习题五应用概率与统计课后解答
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
分组区间 (0, 1700] (1700, 3400] (3400, 5100] (5100, 6800] (6800, 8500] (8500, 10200] (10200, 11900] (11900, 13600] (13600, 15300]
组中值 850 2550 4250 5950 7650 9350 11050 12750 14450
第五章
统计量及其分布
习题 5.1
1. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委 托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解: (1)总体是该地区的全体用户; (2)样本是被访查的电话用户. 2. 某市要调查成年男子的吸烟率,特聘请 50 名统计专业本科生作街头随机调查,要求每位学生调查 100 名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜? 解:总体是任意 100 名成年男子中的吸烟人数;样本是这 50 名学生中每一个人调查所得到的吸烟人数; 总体用二项分布描述比较合适. 3. 设某厂大量生产某种产品,其不合格品率 p 未知,每 m 件产品包装为一盒.为了检查产品的质量,任 意抽取 n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的 n 盒产品中每一盒的不合格品数;
i =1 i =1 i =1 n n
= ∑ ( xi − x )( y i − y ) + 0 + 0 + n( x − c)( y − d ) = ∑ ( x i − x )( y i − y ) + n( x − c)( y − d ) .
应用统计学课后答案
应用统计学课后答案1. 简介本文档是针对应用统计学课程的相关习题和问题的答案汇总。
通过这些答案,学生可以更好地理解和应用统计学的方法和概念,提高解决实际问题的能力。
2. 统计基础2.1 描述性统计1.描述性统计是指对收集到的数据进行总结、表达和描述的统计方法。
它包括数据的中心趋势和离散程度的度量。
2.常见的描述性统计指标包括均值、中位数、众数、标准差、百分位数等。
3.均值是指一组数据的平均值,是描述数据中心趋势的最常用指标。
计算均值时,将所有数据相加后除以数据的个数。
2.2 概率与概率分布1.概率是指某个事件发生的可能性。
它的取值范围在0到1之间,0表示不可能发生,1表示一定发生。
2.概率分布是指随机变量取不同值的可能性分布。
常见的概率分布有正态分布、均匀分布、泊松分布等。
3.正态分布是一种重要的概率分布,它有唯一的均值和标准差。
许多自然现象和统计数据都符合正态分布。
3. 统计推断3.1 参数估计1.参数估计是指利用样本数据来估计总体参数的方法。
常见的参数估计方法有点估计和区间估计。
2.点估计是指通过样本数据来估计总体参数的具体数值。
常见的点估计方法有样本均值、样本方差等。
3.区间估计是指通过样本数据来估计总体参数的取值范围。
常见的区间估计方法是利用置信区间来给出总体参数的范围估计。
3.2 假设检验1.假设检验是用来判断一个统计推断是否可以接受的方法。
主要包括设置假设、选择检验统计量、确定显著性水平和计算p值等步骤。
2.假设检验可以用于检验总体均值、总体比例、总体方差等参数的假设。
4. 回归分析4.1 简单线性回归1.简单线性回归是一种用来研究自变量和因变量之间关系的方法。
它可以通过拟合直线来描述两个变量之间的线性关系。
2.在简单线性回归中,自变量只有一个,因变量可以通过自变量的线性组合来预测。
3.简单线性回归模型可以通过最小二乘法来求解,找出最佳拟合直线。
4.2 多元线性回归1.多元线性回归是一种用来研究多个自变量与因变量之间关系的方法。
概率论与数理统计课后习题答案(非常全很详细)
概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
n n
4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有 n 条,涂 上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有 m 条鱼,而涂有红漆的鱼则 有 k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有 N 条鱼,有涂有红漆的鱼所占比例为
样本标准差 s = 3.7778 ≈ 1.9437 .
2. 证明:对任意常数 c, d,有
∑ ( x − c)( y − d ) = ∑ ( x − x )( y − y ) + n( x − c)( y − d ) .
i =1 i i i =1 i i
n
n
证: ∑ ( xi − c)( y i − d ) = ∑ [( xi − x ) + ( x − c)][( y i − y ) + ( y − d )]
频数 9 9 5 4 4 1 1 3 4 30
频率 0.225 0.225 0.125 0.1 0.1 0.025 0.025 0.075 0.1 1
累计频率 0.225 0.45 0.575 0.675 0.775 0.8 0.825 0.9 1
6. 对下列数据构造茎叶图 472 425 400 382 418 392 429 428 381 443 解:茎叶图为
1572 − 738 ≈ 140 , 6 区间端点可取为 735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.9
《概率论与数理统计教程》课后习题解答
第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。
解 样本点总数为7828⨯=A 。
所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。
于是14978632)(=⨯⨯⨯=A P 。
1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。
解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计及其应用全部课后答案
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
概率论与数理统计(经管类)第五章课后习题答案
E X |
7.5 .
E X |
7.5
D X .
.
0.44
2. 在每次实验中,事件 A 发生的概率为 0.5.利用切比雪夫不等式估计,在 1000 次独立实验中,事件 A 发 生的次数在 400~600 之间的概率. 解:用 X 表示事件 A 发生的次数,它服从 n=1000,p=0.5 的二项分布. 则 E(X)=np=1000*0.5=500, D(X)=npq=1000*0.5*0.5=250 P 400 600 P |X 10
2.387 P X 6 2.387 10 6 2.387 1 Φ 10 6 2.387 1 Φ 1.68 0.0465
np P
1000 0.005
5, npq
2.23
X X 5 7 5 0.007 PX 7 P Φ 0.90 0.8159 1000 2.23 2.23 4. 在抛硬币的实验中,至少抛多少次,才能是正面出现的频率落在(0.4,0.6)区间的概率不小于 0.9? 解:用 X 表示 n 次试验中出现正面的次数, 则 X~B(120, ), np P 0.4 0.5n, npq X n 0.6 0.6 0.5n X 0.5n √n 2 √n 5 0.9 0.9505 0.6n 0.5n √n , 2
A. N 2,4 B. N 2, 解: E Z
∑
E x
2n
2
D Z
1 n
1 n2
n
n
E xi
i 1
1 n2 4 n
4n
4
n
故Zn
二,填空题
概率论与数理统计答案第五章(东华大学出版)
第五章复习题Page1941、 设i (i=1,2,,50)ξ 是相互独立的随机变量,且它们都服从参数为0.03λ=的泊松分布。
记1250ξξξξ=+++ ,试用中心极限定理计算P(3)ξ≥。
解:由中心极限定理可认为~ξ((),())(1.5,1.5)N E D N ξξ=,则(3)P ξ≥1.31.5)1)1(1.225)10.889751.51.5P ===-Φ=-=。
2、 一部件包括10部分。
每部分的长度是一个随机变量,它们相互独立且具有同一分布。
其数学期望为2mm ,均方差为0.05mm ,规定总长度为20±0.1mm 时产品合格,试求产品合格的概率。
解:由中心极限定理可认为总长度~ξ((),())(20,0.025)N E D N ξξ=,则(19.920.P ξ≤≤()2(0.6325)10.4735025P ξ=≤=Φ-=。
3、 一个加法器同时收到20个噪声电压(1,2,,20)k V k = 。
设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布。
V 为加法器上受到的总噪声电压,求(105)P V >解:由中心极限定理可知)3500,100()121020,520())(),((~2N N V D V E N V =⨯⨯=,则(105))1(0.39)10.65170.3483P V P >=>=-Φ=-= 4、 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(0.5,0.5]-上服从均匀分布。
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2) 问几个数加在一起可使得误差总和的绝对值小于10的概率为0.90?解:(1)由中心极限定理:误差总和)125,0()1211500,01500(~N N =⨯⨯ξ,因此(||15)2(12(10.9099)0.1802P P ξ>=>=-Φ=⋅-=。
(完整版)大学数学概率统计课后习题解答
大学数学概率与数理统计课后习题详解习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次};(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ΛΛ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A Y ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B Y ;(7)C A -. 解 (1) Ω=B A Y 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B I Y {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10};(7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A Y ;(2)B A ;(3)B A ;(4)B A Y .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A Y ;(2)=⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A I 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x Y ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或Y Y ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件C B A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E );(2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E );(4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E );(8) 三个事件中至少有两个出现(记为8E )。
陈国华等主编概率论与数理统计第五章习题解答
x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第五章
复制过来让大家都能下载哈第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表求样本容量n,样本均值X¯,样本方差S2.解答:对于抽到的每个居民户调查均收入,可见n=200.这里,没有给出原始数据,而是给出了整理过的资料(频率分布),我们首先计算各组的“组中值”,然后计算X¯和S2的近似值:分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.5.3 抽样分布(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
王明慈 概率论与数理统计 第二版 习题解答 习题五
n1 X1 + n2 X 2 ; n1 + n2
(2).联合样本的样本方差 S
2
( n − 1) S12 + ( n2 −1) S22 + = 1
证明: ( 1)
X=
Sum1 + Sum 2 n1 X1 + n2 X 2 = n1 + n2 n1 + n2
n1
S2 =
(2)
w.
又∑ ( X1i − X1 + X1 − X )2
(
)
(
)
(
(
(
)
(
)
9. 设总体 X 服从正态分布 N µ ,
(1) 从总体中抽取容量为 64 的样本,求样本均值 X 与总体均值 µ 之差的绝对值小于 1 的概率 P X − µ < 1 ;
(
kh da
课
)
后
答 案
(
52 )
即F1−α ( k1, k2 )=
(2)抽取样本容量 n 多大时,才能使概率 P X − µ < 1 达到 0.95? 解:(1) ∵
n1 + n2
(n X + (n + n )⋅
1 1 2
1
+ n2 X 2 )
2
( n1 + n2 )
n1 + n2
2
答 案
=
n1n2 ( X 1 − X 2 )
U = X 2 + Y 2 + Z 2 的分布函数与概率密度;并验证§5.4 定理 1 当 k=3 时成立,即 U~ χ 2 ( 3)
解:X, Y, Z 相互独立且都服从 N(0, 1),则 U~ χ 2 ( 3) 显然
《应用概率统计》课后习题解答
(1)每次取后不放回;(2)每次取后放回。
X
1
2
3
4
P
解:(1)
(2) ( =1,2,…)
6.某射手每发子弹命中目标概率为0.8,现相互独立地射击5发子弹,
求:(1)命中目标弹数地分布律;(2)命中目标的概率。
解:由题意得:(X,Y)的可能取值为:(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)。
则由概率的乘法公式得:P{X=1,Y=2}=(1/4)×(2/3)=1/6
P{X=1,Y=3}=(1/4)×(1/3)=1/12
P{X=2,Y=1}=(2/4)×(1/3)=1/6
解:(1) = + +
= cxdx
=1
所以,解得
C=2
(2) P{0.3<X<0.7}= 2xdx
=
=0.49-0.09
=0.4
(3)由 得:
当a < 0时, ,
当a > 1时,
故,a不可能小于0或大于1;
当0≤a≤1时,
所以, ,即得:a=
(4)由题设可知,b的取值范围为:0≤b≤1
,所以b=0.6
当 时
当 时
于是
(3)
=
5.随机变量(X,Y)的分布密度为
(1)求系数C;(2)求随机变量(X,Y)落在 内的概率。
解:(1)由 (利用极坐标运算)得
于是
(2)利用极坐标运算得:
= (1- )
6.求出在D上服从均匀分布的随机变量(X,Y)的分布密度及分布函数,其中D为x轴,y轴及直线y=2x+1围成的三角形区域.
哈工大概率论与数理统计课后习题答案五
习 题 五1.假设有10只同种电器元件,其中两只废品,从这批元件中任取一只,如果是废品,则扔掉重新取一只,如仍是废品,则扔掉再取一只,试求在取到正品之前,已取出的废品只数的数学期望和方差。
解 设X 为已取出的废品只数,则X 的分布为012828218101091098X P ⋅⋅⋅即012881104545XP所以 82245459EX =+=, 2844,454515EX =+=224488().1581405DX EX EX =-=-= 2.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若1周5个工作日里无故障,可获利10万元;发生一次故障仍可获利5万元,发生两次故障所获利润零元;发生三次或三次以上故障就要亏损2万元。
求1周内期望利润是多少? 解 设一周所获利润为T (万元),则T 的可能值为10,5,0,2-.又设X 为机器一周内发生故障的次数,则~(5,0.2)X B ,于是,5(10)(0)(0.8)0.3277P T P X =====145(5)(1)0.2(0.8)0.4096P T P X C ====⨯=类似地可求出T 的分布为205100.05790.20480.40960.3277T P -所以一周内的期望利润为20.057950.4096100.3277ET =-⨯+⨯+⨯5.209=(万元)3.假设自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12为不合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (元)与零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X ⎧-<⎪=≤≤⎨⎪->⎩若若若问平均内径μ取何值时,销售一个零件的平均利润最大. 解1(10)20(1012)5(E T P X P X P X =-⨯<+⨯≤≤-⨯>10()20[(12)(10)]5[1(12)]1μμμμ-=-Φ+Φ--Φ---Φ-25(12)21(10)5μμ=Φ--Φ--25(12)21(10)dETd ϕμϕμμ=--+-22(10)(12)2221250μμ----=-即221[(12)(10)]22125e μμ----= 两边取对数得 21222ln25μ-= 即12511ln221μ=-. 时,平均利润最大.4.从学校到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望. 解 2~(3,)5X B ,分布律为3323()()()0,1,2,3.55k k k P X k C k -===即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 54722415061251251251255EX =++==5.设随机变量服从几何分布,其分布列为1()(1)k P X k p p -==-,01,1,2,p k <<=求EX 与DX 解1 111111(1)()k k kk k k k k x qx qEX k p p p kqp x p x ∞∞∞∞--======'⎛⎫'=-=== ⎪⎝⎭∑∑∑∑其中1q p =-由函数的幂级数展开有 011k k x x∞==-∑, 所以21111.1(1)x qx qEX p px x p=='⎡⎤=-==⎢⎥--⎣⎦ 因为221211()(1)k k x q x qk k x EX k pqp x x p x ∞∞-====''⎡⎤⎡⎤'===⎢⎥⎢⎥-⎣⎦⎣⎦∑∑22p p -=, 所以2222221().p qDX EX EX p p p -=-=-=解22123k EX P pq pq kpq -=+++++21(123),k p q q kq -=+++++设21123,k S q q kq -=+++++ (1) 则2323,k qS q q q kq =+++++(2)(1)–(2)得211(1)11k q S q q q q--=+++++=-, 所以2211(1)S q p ==-,从而,得 211EX pS p p p==⋅=.22222123n EX p pq pq n pq -=+++++222211(123)n p q q n q pS -=+++++,22232123,n qS q q q n q =+++++2112(1)135(21),n q S q q n q S --=++++-+23235(21),n qS q q q n q =++++-+21222(1)12()111n q qq S q q q q p--=+++++=+=+-,2212q S p p =+, 于是 212312S qS p p p==+, 所以 22321212()q qEX p p p p p =+=+, 故得X 的方差为2222221211().q q pDX EX EX p p p p p-=-=+-==6.设随机变量X 分别具有下列概率密度,求其数学期望和方差. (1)||1()2x f x e -=;(2)1||,||1,()0,||1;x x f x X -≤⎧=⎨>⎩ (3)2215(2),02,()160,x x x f x ⎧-≤≤⎪=⎨⎪⎩其他; (4),01,()2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他解 (1)||102x EX x e dx +∞--∞=⋅=⎰,(因为被积函数为奇函数)22||2012x x DX EX x e dx x e dx +∞+∞---∞===⎰⎰202x xx exe dx +∞+∞--=-+⎰2[] 2.x x xee dx +∞+∞--=-+=⎰(2)11(1||)0,EXx x dx -=-=⎰3411222310101(1||)2()2[]346x x DX EX x x dx x x dx -==-=-=-=⎰⎰. (3)2232543001515(2)(44)1616EX x x dx x x x dx =-=-+⎰⎰26450154415161166541615x x x ⎡⎤=-+=⋅=⎢⎥⎣⎦, 22654015(44)16EX x x x dx =-+⎰2765015448167657x x x ⎡⎤=-+=⎢⎥⎣⎦, 所以2281()177DX EX EX =-=-=. (4)223122220111128(2)313333x EXx dx x x dx x =+-=+-=+-=⎰⎰,1223230112114(2)(81)(161)43412EX x dx x x dx =+-=+---=⎰⎰,所以1411126DX =-=. 7.在习题三第4题中求11EX+解 因X 的分布为 012311112488X P所以11111111671224384896EX =+⨯+⨯+⨯=+.8.设随机变量X 的概率密度为,02,(),24,0,ax x f x cx b x ⎧<<⎪=+≤≤⎨⎪⎩其他.已知32,(13)4EX P X =<<=,求(1),,a b c 的值(2)随机变量XY e =的数学期望和方差.解 (1)2421()()f x dx axdx cx b dx +∞-∞==++⎰⎰⎰24422202226,22a c x x bx a b c =++=++24222()()xf x dx ax dx cx b xdx +∞-∞==++⎰⎰⎰856633a cb =++, 2312335()422axdx cx b dx a c b =++=++⎰⎰,解方程组13281856633252a b c a b c a b c ⎧++=⎪⎪++=⎨⎪⎪++=⎩得 14a =, 1b =,14c =-.(2)242202111()()(1)(1)444X x x x EYE e e f x dx xe dx x e dx e +∞-∞===+-+=-⎰⎰⎰,24222220211()()(1)44X x xx EY E e e f x dx xe dx x e dx +∞-∞===+-+⎰⎰⎰2222211(1)[(1)]44e e e =-+-222221()(1)4DY EY EY e e =-=-.9.游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟,25分钟和55分钟从底层起行。
课后习题统计与概率问题的解答
课后习题统计与概率问题的解答统计与概率是数学中的重要分支,它们不仅在学术领域有广泛应用,也在现实生活中扮演着重要的角色。
通过解答习题,我们能够更好地理解和应用统计与概率的概念和方法。
本文将围绕统计与概率问题进行解答,并提供合适的格式。
一、组合与排列组合与排列是统计学中常见的问题类型,它们涉及到从给定的元素集合中选择若干个元素进行排列或组合的问题。
1. 问题描述:某班级有10名学生,要从其中选择3名学生组成一个小组,求可能的选择方案数。
解答:根据组合的概念,从10名学生中选择3名学生的组合数为:C(10, 3) = 10! / (3! * (10-3)!) = 120。
2. 问题描述:某班级有10名学生,要从其中选择2名学生进行排队,求可能的排队方案数。
解答:根据排列的概念,从10名学生中选择2名学生进行排队的排列数为:A(10, 2) = 10! / (10-2)! = 90。
二、概率计算概率计算是统计学中的核心内容,它涉及到根据已知信息计算某一事件发生的可能性。
1. 问题描述:一副标准扑克牌中,从中随机抽取一张牌,求抽到红心的概率。
解答:标准扑克牌中有52张牌,其中有13张红心。
因此,抽到红心的概率为:P(红心) = 13/52 = 1/4。
2. 问题描述:一枚公平的骰子有6个面,分别标有1到6的数字,每个数字的出现概率相等。
投掷两次,求恰好一次出现偶数的概率。
解答:投掷两次的可能结果一共有6 * 6 = 36种,其中有3种情况满足恰好一次出现偶数的条件:(2, 1),(4, 1),(6, 1)。
因此,恰好一次出现偶数的概率为:P(恰好一次出现偶数) = 3/36 = 1/12。
三、条件概率与独立性条件概率和独立性是概率计算中的重要概念,它们用于描述事件之间的关系和发生的可能性。
1. 问题描述:某班级有30名学生,其中有15名男生和15名女生。
从中随机选取一名学生,已知该学生是男生的情况下,求选到的学生是女生的概率。
应用概率统计课后习题答案详解
习 题 一 解 答1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生;(3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生.解:(1)C B A (2)C AB (3)()C B A ⋃ (4)BC A C AB ABC ⋃⋃(5)ABC (6)C B A C B A C B A ⋃⋃――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41==i i A A , (2) A ,(3) B , (4) 32A A.解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球(4)第2次和第3次至少有一次取得白球――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ⊇ (2)A B ⊆――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A .解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问:(1) ABC表示什么事件?(2) 在什么条件下,有ABC=A成立? (3) C ⊂B表示什么意思?(4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书(4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系.(1) X < 20 与X ≥ 20 ;(2) X > 20与X < 18 ; (3) X > 20与X ≤ 25 ;(4) 5 粒种子都出苗与5粒种子只有一粒不出苗; (5) 5 粒种子都出苗与5粒种子至少有一粒不出苗. 解:(1)对立; (2)互斥;(3)相容;(4)互斥;(5)对立――――――――――――――――――――――――――――――――――――――― (古)7. 抛掷三枚均匀的硬币,求出现“三个正面”的概率. 解:125.081213===p ―――――――――――――――――――――――――――――――――――――――(古)8. 在一本英汉词典中,由两个不同的字母组成的单词共有 55 个,现从•26个英文字母中随机抽取两个排在一起,求能排成上述单词的概率.解:252655⨯=p ≈0.0846 ――――――――――――――――――――――――――――――――――――――― (古)9. 把 10 本书任意地放在书架上,求其中指定的三本书放在一起的概率是多少? 解:首先将指定的三本书放在一起,共!3种放法,然后将8)1(7=+进行排列,共有!8种不同排列方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 五 解 答
2 解: 54.4175
5.4124.4204.4191.4183.417554321=++++=++++=
x x x x x x ()()()()()()[]
353.91511125242322215122=-+-+-+-+--=--=∑=x x x x x x x x x x x x n s i i 3 解: ⎪⎪⎭⎫ ⎝
⎛363.6,52~2N X 即()205.1,52~N X
{}()()()()114.171.114.171.105.1528.5305.1528.508.538.50-Φ+Φ=-Φ-Φ=⎭
⎬⎫⎩⎨⎧-<-<-=<<σμX P X P 查表得 82927.018729.095637.0=-+=
4 解: 依题意 ()22,80~N X {}{}{}⎭
⎬⎫⎩⎨⎧-<-+⎭⎬⎫⎩⎨
⎧≤--=<+≤-=>-∴5.15.1177831380σμσμx P x P x P x P x P =()13362.05.122=Φ- 5 解: 依题意 ()23.0,0~N X ()1,0~3
.0N X ∴,由标准正态分布和2χ的关系知: ()1~3.022
1χ⎪⎭
⎫ ⎝⎛X 同理可得 ()1~3.0222χ⎪⎭⎫ ⎝⎛X ,……()1~3.02210χ⎪⎭
⎫ ⎝⎛X .由2χ的可加性知: ()10~09.0121012χ∑=i i X (){}
100.0161009.044.109.0144.1210121012=>=⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>∴∑∑==χP X P X P i i i i 6 解: 查表可得 (1)()92.169205.0=χ
(2)()92.821299.0=χ (3)()86.10182
9.0=χ (4)()697.13005.0=t (5)()120.216025.0=t
(6)()4411.23401.0=t (7)F ()28.220,1205.0=
(8)F ()3937.020,1295.0= (9)F ()68.220,12025.0=
7 解: 依题意可得(),,~2
σμN X ⎪⎪⎭⎫ ⎝⎛∴n ,~2σμN X ()1,0~N n X σ
μ
-∴ ,由标准正态分布和2χ分布之间的关系知:
()1~22χσμσμσμ⎪⎪⎪⎪⎭
⎫ ⎝⎛-=-⨯-=∴n X n X n X U (2)由定理 5.2可得,当1X ,2X …n X 来自总体()2,~σμN X 的样本,则
有~(0,1)X N μ
σ
- 22(1)~(1)n S t n σ--
()2
2~1,1(1)X X V F n S n μσ⎛⎫ ⎪-∴==- ⎪ ⎪ ⎪-⎝⎭ 8 解:(1)根据定理5.1 有()()1~1222
--n S n χσ
P{S>2.9}=P{492S ⨯>4
9.292
⨯}=P (){}025.092.1892=>χ(查表得) (2) 根据定理5.1 有 ()1~--n t n
S
X μ ()(){}
005.0109105.245.6105.245.6=>=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=>t P X P X P
定理5.3的证明:
由于
221212
221212~(,),~(,),~(,
)(),~(0,1)X N Y N n n X Y N n n X Y N σσμμσσμμ--+则利用一开始给出的那个性质 2
22211221222
22212222112212225.11S 1S ~(1),~(1),S S 1S 1S ~(2)n n n n n n n n χχσσχχσσ
------++-由定理可知
()()且和相互独立,由分布的可加性有
()()
12t t(2)5.3X Y n n +-由分布的定义可知
从而定理成立
()()
112211F n ,n F n ,n αα-=证明:
()()
()()
()()()11211211211211221211P{F F n ,n }
1111P{}1P{}F F n ,n F F n ,n 1111P{}P{}.................(1)F F n ,n F F n ,n 1F n ,n ,F
1P{F n ,n }........................................................F
ααααααααα------=><=-≥>=≥=>=由定义可知故但
依定义有()()11221....(2)(1)(2)1F n ,n F n ,n αα-=比较和就有。