解法是分别将两个多项式分解因式,求得公因式后可求b 、c,但比较麻烦。
注意到x bx c 2++是362542()x x ++及3428542x x x +++的因式。
因而也是-+++()3428542x x x 的因式,所求问题即可转化为求这个多项式的二次因式。
解: x bx c 2++是362542()x x ++及3428542x x x +++的公因式∴也是多项式3625342854242()()x x x x x ++-+++的二次因式而362534285142542422()()()x x x x x x x ++-+++=-+b 、c 为整数得:x bx c x x 2225++=-+∴=-=b c 25,说明:这是对原命题进行演绎推理后,转化为解多项式1428702x x -+,从而简便求得x bx c 2++。
例3. 设x 为整数,试判断1052+++x x x ()是质数还是合数,请说明理由。
解:1052+++x x x ()=+++=++52225()()()()x x x x xx x ++25,都是大于1的自然数∴++()()x x 25是合数说明:在大于1的正数中,除了1和这个数本身,还能被其它正整数整除的数叫合数。
只能被1和本身整除的数叫质数。
【实战模拟】1. 分解因式:(1)-+-41222332m n m n mn(2)a x abx acx adx n n n n 2211++-+--(n 为正整数)(3)a a b a b a ab b a ()()()-+---3222222. 计算:()()-+-221110的结果是( ) A. 2100 B. -210 C. -2 D. -13. 已知x 、y 都是正整数,且x x y y y x ()()---=12,求x 、y 。
4. 证明:812797913--能被45整除。
5. 化简:111121995+++++++x x x x x x x ()()()…,且当x =0时,求原式的值。
【试题答案】1. 分析与解答:(1)-+-41222332m n m n mn=--+226122mn mn m n ()(2)a x abx acx adx n n n n 2211++-+--=+---ax ax bx cx d n 132()(3)原式=-+---a a b a a b ab a b ()()()322222=--+-=--=-a a b a b a b a a b a b a a b ()[()]()()()22222333注意:结果多项因式要化简,同时要分解彻底。
2. B3. x x y y y x ()()---=12∴-+=()()x y x y 12x y 、是正整数∴12分解成1122634⨯⨯⨯,,又 x y -与x y +奇偶性相同,且x y x y -<+∴-=+=⎧⎨⎩∴==⎧⎨⎩x y x y x y 2642说明:求不定方程的整数解,经常运用因式分解来解决。
4. 证明: 812797913-- =--=--=⨯=⨯⨯=⨯333393135335345282726262624224()∴--812797913能被45整除5. 解:逐次分解:原式=++++++()()()()111121995x x x x x x …=++++=++++++==+()()()()()()()()11111111219953419951996x x x x x x x x x x x …………∴当x =0时,原式=12 、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式a b a b a b 22-=+-()() 完全平方公式a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±⋅+()()补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()()=++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++=(2)当c =0时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
下面我们就来学习用公式法进行因式分解【分类解析】1. 把a a b b 2222+--分解因式的结果是( )A. ()()()a b a b -++22B. ()()a b a b -++2C. ()()a b a b -++2D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。
再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。
说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。
同时要注意分解一定要彻底。
2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式232x x m -+有一个因式是21x +,求m 的值。
分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。
解:根据已知条件,设221322x x m x x ax b -+=+++()()则222123232x x m x a x a b x b -+=+++++()() 由此可得21112023a a b m b+=-+==⎧⎨⎪⎪⎩⎪⎪()()()由(1)得a =-1 把a =-1代入(2),得b =12把b =12代入(3),得m =123. 在几何题中的应用。