概率统计课后答案

合集下载

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)| 0<x<1,0<y<1}。

(6)=Ω{ t | t ≥ 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A 发生,B 与C 不发生。

(2)A 与B 都发生,而C 不发生。

(3)A ,B ,C 中至少有一个发生。

(4)A ,B ,C 都发生。

(5)A ,B ,C 都不发生。

(6)A ,B ,C 中不多于一个发生。

(7)A ,B ,C 至少有一个不发生。

(8)A ,B ,C 中至少有两个发生。

解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B B A B A =(2)AB B A =(3)AB B A B =⊂则若,(4)若A B B A ⊂⊂则,(5)C B A C B A = (6)若Φ=AB 且A C ⊂,则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。

概率统计课后答案

概率统计课后答案

概率统计课后答案2第 一 章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习题一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反{(,)(,)(,)(,)}(2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}Ω==i j i j(3)调查城市居民(以户为单位)烟、酒的年支出34 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B 解:(1)()()A B A B AB AB B B ==,5 (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率. 解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为kn C ,而全为白球的取法有k mn C -种,故所求概率为k n k mn C C --1.解法二:令i A —第i 人中奖,,.,2,1k i =B —无一人中奖,则kA A AB 21=,注意到 k A ,,A ,A 21不独立也不互斥:由乘法公式)()()()()(11213121-=k k A A A P A A A P A A P A P B P(1)(2)(1)121n m n m n m n m k n n n n k -------+=⋅⋅---+!,1k k n m n m k k n nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少?6 解:122585410()C C C P A C -=7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率. 解:此为几何概率问题:]11[,-=Ω,所求事件占有区间]5151[,-,从而所求概率为121525P ⋅==.8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDEOAB S S =.9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本7 空间占有区域Ω, 两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B . 解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--=.12.假设()0.4P A =,()0.7P AB =,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B .解:若A 、B 互不相容,()()()0.70.40.3P B P A B P A =-=-=;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库8的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容) 故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P 即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连9两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率. 解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A B P A P AB P16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P 且5()8P B C =,求()P A B .解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程085)(3)]([22=+-C P C P 151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-== 17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生).10 解:设事件i A —第i 次试验中A 出现(1,2,,)i n =,∵(),()1i i P A P A εε==-,(1,2,,)i n =,∴n 次试验中,至少出现A 一次的概率为 1212()1()n n P A A A P A A A =-121()n P A A A =-121()()()n P A P A P A =-⋅⋅⋅(独立性)1(1)n ε=-- ∴12lim ()1n n P A A A →∞=,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译 出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则 ()()()1 P D P A B C P A B C ==- 1()1()()() P ABC P A P B P C =-=-42331..5345=-=.19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为ip ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --;(2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机 器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故 ()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496P A BC P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A =,求()P A B . 解:由()0.4B P A =得()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=,()()()()0.82P A B P A P B P AB =+-=.22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为 ()()0.4()()0.5()()0.8P AB P B B B P P A A P A P A =====23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=. 24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球.1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********⨯+⨯=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=iB {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上}则%1)(%,4)(%,95)(321===B P B P B P %70)(%,80)(%,90)(321===B A P B A P B A P 所以)()()()()()()(332211B A P B P B A P B P B A P B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i 分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,A P B =32()0.7,()0.85A A P P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()A A A P A P B P P B P P B P B B B=++ 0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ==== 28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A A P P B B ==()0.0005,P B =所求概率为().B P A()0.10,()0.9995.AP P B B ==由Bayes 公式得 ()()()()()()()AP B P B B P A A A P B P P B P B B=+ 0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率.解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1A A A P P P B B B ===,由于3个射手射击是互相独立的,所以 1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯=2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯= 3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i ii P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率.解:A ——需经调试 A ——不需调试B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P(1)由全概率公式:)()()()()(A B P A P A B P A P B P ⋅+⋅=%941%70%80%30=⨯+⨯=.(2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P B A P .31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率.解:所求的概率为234(1)p p -. 32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率 解:所求的概率为11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅= 34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =, 则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222n n n n r n r n rn r n r C P n C -----==.第二章思考题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究. 随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g则随机变量)(X g Y =既非离散型又非连续型. 事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y;当10<≤y 时,()2))(()(yy X P y X g P y F Y =≤=≤=于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==YY F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量. 4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么? 答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x P X x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是 一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形. 解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩X0 1 2 P0.10.60.30 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}ii A =第次取得废品,{}iAi =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====,21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(),3212311123299{2}()0.0409121110220A A P X P A A A P A P PA A A ===⋅⋅=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A ====⋅⋅⋅=≈()()()()所以X 的分布律见下表8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i 成正比,即 1,2,,10P X i ki i ===(),(),求k .解:由条件 1,2,,10P X i ki i ===(),(),由分布律的性质1011i i p ==∑,应有1011i ki ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N . 解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率. 解:设~()X P λ,由题意:)1(=XP =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为222!0)0(--===e e X P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ⎛⎫⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B ,X 的分布律为{})50,,2,1,0(31325050=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk14.设随机变量X的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =. 解:(3,)Y p B ,1211{}224p P Xxdx =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,x ax e x f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率. 解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx+∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2x xxe F x ax edx x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩ .(3)511(0)()(0)12P X F F e λλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x Xx ++=有实根的概率.解: “方程210x Xx ++=有实根”即{2}X>,故所求的概率为{2}P X >=45.17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩解得:1,1a b ==- 18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e,即021=--λe,∴.2ln =λ19.设随机变量(1,4)X N ,求(0 1.6)P X ≤<,(1)P X <.解:01 1.61(0 1.6)()22P X P X --≤<=≤<1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则 (1)123,,A A A 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭, 同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫ ⎪⎝⎭⎛⎫== ⎪⎝⎭0.5760.0010.0090.062⨯==.21.随机变量X 的分布律为求2Y X =的分布律.22.变量X 服从参数为0.7的0-1分布,求2X及22X X-的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22XX-的可能值为1-和0,由于2{}P Xu =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P XX P X -=-===,2{20}{0}0.3P XX P X -====,可得22X X-的概率分布为23.X 概率密度函数为21()(1)Xf x x π=+,求2Y X =的概率密度函数()Yf y .解:2y x=的反函数为2y x =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4内概率密度()Yfy .解法一(分布函数法) 当0y <时,()0,4YF y y =>时()1Y F y =,当04y ≤≤时, ()(YXF y P X F ==从而()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x =在()0,2单增,由于反函数x =在()0,4可导,'yx =,从而由公式得()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余25.,0)0 ,0x X e x f x x -⎧≥=⎨<⎩(,求XY e =的密度.解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Y f y ey y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)xy e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1X Y f y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量XY e =和ln Z X =的概率密度()Yfy 和()Z f z .解:X 的密度为1, 01() x f x ⎧<<⎪=⎨⎪⎩0,若其它, (1)函数xy e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y ey ⎧<<⎪=⎨⎪⎩0,其它.(2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数zx e -=,且0Z >,从而()(), () z z X Z f e e f z -->⎧'⎪=⎨⎪⎩z 00,其它0, zz e ->⎧⎪=⎨⎪⎩0,其它.27. 设()Xfx 为X 的密度函数,且为偶函数,求证X-与X 有相同的分布.证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--,()()()()1Y X X p y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'YXX X p y p y y p y p y =--=-=.28.设随机变量X服从正态分布),(2σμN ,,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y =. 求证Y 服从区间]1,0[上的均匀分布.证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F-存在,又因1)(0≤≤x F ,因此Y 的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y F F ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P .由此可看出,即使两个离散随机变量Y X 与相互独立同分布, YX 与一般情况下也不会以概率1相等.2解:由∑∑ijijp =1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立.7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P 3解:)()1,1(11AB P Y X P p ====,121)()(==A B P A P )()0,1(12B A P Y X P p ==== 613241)()(=⋅==A B P A P 因为:,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p 12812161121122=---=p ,结果如表所示.4 解: X 的边缘分布律为32}2{,31}1{====X P X PY的边缘分布律为21}2{,21}1{====X P Y P1=Y 的条件下X的条件分布为}1{}1,1{}11{=======Y P Y X P Y X P 1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ======.1,0;1,0}{}{=====j i j Y P i X P 于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故111}11{,1110}10{======X Y P X Y P ,且1,0,}{}{},{=======j i i X P i X jY P j Y i X P于是),(Y X 的分布律为放回抽样时,两次抽样互不影响,故彼此相互独立;不放回抽样,第一次抽样对第二次抽样有影响,不相互独立. 6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x ax b x a ab x f X ,0,1)(, )(y fY=⎪⎩⎪⎨⎧><≤≤-d y cy d y c d c ,0,1随机变量X 及Y 是独立的. 7 解 (1)),(y x f =yx y x F ∂∂∂),(2=)9)(4(6222y x ++π(2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg =)22(1xarctg +ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxdx f X X )4(22x +π同理可得随机变量Y 的边分布函数 =+∞=),()(y F y F Y)32)(22(12y arctg ++ππππ=)32(1yarctg +ππ Y的边缘分布密度函数==)()(y F dy dy f y Y )9(32y +π(3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立.8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x e y f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====120102110222222222,12121}2{y x r r y x e erdred dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x r r y x e ee rdr e d dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x r r y x e e rdr e d dxdye Z P πθππ所以,Z的分布律为:.1}2{,}1{,}0{212212-----==-====eZ P ee Z P e Z P9解:(1)由 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121A dxdy e A y x ,即 12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x(2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy e y x =xe 33-,当0>y ,)(y fY=⎰∞),(dxy x f =⎰∞+-0)43(12dx e y x =ye 44-,可知边缘分布密度为:)(x fX=⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12e e dxdy e y x10解 因为 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=101021dy y xdx c ,6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=10226x dy xy , 所以)(x fX =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=1022,36y dx xy , 所以)(y fY=⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x fX)(y f Y ,所以X 与Y 相互独立.11解 由 2ln 12211===⎰e e D x dx xS当21ex ≤≤时,,2121),()(1010xdy dy y x f x f x x X ===⎰⎰其它)(x f X =0.所以:.41)2(=X f 12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=x x x x dy 10,21 )(y f Y =⎰<<--=111,11y y y dx故)(y x fYX =)(),(y f y x f Y=⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f X Y =)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X)(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx x dyy f dx x f dxdy y f x f Y X P )()()()(}{ ⎰⎰⎰⎰>∞+∞-∞+==>yx ydxx f dy y f dxdy y f x f Y X P )()()()(}{ 交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dx x f )()(⎰⎰∞+∞+∞-ydxx f dy y f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P . 14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p+()1p --p )1p -=9712=+-p p解得:,32,3121==p p因而a 有两个值.由于2121}{)(1-==≤=⎰a dx a X P A P a ,所以,当311=p时,由21-a =31得35=a 当322=p时,由21-a =32得37=a . 15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P,41}2{}2{}4{=====+Y P X P Y X P故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P (2)由已知易得 ;21}42{,21}22{====X P X P 16解 由已知得所以有17证明:对任意的,,,1,021n nk += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n i k i k n i n i i n q p C q p C 0)(2211=∑=-+-ki k n n k i k n i n q p C C 02121)( (利用组合公式 ∑=+-=ki k nm i k n im C C C)=kn n k k nn q p C -++2121即Y X Z +=~),(21p n nb +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z f dx x z f x f z f Y Y X Z -=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案

1i jk n
若事件 A1 , A2 ,, An 互不相容,则
PA1 A2 An PA1 PA2 PAn 3
2.条件概率及乘法定理
条件概率
PA
|
B
PAB PB
,
PB
|
A
PAB PA
.
乘法定理 PAB PB PA| B PA PB | A
PA1 A2 An PA1 PA2 | A1PA3 | A1A2 PAn | A1A2 An1
N
P10 10
设事件A 表示指定的3本放在一起,
则A所包含的基本事件的数: M P33 P88

P(A)
M N
P33 P88 P10
10
8!3! 1 0.067 10! 15
11
6. 为减少比赛场次,把20个球队任意分成两组(每组10队)进行 比赛,求最强的两队分在不同组内的概率。

解 基本事件的总数:N 9 105
设事件A 表示电话号码是由完全不同的数字组成, 则A所包含的基本事件的数: M 9 P95

P( A) M N
9 P95 9 105
189 1250
0.1512
10
5. 把10本书任意地放在书架上, 求其中指定的3本放在一起的概率。

基本事件的总数:
C
1 4
C
2 3
C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。

P( A)
C
50 95
C
1 5

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案1⽬录习题⼀ (1)习题⼆ (16)习题三 (44)习题四 (73)习题五 (97)习题六 (113)习题七 (133)1习题⼀写出下列事件的样本空间:(1) 把⼀枚硬币抛掷⼀次;(2) 把⼀枚硬币连续抛掷两次;(3) 掷⼀枚硬币,直到⾸次出现正⾯为⽌;(4) ⼀个库房在某⼀个时刻的库存量(假定最⼤容量为M ).解 (1) Ω={正⾯,反⾯} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)}(3) Ω={(正),(反,正),(反,反,正),…}(4) Ω={x ;0 ≤x ≤ m }掷⼀颗骰⼦的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数⼩于5”,D =“⼩于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对⽴事件,即B =A ;B 与D 互不相容;A ?D ,C ?D.3. 事件A i 表⽰某个⽣产单位第i 车间完成⽣产任务,i =1,2,3,B 表⽰⾄少有两个车间完成⽣产任务,C 表⽰最多只有两个车间完成⽣产任务,说明事件B 及B -C 的含义,并且⽤A i (i =1,2,3)表⽰出来. 解 B 表⽰最多有⼀个车间完成⽣产任务,即⾄少有两个车间没有完成⽣产任务.313221A A A A A A B ++=B -C 表⽰三个车间都完成⽣产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB ⽤⼀些互不相容事件的和表⽰出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对⽴的区别何在,举例说明.解两个对⽴的事件⼀定互不相容,它们不可能同时发⽣,也不可能同时不发⽣;两个互不相容的事件不⼀定是对⽴事件,它们只是不可能同时发⽣,但不⼀定同时不发⽣. 在本书第6页例2中A 与D 是对⽴事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否⼀定互不相容?画图说明.解不⼀定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容,D ?A ?F ,A ?C.8. 袋内装有5个⽩球,3个⿊球,从中⼀次任取两个,求取到的两个球颜⾊不同的概率.解记事件A 表⽰“取到的两个球颜⾊不同”. 则有利于事件A 的样本点数⽬#A =1315C C .⽽组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1 图1-22P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表⽰有利于A 的样本点数⽬与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有⿊球的概率.解设事件B 表⽰“取到的两个球中有⿊球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P - 10. 抛掷⼀枚硬币,连续3次,求既有正⾯⼜有反⾯出现的概率.解设事件A 表⽰“三次中既有正⾯⼜有反⾯出现”, 则A 表⽰三次均为正⾯或三次均为反⾯出现. ⽽抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开⼀个门锁,今任取两把,求能打开门锁的概率.解设事件A 表⽰“门锁能被打开”. 则事件A 发⽣就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对⽴事件概率⽐较⽅便.12. ⼀副扑克牌有52张,不放回抽样,每次⼀张,连续抽取4张,计算下列事件的概率:(1)四张花⾊各异;(2)四张中只有两种花⾊.解设事件A 表⽰“四张花⾊各异”;B 表⽰“四张中只有两种花⾊”.,113113113113452##C C C C A , C Ω==)+#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P === 30006048+74366##)(452 )(.C ΩB B P === 13. ⼝袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹⾓的概率. 解设事件A 表⽰“取出的5枚硬币总值超过壹⾓”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##= 14. 袋中有红、黄、⿊⾊球各⼀个,每次任取⼀球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全⽩”,C =“全⿊”,D =“⽆红”,E =“⽆⽩”,F =“⽆⿊”,G =“三次颜⾊全相同”,H =“颜⾊全不相同”,I =“颜⾊不全相同”.解#Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8,#G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =243271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. ⼀间宿舍内住有6位同学,求他们中有4个⼈的⽣⽇在同⼀个⽉份的概率.解设事件A 表⽰“有4个⼈的⽣⽇在同⼀个⽉份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ?A ,求证P (B )≥P (A ).证∵B ?A∴P (B -A )=P (B ) - P (A )∵P (B -A )≥0∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +bP (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中⼀次抽取三个,计算取到废品的概率.解设事件A 表⽰“取到废品”,则A 表⽰没有取到废品,有利于事件A 的样本点数⽬为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA -=##=0.225520. 已知事件B ?A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解因B ?A ,故P (B )≥P (A ),即ln a ≥ln b ,?a ≥b ,⼜因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都⼤于0,⽐较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的⼤⼩(⽤不等号把它们连接起来).解由于对任何事件A ,B ,均有AB ?A ?A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. ⼀个教室中有100名学⽣,求其中⾄少有⼀⼈的⽣⽇是在元旦的概率(设⼀年以365天计算).解设事件A 表⽰“100名学⽣的⽣⽇都不在元旦”,则有利于A 的样本点数⽬为#A =364100,⽽样本空间中样本点总数为#Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P = 0.239923. 从5副不同⼿套中任取4只⼿套,求其中⾄少有两只⼿套配成⼀副的概率.解设事件A 表⽰“取出的四只⼿套⾄少有两只配成⼀副”,则A 表⽰“四只⼿套中任何两只均不能配成⼀副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职⼯订阅报纸,93%的⼈订阅杂志,在不订阅报纸的⼈中仍有85%的职⼯订阅杂志,从单位中任找⼀名职⼯求下列事件的概率:(1)该职⼯⾄少订阅⼀种报纸或期刊;(2)该职⼯不订阅杂志,但是订阅报纸.解设事件A 表⽰“任找的⼀名职⼯订阅报纸”,B 表⽰“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学⽣们的数学与外语两科考试成绩,抽查⼀名学⽣,记事件A 表⽰数学成绩优秀,B 表⽰外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB P P (B |A)=7.0)()(=A P AB P P (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独⽴,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ).解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B ) ? 0.7=0.4+0.6P ( B )P ( B )=0.528. 设事件A 与B 的概率都⼤于0,如果A 与B 独⽴,问它们是否互不相容,为什么?解因P ( A ),P ( B )均⼤于0,⼜因A 与B 独⽴,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电⼦元件的寿命在1000⼩时以上的概率为0.8,求3个这种元件使⽤1000⼩时后,最多只坏了⼀个的概率.解设事件A i 表⽰“使⽤1000⼩时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独⽴,事件A 表⽰“三个元件中最多只坏了⼀个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上⾯等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2=0.89630. 加⼯某种零件,需经过三道⼯序,假定第⼀、⼆、三道⼯序的废品率分别为0.3,0.2,0.2,并且任何⼀道⼯序是否出现废品与其他各道⼯序⽆关,求零件的合格率.解设事件A 表⽰“任取⼀个零件为合格品”,依题意A 表⽰三道⼯序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定⼆者独⽴,现在从外部打电话给该车间,求⼀次能打通的概率;第⼆次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解设事件A i 表⽰“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42P (A 2)=0.58 × 0.42=0.2436P (A m )=0.58m -1 × 0.4232. ⼀间宿舍中有4位同学的眼镜都放在书架上,去上课时,每⼈任取⼀副眼镜,求每个⼈都没有拿到⾃⼰眼镜的概率.解设A i 表⽰“第i ⼈拿到⾃⼰眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表⽰“每个⼈都没有拿到⾃⼰的眼镜”. 显然B 则表⽰“⾄少有⼀⼈拿到⾃⼰的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i ) =)41(1213141≤≤=?j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j ) =41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141= 85241241121414)(3424=-?+?-?=C C B P 83)(1)(=-=B P B P 33. 在1,2,…,3000这3000个数中任取⼀个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31 P (A 2A 3)=P (A 6)=61 P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3) =32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=- 34. 甲、⼄、丙三⼈进⾏投篮练习,每⼈⼀次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有⼀⼈投中;(2)最多有⼀⼈投中;(3)最少有⼀⼈投中.解设事件A 、B 、C 分别表⽰“甲投中”、“⼄投中”、“丙投中”,显然A 、B 、C 相互独⽴.设A i 表⽰“三⼈中有i ⼈投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452(1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212(3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、⼄⼆⼈轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较⼤,为什么?解设事件A 2n -1B 2n 分别表⽰“甲在第2n -1次投中”与“⼄在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独⽴.设事件A 表⽰“甲先投中”.+++=)()()()(543213211A B A B A P A B A P A P A P=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较⼤.36. 某⾼校新⽣中,北京考⽣占30%,京外其他各地考⽣占70%,已知在北京学⽣中,以英语为第⼀外语的占80%,⽽京外学⽣以英语为第⼀外语的占95%,今从全校新⽣中任选⼀名学⽣,求该⽣以英语为第⼀外语的概率.解设事件A 表⽰“任选⼀名学⽣为北京考⽣”,B 表⽰“任选⼀名学⽣,以英语为第⼀外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个⾏政⼩区,其⼈⼝⽐为9 : 7 : 4,据统计资料,甲种疾病在该地三个⼩区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表⽰从A 地任选⼀名居民其为南、北、中⾏政⼩区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表⽰“任选⼀名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. ⼀个机床有三分之⼀的时间加⼯零件A ,其余时间加⼯零件B ,加⼯零件A 时,停机的概率为0.3,加⼯零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表⽰“机床加⼯零件A ”,则A 表⽰“机床加⼯零件B ”,设事件B 表⽰“机床停⼯”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=?+?= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个⼝袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取⼀个球,放⼊与球上号数相同的⼝袋中,第⼆次从该⼝袋中任取⼀个球,计算第⼆次取到⼏号球的概率最⼤,为什么?解设事件A i 表⽰“第⼀次取到i 号球”,B i 表⽰第⼆次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成⼀个完全事件组.41)()(,21)(321===A P A P A P 41)|()|(,21)|(131211===A B P A B P A B P 41)|()|(,21)|(232221===A B P A B P A B P 61)|(,31)|(,21)|(333231===A B P A B P A B P 应⽤全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第⼆次取到1号球的概率最⼤.40. 接37题,⽤⼀种检验⽅法,其效果是:对甲种疾病的漏查率为5%(即⼀个甲种疾病患者,经此检验法未查出的概率为5%);对⽆甲种疾病的⼈⽤此检验法误诊为甲种疾病患者的概率为1%,在⼀次健康普查中,某⼈经此检验法查为患有甲种疾病,计算该⼈确实患有此病的概率.解设事件A 表⽰“受检⼈患有甲种疾病”,B 表⽰“受检⼈被查有甲种疾病”,由37题计算可知P (A )=0.0035,应⽤贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P += 01.09965.095.00035.095.00035.0=+ 25.0=41. 甲、⼄、丙三个机床加⼯⼀批同⼀种零件,其各机床加⼯的零件数量之⽐为5 : 3 : 2,各机床所加⼯的零件合格率,依次为94%,90%,95%,现在从加⼯好的整批零件中检查出⼀个废品,判断它不是甲机床加⼯的概率.解设事件A 1,A 2,A 3分别表⽰“受检零件为甲机床加⼯”,“⼄机床加⼯”,“丙机床加⼯”,B 表⽰“废品”,应⽤贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P 7305020+1030+06.05.006.05.0== (7)4)|(1)|(11=-=B A P B A P 42. 某⼈外出可以乘坐飞机、⽕车、轮船、汽车4种交通⼯具,其概率分别为5%,15%,30%,50%,乘坐这⼏种交通⼯具能如期到达的概率依次为100%,70%,60%与90%,已知该旅⾏者误期到达,求他是乘坐⽕车的概率.解设事件A 1,A 2,A 3,A 4分别表⽰外出⼈“乘坐飞机”,“乘坐⽕车”,“乘坐轮船”,“乘坐汽车”,B 表⽰“外出⼈如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P 1.05.04.03.03.015.0005.03.015.0?+?+?+??==0.20943. 接39题,若第⼆次取到的是1号球,计算它恰好取⾃Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应⽤贝叶斯公式 21212121)()|()()|(111111=?==B P A B P A P B A P 44. ⼀箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求⽽拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表⽰⼀箱中有i 件次品,i =0, 1, 2. B 表⽰“抽取的10件中⽆次品”,先计算P ( B )∑++?===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P 37.0)(31)|(0==B P B A P 45. 设⼀条昆⾍⽣产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, … 其中λ>0,⼜设⼀个⾍卵能孵化为昆⾍的概率等于p (0<p <1). 如果卵的孵化是相互独⽴的,问此⾍的下⼀代有k 条⾍的概率是多少?解设事件A n =“⼀个⾍产下⼏个卵”,n =0,1,2….B R =“该⾍下⼀代有k 条⾍”,k =0,1,….依题意λλ-==e !)(n p A P nn n ≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应⽤全概率公式有∑∑∞=∞===k n n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有,2,1,0e )(e e !)()(===--k k p k p B P p pq kk λλλλλ习题⼆1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. ⼀箱产品20件,其中有5件优质品,不放回地抽取,每次⼀件,共抽取两次,求取到的优质品件数X的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P m m 依次计算得X 的概率分布如下表所⽰:3. 上题中若采⽤重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取⼀件取到优质品的概率是1/4,取到⾮优质品的概率是3/4,且各次抽取结果互不影响,应⽤伯努利公式有{}1694302=??? ??==X P {}1664341112=??==C X P {}1614122=??? ??==X P 4. 第2题中若改为重复抽取,每次⼀件,直到取得优质品为⽌,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表⽰抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431???? ??-n .因此X 的概率分布为{}?=??==-,2,143411n n X P n 5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次⼀个直到取得新球为⽌,求下列随机变量的概率分布.(1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=?====X P X P {}22091091121233=??==X P {}2201991011121234===X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若⼀次取出3个,求取到的新球数⽬X 的概率分布.解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上⾯关于p 的⽅程,得p =0.5.8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.解 1122642=-=?+++p p p p p 解⽅程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值.解 ∑=+?++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为⼀个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是⼀个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均⼤于零且不相等并⼜组成等差数列,求X 的概率分布. 解设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需⼤于零,因此|d |<31, X 的概率分布为其中d 应满⾜条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ解得λ--=e 11c 13. 甲、⼄⼆⼈轮流投篮,甲先开始,直到有⼀⼈投中为⽌,假定甲、⼄⼆⼈投篮的命中率分别为0.4及0.5,求:(1)⼆⼈投篮总次数Z 的概率分布;(2)甲投篮次数X 的概率分布;(3)⼄投篮次数Y 的概率分布.解设事件A i 表⽰在第i 次投篮中甲投中,j 表⽰在第j 次投篮中⼄投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独⽴.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+)5.06.04.0()5.06.0(1?+?=-n,2,13.07.01=?=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1?+=-n,2,13.042.01=?=-n n 14. ⼀条公共汽车路线的两个站之间,有四个路⼝处设有信号灯,假定汽车经过每个路⼝时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停⽌前进,其概率为0.4,求汽车开出站后,在第⼀次停车之前已通过的路⼝信号灯数⽬X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144P { X =3 } =0.63×0.4=0.0864P { X =4 } =0.64=0.1296 15. ∈=.,0],[,sin )(其他,b a x x x f 问f (x )是否为⼀个概率密度函数,为什么?如果 (1).π23 ,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠?x x ,1d sin 2π0=?x x ⽽在??π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是⼀个概率密度函数.16. ≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么?解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,⼜1d e 202=?-∞+x c x c x f (x )是⼀个密度函数 .17. +=.0.2<<,2)(其他,a x a x x f 问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由.解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==??++a x x a a a a由于x x f d )(?+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+??+∞+∞ 解⽅程π2??a arctan - 2π=1 得 a = 0{}b x x x f b x P b b arctan π2|arctan π2d )(000==?=<<解关于b 的⽅程:π2arctan b =0.5 得 b =1.19. 某种电⼦元件的寿命X 是随机变量,概率密度为≥=.100,0,100100)(2<x x x x f 3个这种元件串联在⼀个线路中,计算这3个元件使⽤了150⼩时后仍能使线路正常⼯作的概率. 解串联线路正常⼯作的充分必要条件是3个元件都能正常⼯作. ⽽三个元件的寿命是三个相互独⽴同分布的随机变量,因此若⽤事件A 表⽰“线路正常⼯作”,则3])150([)(>X P A P ={}32d 1001502150=?∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=?=?=∞+-∞+∞--解得 A =21 {}??---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的⼆次⽅程4x 2+4xY +Y +2=0有实数根的概率. 解 4x 2+4xY +Y +2=0.有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),-=.,01||,1)(2其他,<x x cx f确定常数c ,计算.21||≤X P解π|arcsin d 1111211c x c x x c==-?=--c =π131arcsin 2d 1121||0212121 2=π=-π=≤?-x x x X P23. 设随机变量X 的分布函数F ( x )为≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1. =.,0,10,21)(其他<<x x x f{}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t x d e 21)(||-∞-?=≤=当t ≤ 0时,x t x t x F e 21d e 21)(=?=∞-当t >0时,t t t x F tx t t x d e 21d e 21d e 21)(-00||?+?=?=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么?解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==?+=∞+∞-∞+∞-arctan πd )1(π12 因此a =1x x t t t x F ∞-∞-=?+=arctan π1d )1(π1)(2 x arctan π121+= {}?+=?+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:≤-=.2,02,1)(2x x x A x F ,>确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A {}{})0()4(4X 040F F P X P -=≤=≤≤<28. 随机变量X ~f ( x ),f ( x )=,ee x x A -+确定A 的值;求分布函数F ( x ) . 解 ?+=?+=∞∞-∞∞--x A x A x x x x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2, xtx t t t x F ∞-∞--=+=?e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==?= 因此,a = π当0<x <π时,=x x t t x F 0222πd π2)( 其他≥≤=π1,π0,π0,0)(22x x xx x F <<30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax ++-≤=-求X 的概率密度并计算a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )≤=-.0,e 2,0,0)(23> x x a x x f ax(1010F a F a x P a x P -=≤=?<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a >0时,Y 的取值为[a 2+b , ab +b ],a x y hb y a y h x y 1)(,)(1)(='='-==],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,⽆论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 ,2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π . 因此 -=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1 , f X ( x ) =1 0 < x < 1 , 因此有.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有∞+=-.,0,0e )(其他<<,z z f z z 36. 随机变量X ~f ( x ) ,≤=-0,00,e )(x x x f x > Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z 21 ≤=-.0,00e 21)(z ,z z z f z z > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X , Z = X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在?? -2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布. z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-. 因此当z >0时, )1(π2])1(1[π21)(222z zz z fz +=+-= ??≤+=0,00,)1(π2)(2z z z z f z >即Z = X1 与X 同分布. 38. ⼀个质点在半径为R ,圆⼼在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是⼀个连续型随机变量,L 服从[0,πR ]上的均匀分布.≤≤=.,0π0,π1)(其他,R l R l f L M 点的横坐标X 也是⼀个随机变量,它是弧长L 的函数,且 X = R cos θ= R cos RL 函数x = R cos l / R 是l 的单调函数 ( 0< l <πR ) ,其反函数为 l = R arccos Rx 22xR R l x --=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R R x f X -=?--= 当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望.解根据第2题中所求出的X 概率分布,有2138223815138210=?+?+?=EX 亦可从X 服从超⼏何分布,直接计算2120521=?==N N n EX 在第3题中21161216611690=?+?+?=EX 亦可从X 服从⼆项分布(2,41),直接⽤期望公式计算: 21412=?==np EX 在第5题中图2-1(1) 3.122014220934492431=?+?+?+?=EX (2) 3.022013220924491430=?+?+?+?=EY 在第6题中,25.2220843220108222027122010=?+?+?+?=EX 在第11题中,??+++ -=d 313312d 311EX 31 |<d <|0 d 22+= 40. P { X = n } =nc , n =1, 2, 3, 4, 5, 确定C 的值并计算EX . 解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑?==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的⽐为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 }=3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=?+?+?-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解 EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数. 解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞?收敛,因此0d e 5.0||=?=-∞+∞-x x EX x n n 当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-?=?=!)1(d e 0n n x x x n =+Γ=?=-∞+44. 随机变量X ~f ( x ) ,-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101?-+?=?=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,≤≤=.,0,10,)(其他x cx x f b b ,c 均⼤于0,问EX 可否等于1,为什么?其他其他。

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

《概率论与数理统计教程》课后习题解答

《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。

解 样本点总数为7828⨯=A 。

所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。

于是14978632)(=⨯⨯⨯=A P 。

1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。

解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。

概率论与数理统计统计课后习题答案(有过程)

概率论与数理统计统计课后习题答案(有过程)

概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。

2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。

3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。

223由题设可知样本点总数,。

2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。

表示按逆时针方向乙在甲的第i个位置,。

则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6. 习题7习题9 习题10习题12 习题13 习题14习题15 习题16习题18习题20 习题21习题23 习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为 p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为 p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答: fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它. 习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y 在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx =(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有 y=2x+3,x=y-32,x′=12,由定理即得 fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712, 同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为 P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55. 列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知 P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度 fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx] =1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z} =1-P{X>z,Y>z}=1-P{X>z}P{Y>z} =1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。

λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。

因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。

记201k k V V ==∑,求(105)P V >的近似值。

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。

概率统计课后习题答案

概率统计课后习题答案

一次的概率等于19/27,求事件在每次试验中出现的概率. 解 记{在第次试验中出现},
依假设 所以, , 此即 .
17.加工一零件共需经过3道工序,设第一、二、三道工序的次品率 分别为2%、3%、5%. 假设各道工序是互不影响的,求加工出来的零件 的次品率。
解 注意到,加工零件为次品,当且仅当1-3道工序中至少有一道出 现次品。记 {第道工序为次品}, 则次品率
(2) 只有两次抽到废品。 解 (1); (2); (3);
(4); (5). 6. 接连进行三次射击,设={第次射击命中},,{三次射击恰好命中二 次},{三次射击至少命中二次};试用表示和。

习题二解答
1.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中 恰有1件次品的概率。
解 这是不放回抽取,样本点总数,记求概率的事件为,则有利于的 样本点数. 于是
概 率 X的分布函数 0 =
1 4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5,从中随机地取 3个,以X表示取出的3个球中最大号码,写出X的分布律和分布函数。 解 依题意X可能取到的值为3,4,5,事件表示随机取出的3个球 的最大号码为3,则另两个球的只能为1号,2号,即;事件表示随机取 出的3个球的最大号码为4,因此另外2个球可在1、2、3号球中任选,此 时;同理可得。 X的分布律为
(ⅳ) 有利于的样本点数,故 . 3.一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋 中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。 解 本题是无放回模式,样本点总数. (ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且 有一次抽到3,因而有利样本点数为,所求概率为 . (ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是 有利样本点数为,所求概率为 . 4.一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放 回抽样,接连取2次,每次取1只,试求下列事件的概率: (1) 2只都合格; (2) 1只合格,1只不合格; (3) 至少有1只合格。 解 分别记题(1)、(2)、(3)涉及的事件为,则 注意到,且与互斥,因而由概率的可加性知 5.掷两颗骰子,求下列事件的概率: (1) 点数之和为7;(2) 点数之和不超过5;(3) 点数之和为偶数。 解 分别记题(1)、(2)、(3)的事件为,样本点总数 (ⅰ)含样本点,(1,6),(6,1),(3,4),(4,3) (ⅱ)含样本点(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案

第一章: 10.从0,1,2,,9等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解3813107()15C P A C ==.333998233310101014()15C C C P A C C C =+-=,或182231014()1()115C P A P A C =-=-=,2833107()30C P A C ==.16.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B解()1()1()()0.3P AB P AB P A P B =-=--=因为,A B 不相容,所以A B ⊃,于是 ()()0.6P A B P A ==20.设()0.7,()0.3,()0.2P A P A B P B A =-=-=,求()P AB 与()P AB . 解0.3()()()0.7()P A B P A P AB P AB =-=-=-,所以()0.4P AB =,故()0.6P AB =;0.2()()()0.4P B P AB P B =-=-.所以 ()0.6P B =()1()1()()()0.1P AB P A B P A P B P AB =-=--+= 22.设AB C ⊂,试证明()()()1P A P B P C +-≤[证] 因为AB C ⊂,所以()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-故()()()1P A P B P C +-≤. 证毕.19.设,,A B C 是三个事件,且1()()(),()()04P A P B P C P AB P BC =====,1()8P AC =,求,,A B C 至少有一个发生的概率。

解()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 因为0()()0P ABC P AB ≤≤=,所以()0P ABC =,于是315()488P A B C =-= 22.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解,不等式确定平面域S .A =‘1,0.09x y xy +≤≥’则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不 等式确定了S 的子域A ,故0.90.10.9()(1)A P A x dx x==--⎰的面积S 的面积0.40.18ln 30.2=-=第二章4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++,所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解()()()() 1.1()(|) 1.10.40.7P A B P A P B P AB P A P B A =+-=-=-=()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

概率论与数理统计课后习题答案(高等教育出版社) (浙江大学)(盛骤、谢式千、潘承毅)

概率论与数理统计课后习题答案(高等教育出版社) (浙江大学)(盛骤、谢式千、潘承毅)

第一章 概率论的基本概念[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C ) = P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8508143=+-.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对” ∵ 从10只中任取4只,取法有⎪⎭⎫⎝⎛410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。

取法有4245⨯⎪⎭⎫ ⎝⎛21132181)(1)(2182)(410445=-=-==⋅=∴A P A P C C A P[十四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

解:由61)()(314121)()|()()()()|(=⇒⨯=−−−−→−=B P B P B P A B P A P B P AB P B A P 有定义由已知条件 由乘法公式,得121)|()()(==A B P A P AB P 由加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P [十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A )法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

62.04528)(21028===CC A P法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计课后答案2第 一 章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习题一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反{(,)(,)(,)(,)}(2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}Ω==i j i j(3)调查城市居民(以户为单位)烟、酒的年支出34 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y(5)“ 三人中至少有一人中靶”: ;C B A Y Y(6)“三人中至少有一人未中靶”: ;C B A Y Y 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB Y Y(8)“三人中至少两人中靶”: ;BC AC AB Y Y(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A Y Y Y(11)“三人中至多两人中靶”: ;ABC 或;C B A Y Y 3 .设,A B 是两随机事件,化简事件 (1)()()A B A B U U (2)()()A B A B U U解:(1)()()A B A B AB AB B B ==U U U U ,5 (2) ()()A B A B U U ()A B A B B A A B B ==Ω=U U U U .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率. 解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为kn C ,而全为白球的取法有k mn C -种,故所求概率为k n k mn C C --1.解法二:令i A —第i 人中奖,,.,2,1k i Λ=B —无一人中奖,则kA A AB Λ21=,注意到 k A ,,A ,A Λ21不独立也不互斥:由乘法公式)()()()()(11213121-=k k A A A P A A A P A A P A P B P ΛΛ(1)(2)(1)121n m n m n m n m k n n n n k -------+=⋅⋅---+L !,1k k n m n m k k n nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少?6 解:122585410()C C C P A C -=7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率. 解:此为几何概率问题:]11[,-=Ω,所求事件占有区间]5151[,-,从而所求概率为121525P ⋅==.8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDEOAB SS =V V .9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本7 空间占有区域Ω, 两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B U .解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--=U .12.假设()0.4P A =,()0.7P A B =U ,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B . 解:若A 、B 互不相容,()()()0.70.40.3P B P A B P A =-=-=U ; 若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库8的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A Y Y =(其中321,A A A 两两互不相容) 故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A Y {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P Y ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P Y 即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连9两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率. 解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A B P A P AB P16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P 且5()8P B C =U ,求()P A B U .解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程 085)(3)]([22=+-C P C P151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-==U 17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生).10 解:设事件iA —第i 次试验中A 出现(1,2,,)i n =L ,∵(),()1i iP A P A εε==-,(1,2,,)i n =L ,∴n 次试验中,至少出现A 一次的概率为1212()1()n n P A A A P A A A =-U UL U U UL U 121()n P A A A =-L121()()()n P A P A P A =-⋅⋅⋅L (独立性)1(1)n ε=-- ∴12lim ()1n n P A A A →∞=U UL U ,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译 出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-U U U U1()1()()() P ABC P A P B P C =-=-42331..5345=-=.19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为ip ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --;(2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机 器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故()()()1 P D P A B C P A B C ==-U U U U1()1()()()10.90.80.70.496P A BC P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A =,求()P A B U . 解:由()0.4B P A =得()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=,()()()()0.82P A B P A P B P AB =+-=U .22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为 ()()0.4()()0.5()()0.8P AB P B B B P P A A P A P A =====23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=. 24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球.1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********⨯+⨯=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=iB {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上}则%1)(%,4)(%,95)(321===B P B P B P %70)(%,80)(%,90)(321===B A P B A P B A P 所以)()()()()()()(332211B A P B P B A P B P B A P B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i 分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,A P B =32()0.7,()0.85A A P P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()A A A P A P B P P B P P B P B B B=++ 0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ==== 28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A A P P B B ==()0.0005,P B =所求概率为().B P A()0.10,()0.9995.AP P B B ==由Bayes 公式得 ()()()()()()()AP B P B B P A A A P B P P B P B B=+ 0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率.解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1A A A P P P B B B ===,由于3个射手射击是互相独立的,所以 1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯=2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯= 3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i ii P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率.解:A ——需经调试 A ——不需调试B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P(1)由全概率公式:)()()()()(A B P A P A B P A P B P ⋅+⋅=%941%70%80%30=⨯+⨯=.(2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P B A P .31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率.解:所求的概率为234(1)p p -. 32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率 解:所求的概率为11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅= 34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =, 则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222n n n n r n r n rn r n r C P n C -----==.第二章思考题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究. 随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g则随机变量)(X g Y =既非离散型又非连续型. 事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y;当10<≤y 时,()2))(()(yy X P y X g P y F Y =≤=≤=于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==YY F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量. 4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么? 答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x P X x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是 一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形. 解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩X0 1 2 P0.10.60.30 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}ii A =第次取得废品,{}iAi =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====,21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(),3212311123299{2}()0.0409121110220A A P X P A A A P A P PA A A ===⋅⋅=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A ====⋅⋅⋅=≈()()()()所以X 的分布律见下表8.从101-中任取一个数字,若取到数字)101(Λ=i i 的概率与i 成正比,即 1,2,,10P X i ki i ===L (),(),求k . 解:由条件 1,2,,10P X i ki i ===L (),(),由分布律的性质1011i i p ==∑,应有1011i ki ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N . 解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率. 解:设~()X P λ,由题意:)1(=XP =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为222!0)0(--===e e X P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ⎛⎫⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B :,X 的分布律为{})50,,2,1,0(31325050Λ=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk14.设随机变量X的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =. 解:(3,)Y p B :,1211{}224p P Xxdx =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,x ax e x f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率. 解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx+∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2x xxe F x ax edx x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩ .(3)511(0)()(0)12P X F F e λλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x Xx ++=有实根的概率.解: “方程210x Xx ++=有实根”即{2}X>,故所求的概率为{2}P X >=45.17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩解得:1,1a b ==- 18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e,即021=--λe,∴.2ln =λ19.设随机变量(1,4)X N :,求(0 1.6)P X ≤<,(1)P X <.解:01 1.61(0 1.6)()22P X P X --≤<=≤<1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则(1)123,,A A A Q 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭, 同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫ ⎪⎝⎭⎛⎫== ⎪⎝⎭0.5760.0010.0090.062⨯==.21.随机变量X 的分布律为求2Y X =的分布律.22.变量X 服从参数为0.7的0-1分布,求2X及22X X-的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22XX-的可能值为1-和0,由于2{}P Xu =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P XX P X -=-===,2{20}{0}0.3P XX P X -====,可得22X X-的概率分布为23.X 概率密度函数为21()(1)Xf x x π=+,求2Y X =的概率密度函数()Yf y .解:2y x=的反函数为2y x =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4内概率密度()Yfy .解法一(分布函数法) 当0y <时,()0,4YF y y =>时()1Y F y =,当04y ≤≤时, ()(YXF y P X F ==从而()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x =在()0,2单增,由于反函数x =在()0,4可导,'yx =,从而由公式得()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余25.,0)0 ,0x X e x f x x -⎧≥=⎨<⎩(,求XY e =的密度.解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Y f y ey y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)xy e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1X Y f y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量XY e =和ln Z X =的概率密度()Yfy 和()Z f z .解:X 的密度为1, 01() x f x ⎧<<⎪=⎨⎪⎩0,若其它, (1)函数xy e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y ey ⎧<<⎪=⎨⎪⎩0,其它.(2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数zx e -=,且0Z >,从而()(), () z z X Z f e e f z -->⎧'⎪=⎨⎪⎩z 00,其它0, zz e ->⎧⎪=⎨⎪⎩0,其它.27. 设()Xfx 为X 的密度函数,且为偶函数,求证X-与X 有相同的分布.证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--,()()()()1Y X X p y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'YXX X p y p y y p y p y =--=-=.28.设随机变量X服从正态分布),(2σμN ,,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y =. 求证Y 服从区间]1,0[上的均匀分布.证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F-存在,又因1)(0≤≤x F ,因此Y 的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y F F ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P .由此可看出,即使两个离散随机变量Y X 与相互独立同分布, YX 与一般情况下也不会以概率1相等.2解:由∑∑ijijp =1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立.7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P 3解:)()1,1(11AB P Y X P p ====,121)()(==A B P A P )()0,1(12B A P Y X P p ==== 613241)()(=⋅==A B P A P 因为:,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p 12812161121122=---=p ,结果如表所示.4 解: X 的边缘分布律为32}2{,31}1{====X P X PY的边缘分布律为21}2{,21}1{====X P Y P1=Y 的条件下X的条件分布为}1{}1,1{}11{=======Y P Y X P Y X P 1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ======.1,0;1,0}{}{=====j i j Y P i X P 于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故111}11{,1110}10{======X Y P X Y P ,且1,0,}{}{},{=======j i i X P i X jY P j Y i X P于是),(Y X 的分布律为放回抽样时,两次抽样互不影响,故彼此相互独立;不放回抽样,第一次抽样对第二次抽样有影响,不相互独立. 6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x ax b x a ab x f X ,0,1)(, )(y fY=⎪⎩⎪⎨⎧><≤≤-d y cy d y c d c ,0,1随机变量X 及Y 是独立的. 7 解 (1)),(y x f =yx y x F ∂∂∂),(2=)9)(4(6222y x ++π(2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg =)22(1xarctg +ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxdx f X X )4(22x +π同理可得随机变量Y 的边分布函数 =+∞=),()(y F y F Y)32)(22(12y arctg ++ππππ=)32(1yarctg +ππ Y的边缘分布密度函数==)()(y F dy dy f y Y )9(32y +π(3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立.8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x e y f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====120102110222222222,12121}2{y x r r y x e erdred dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x r r y x e ee rdr e d dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x r r y x e e rdr e d dxdye Z P πθππ所以,Z的分布律为:.1}2{,}1{,}0{212212-----==-====eZ P ee Z P e Z P9解:(1)由 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121A dxdy e A y x ,即 12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x(2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy e y x =xe 33-,当0>y ,)(y fY=⎰∞),(dxy x f =⎰∞+-0)43(12dx e y x =ye 44-,可知边缘分布密度为:)(x fX=⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12e e dxdy e y x10解 因为 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=101021dy y xdx c ,6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=10226x dy xy , 所以)(x fX =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=1022,36y dx xy , 所以)(y fY=⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x fX)(y f Y ,所以X 与Y 相互独立.11解 由 2ln 12211===⎰e e D x dx xS当21ex ≤≤时,,2121),()(1010xdy dy y x f x f x x X ===⎰⎰其它)(x f X =0.所以:.41)2(=X f 12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=x x x x dy 10,21 )(y f Y =⎰<<--=111,11y y y dx故)(y x fYX =)(),(y f y x f Y=⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f X Y =)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X)(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx x dyy f dx x f dxdy y f x f Y X P )()()()(}{ ⎰⎰⎰⎰>∞+∞-∞+==>yx ydxx f dy y f dxdy y f x f Y X P )()()()(}{ 交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dx x f )()(⎰⎰∞+∞+∞-ydxx f dy y f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P . 14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P Y )(A P +)(B P -)(A P )(B P =p+()1p --p )1p -=9712=+-p p解得:,32,3121==p p因而a 有两个值.由于2121}{)(1-==≤=⎰a dx a X P A P a ,所以,当311=p时,由21-a =31得35=a 当322=p时,由21-a =32得37=a . 15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P,41}2{}2{}4{=====+Y P X P Y X P故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P (2)由已知易得 ;21}42{,21}22{====X P X P 16解 由已知得所以有17证明:对任意的,,,1,021n nk +=Λ我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n i k i k n i n i i n q p C q p C 0)(2211=∑=-+-ki k n n k i k n i n q p C C 02121)( (利用组合公式 ∑=+-=ki k nm i k n im C C C)=kn n k k nn q p C -++2121即Y X Z +=~),(21p n nb +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z f dx x z f x f z f Y Y X Z -=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。

相关文档
最新文档