【期末试卷】达州市开江县2015-2016学年八年级上期末数学试卷

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

四川省达州市开江县度八年级数学上学期期末考试试题(含解析) 新人教版

四川省达州市开江县度八年级数学上学期期末考试试题(含解析) 新人教版

四川省达州市开江县2015-2016学年度八年级数学上学期期末考试试题一、选择题:下面每小题得四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10个小题,每小题3分,共30分.1.的算术平方根为()A.9 B.±9C.3 D.±32.根据下列表述,能确定位置的是()A.开江电影院左侧第12排B.甲位于乙北偏东30°方向上C.开江清河广场D.某地位于东经107.8°,北纬30.5°3.计算的结果是()A.6B.6C.4D.24.如图,是由5个大小相同的正方形组成的图形,则∠BAC的度数是()A.45° B.30° C.60° D.不能确定5.2015~2016学年度八年级5班的李军同学为了解他家所在小区居民的用电情况,随机对该小区20户居民进行了调查,下表是这20户小区居民2015年10月份用电量的调查结果:那么关于这20户小区居民月用电量(单位:度),下列说法正确的是()居民(户) 2 6 4 8月用电量(度/户)40 50 55 60A.中位数是55 B.众数是8 C.方差是29 D.平均数是53.56.王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A.B.C.D.7.下列语句是真命题的是()A.过一点有且只有一条直线与已知直线平行B.在直线l上截取一条线段AB,使AB=3cmC.在同一坐标系内,直线y=2x+3与直线y=x+3平行D.三角形的一个外角大于任意一个内角8.为了开展阳光体育活动,2015~2016学年度八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有()A.8种B.6种C.4种D.2种9.已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=3,b=4,c=;②a2:b2:c2=6:8:10;③∠A:∠B:∠C=3:4:5;④∠A=2∠B,∠C=3∠B.其中能判断△ABC是直角三角形的条件为()A.①② B.①④ C.②④ D.②③10.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a﹣b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,﹣1 B.1,﹣3 C.﹣3,1 D.﹣1,3二、填空题:本题6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m= .12.如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需元.13.已知函数y=mx+n和y=的图象交于点P(a,﹣2),则二元一次方程组的解是.14.如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E,若∠AEC=70°,则∠B=.15.若关于x、y的二元一次方程组的解也是二元一次方程3x+2y=14的解,则k的值是.16.如图,在△ABC中,AB=BC,∠ABC=20°,点E1在AB上,且AE1=AA1,点E2在A1E1上,且A1E2=A1A2,点E3在A2E2上,且A2E3=A2A3…A1、A2、A3、…A n在CA的延长线上,则∠A n A n+1E n= .三、解答题:73分,解答时写出必要的文字说明、证明过程或演算步骤.17.(1)计算:;(2)解方程组:.18.某学校为了增强学生体质,决定开设以下体育课外活动项目:A、篮球,B、乒乓球,C、羽毛球,D、足球.为了解学生最喜欢哪一种活动项目,随机从2400名学生中抽取部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)试估计该校2400名学生中参加篮球和羽毛球的学生人数共有多少人?19.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.(参考数据:)20.在如图所示的平面直角坐标系中有下面各点:A(0,3),B(1,﹣2),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,﹣3),G(4,0).(1)写出与点C关于坐标轴对称的点;(2)连接CE,则直线CE与y轴是什么关系(直接写出结论)?(3)若点P是x轴上的一个动点,连接PD,PF,当PD+PF的值最小时,在图中标出点P的位置,并直接写出P点的坐标.21.某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B 型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:(1)A、B两种型号的计算器进价分别是多少元?(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?22.A、B两地相距300千米,甲、乙两辆汽车同时分别从A、B两地相向而行,假设它们都保持匀速行驶,则它们各自到A地的距离s(千米)都是行驶时间t(时)的一次函数,图象如图所示,请利用所结合图象回答下列问题:(1)甲的速度为,乙的速度为;(2)求出:l1和l2的关系式;(3)问经过多长时间两车相遇.23.已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?24.阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.25.如图,一次函数y1=x+m(m>0)的图象与x轴交于点A,一次函数y2=nx+2的图象与x轴交于点B,点P()是两函数图象的交点.(1)求函数y1、y2的关系式;(2)若∠PBA=64°,求∠APB的度数;(3)求四边形PCOB的面积;(4)在x轴上,是否存在一点Q,使以点Q、B、C为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.四川省达州市开江县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:下面每小题得四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10个小题,每小题3分,共30分.1.的算术平方根为()A.9 B.±9C.3 D.±3【考点】算术平方根.【分析】直接根据算术平方根的定义进行解答即可.【解答】解:∵=9,32=9∴的算术平方根为3.故选C.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.根据下列表述,能确定位置的是()A.开江电影院左侧第12排B.甲位于乙北偏东30°方向上C.开江清河广场D.某地位于东经107.8°,北纬30.5°【考点】坐标确定位置.【分析】根据在平面直角坐标系中,要用两个数据才能表示一个点的位置:有序数对,坐标,极坐标,经纬度,可得答案.【解答】解:A、开江电影院左侧第12排,不能确定具体位置,故A错误;B、甲位于乙北偏东30°方向上,不能确定甲乙的距离,故B错误;C、开江清河广场,一个数据无法确定位置,故C错误;D、某地位于东经107.8°,北纬30.5°,故D正确;故选:D.【点评】本题考查了坐标确定位置,本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.3.计算的结果是()A.6B.6C.4D.2【考点】二次根式的混合运算.【分析】首先化简二次根式进而求出答案.【解答】解:=2×+2=2+2.故选:D.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.4.如图,是由5个大小相同的正方形组成的图形,则∠BAC的度数是()A.45° B.30° C.60° D.不能确定【考点】等腰直角三角形.【分析】设小正方形的边长为1,连接BC,求出AC、BC、AB的长,可判断出△ABC是等腰直角三角形,继而可得出∠BAC的度数.【解答】解:设小正方形的边长为1,则AC==,AB==,BC==,∴△ABC是等腰直角三角形,∴∠BAC=45°.故选A.【点评】本题考查了正方形的性质及等腰直角三角形的性质,求出AC、BC、AB的长,判断出△ABC 是等腰直角三角形是解答本题的关键,难度一般.5.2015~2016学年度八年级5班的李军同学为了解他家所在小区居民的用电情况,随机对该小区20户居民进行了调查,下表是这20户小区居民2015年10月份用电量的调查结果:那么关于这20户小区居民月用电量(单位:度),下列说法正确的是()居民(户) 2 6 4 8月用电量(度/户)40 50 55 60A.中位数是55 B.众数是8 C.方差是29 D.平均数是53.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、平均数、众数和方差的概念,分别对每一项进行分析即可得出答案.【解答】解:∵共有20个数,最中间的两个数是第10和11个数的平均数,∴中位数是:=55,∵60出现了8次,出现的次数最多,∴众数是60;平均数是:(40×2+50×6+55×4+60×8)=54(度),则方差是:[2(40﹣54)2+6(50﹣54)2+4(55﹣54)2+8(60﹣54)2]=39;故选A.【点评】本题考查了众数、中位数、平均数和方差的知识,解答本题的关键是掌握各知识点的概念.6.王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据图形可知,路灯在A与B之间,那么王小红由A处匀速直行到B处时,她与路灯的距离S随时间t的变化先逐渐减小直到0,再逐渐增大,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,王小红由A处径直走到B处,她与路灯的距离S与行走的时间t之间的变化关系,应为当小红走到灯下以前为:S随t的增大而减小,当小红走到灯下以后再往前走时,S随t的增大而增大,∴用图象刻画出来应为B.故选:B.【点评】此题主要考查了函数图象,得出S随t的变化规律是解决问题的关键.7.下列语句是真命题的是()A.过一点有且只有一条直线与已知直线平行B.在直线l上截取一条线段AB,使AB=3cmC.在同一坐标系内,直线y=2x+3与直线y=x+3平行D.三角形的一个外角大于任意一个内角【考点】命题与定理.【分析】利用平行线的性质、一次函数的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故原命题错误,为假命题;B、在直线l上截取一条线段AB,使AB=3cm,正确,为真命题;C、因为两条直线的比例系数不相等,所以两条直线不平行,故错误,为假命题;D、三角形的一个外角大于任何一个与之不相邻的内角,故原命题错误,为假命题,故选B.【点评】考查了命题与定理的知识,解题的关键是能够了解平行线的性质、一次函数的性质、三角形的外角的性质,属于基础知识,难度较小.8.为了开展阳光体育活动,2015~2016学年度八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有()A.8种B.6种C.4种D.2种【考点】二元一次方程的应用.【分析】设毽子能买x个,跳绳能买y根,依据“共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元”列出方程,并解答.【解答】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=200﹣33×5,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选D.【点评】此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.9.已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=3,b=4,c=;②a2:b2:c2=6:8:10;③∠A:∠B:∠C=3:4:5;④∠A=2∠B,∠C=3∠B.其中能判断△ABC是直角三角形的条件为()A.①② B.①④ C.②④ D.②③【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理即可判断①②,根据三角形内角和定理求出最大角,即可判断③④.【解答】解:①∵a=3,b=4,c=,∴a2+c2=b2,∴此时△ABC是直角三角形;②∵a2:b2:c2=6:8:10,∴a2+b2≠c2,∴此时△ABC不是直角三角形;③∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C==75°,∴此时△ABC不是直角三角形;④∵∠A=2∠B,∠C=3∠B,∠A+∠B+∠C=180°,∴6∠B=180°,∴∠B=30°,∴∠C=90°,∴此时△ABC是直角三角形;∴能判断△ABC是直角三角形的条件为①④,故选B.【点评】本题考查了三角形内角和定理,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键.10.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a﹣b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,﹣1 B.1,﹣3 C.﹣3,1 D.﹣1,3【考点】二元一次方程组的应用.【分析】根据题意可得方程组,再解方程组即可.【解答】解:由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,列出方程组.二、填空题:本题6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m= 8 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得方程,解出m、n的值可得答案.【解答】解:∵点P(3,m)关于x轴的对称点Q的坐标是(n,2),∴m=﹣2,n=3,∴2n﹣m=8,故答案为:8.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.12.如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需420 元.【考点】勾股定理的应用.【分析】先利用勾股定理求得三角形的底边长,然后根据地毯长度=BC+AC可知地毯长=7米,然后再根据题意计算即可.【解答】解:如图所示:在Rt△ABC中,由勾股定理可知:BC==4米.地毯的总长=BC+AC=4+3=7米.地毯的面积=7×1.5=10.5平方米.地毯的总价=40×10.5=420元.故答案为:420元.【点评】本题主要考查的是勾股定理的应用,依据勾股定理求得BC的长,从而得到地毯的总长度是解题的关键.13.已知函数y=mx+n和y=的图象交于点P(a,﹣2),则二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】把P(a,﹣2)代入y=x求得a的值,得出P(﹣4,﹣2),根据方程组的解就是两函数图象的交点坐标即可求得.【解答】解:∵y=的图象过点P(a,﹣2),∴﹣2=a,解得a=﹣4,∴P(﹣4,﹣2),∵函数y=mx+n和y=的图象交于点P(﹣4,﹣2),∴二元一次方程组的解是,故答案为:【点评】此题主要考查了一次函数与二元一次方程组,关键是掌握一次函数与二元一次方程组的关系.14.如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E,若∠AEC=70°,则∠B= 40°.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形内角和定理求出∠EAC+∠ACE的度数,再根据AE、CE分别是∠DAC与∠ACF 的角平分线得出∠DAC+∠ACF的度数,进而得出∠BAC+∠ACB的度数,根据三角形内角和定理即可得出结论【解答】解:∵△ACE中,∠AEC=70°,∴∠EAC+∠ACE=180°﹣70°=110°,∵AE、CE分别是∠DAC与∠ACF的角平分线,∴∠DAC+∠ACF=2(∠EAC+∠ACE)=220°,∴∠BAC+∠ACB=360°﹣220°=140°,∴∠B=180°﹣140°=40°.故答案为:40°.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.15.若关于x、y的二元一次方程组的解也是二元一次方程3x+2y=14的解,则k的值是2 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把k看作已知数表示出方程组的解,代入已知方程求出k的值即可.【解答】解:,①﹣②得:5y=4k,即y=k,把y=k代入②得:x=k,代入3x+2y=14中得:k+k=14,解得:k=2.故答案为:2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.如图,在△ABC中,AB=BC,∠ABC=20°,点E1在AB上,且AE1=AA1,点E2在A1E1上,且A1E2=A1A2,点E3在A2E2上,且A2E3=A2A3…A1、A2、A3、…A n在CA的延长线上,则∠A n A n+1E n= .【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠E1A2A1,∠E2A3A2及∠E3A4A3的度数,找出规律即可得出∠A n A n+1E n的度数.【解答】解:∵在△AEA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1E1,∠BA1A是△A1A2E1的外角,∴∠E1A2A1==40°;同理可得,∠E2A3A2=20°,∠E3A4A3=10°,∴∠A n A n+1E n=.故答案为:.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.三、解答题:73分,解答时写出必要的文字说明、证明过程或演算步骤.17.(1)计算:;(2)解方程组:.【考点】实数的运算;解二元一次方程组.【专题】计算题;实数.【分析】(1)原式利用二次根式的乘除法则,以及立方根定义计算,合并即可得到结果;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)原式=2﹣+﹣4÷2=2﹣3+4﹣2=1;(2)方程组整理得:,①+②×3得:10x=5,即x=0.5,把x=0.5代入①得:y=0.75,则方程组的解为.【点评】此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.18.某学校为了增强学生体质,决定开设以下体育课外活动项目:A、篮球,B、乒乓球,C、羽毛球,D、足球.为了解学生最喜欢哪一种活动项目,随机从2400名学生中抽取部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)试估计该校2400名学生中参加篮球和羽毛球的学生人数共有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图中A类的圆心角的度数,即可得到A所占的百分比,然后根据A类有20人,即可求得调查的总人数;(2)利用总人数减去其它组的人数即可求得B类的人数,从而补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)调查的总人数是:20÷=200(人).故答案是:200;(2)C类的人数是:200﹣20﹣80﹣40=60.;(3)该校2400名学生中参加篮球和羽毛球的学生人数共有2400×=960(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.(参考数据:)【考点】勾股定理的应用.【分析】由题意可知OP=30米,由△POA为等腰直角三角形可知OA=OP=30米,由勾股定理可知AP=30,由翻折的性质可知AB=AP,然后根据速度=路程÷时间求得汽车的速度即可.【解答】解:∵由题意得:∠AOP=90°,PO=30m,∠PAO=45°,∴∠OAP=∠OPA=45°.∴AO=OP=30.在Rt△AOP中,由勾股定理可知:AP==30.∵由翻折的性质可知AB=AP,∴AB=30.∴汽车行驶的速度=30÷3×3.6≈50.76(千米/时).∵50.76<60,∴汽车未超限制速度.【点评】本题主要考查的是勾股定理的应用、翻折的性质,依据勾股定理和翻折的性质求得AB的长是解题的关键.20.在如图所示的平面直角坐标系中有下面各点:A(0,3),B(1,﹣2),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,﹣3),G(4,0).(1)写出与点C关于坐标轴对称的点;(2)连接CE,则直线CE与y轴是什么关系(直接写出结论)?(3)若点P是x轴上的一个动点,连接PD,PF,当PD+PF的值最小时,在图中标出点P的位置,并直接写出P点的坐标.【考点】轴对称-最短路线问题;关于x轴、y轴对称的点的坐标.【分析】(1)根据平面直角坐标系点关于坐标轴对称的特点解答即可;(2)根据图形判断CE与y轴平行;(3)作点F关于x轴的对称点F′(5,3),连接DF′交x轴于P,则DF′的长度即为PD+PF的最小值,求得直线DF′的解析式为y=x﹣2,当y=0时,x=2,即可得到结论.【解答】解:(1)点C(3,﹣5)关于x轴对称的点E(3,5),点C(3,﹣5)关于y轴对称的点D (﹣3,﹣5);(2)如图所示:直线CE与y轴平行;(3)作点F关于x轴的对称点F′(5,3),连接DF′交x轴于P,则DF′的长度即为PD+PF的最小值,设直线DF′的解析式为:y=kx+b,∴,∴,∴直线DF′的解析式为:y=x﹣2,当y=0时,x=2,∴P点的坐标(2,0).【点评】此题主要考查了轴对称﹣最短距离问题,点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.21.某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B 型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:(1)A、B两种型号的计算器进价分别是多少元?(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用;一次函数的性质;根据实际问题列一次函数关系式.【专题】应用题;函数思想;方程思想;一次方程(组)及应用;一次函数及其应用.【分析】(1)根据:A计算器20个费用+B计算器25个费用=1265、A计算器16个费用+B计算器12个费用=1265,即可列方程组求解;(2)所获利润=A型号计算器利润+B型号计算器利润,计算可得;(3)根据(2)中相等关系列出,总利润与A型号计算器数量间的函数关系式,结合函数增减性可得最大利润.【解答】解:(1)设A型号的计算器进价为x元,B型号的计算器进价为y元,根据题意得:解得:,答:A型号的计算器进价为22元,B型号的计算器进价为33元.(2)(30﹣22)×20+(45﹣33)×20=400(元)答:商店所获利润是400元.(3)设购进A型号计算器m个,则购进B型号计算器有(40﹣m)个,所获得总利润为W,由题意得:W=(30﹣22)m+(45﹣33)(40﹣m)=﹣4m+480∵﹣4<0,∴W随m的增大而减小,∵A型号的计算器的数量不得少于5个,即m≥5,∴当m=5时,W最大,最大值为:W=﹣4×5+480=460元;答:商店应购进A计算器5个、B计算器35个,才能使所获利润最大,最大利润是460元.【点评】本题主要考查利用二元一次方程组和一次函数的性质解决实际问题的能力,属中档题.22.A、B两地相距300千米,甲、乙两辆汽车同时分别从A、B两地相向而行,假设它们都保持匀速行驶,则它们各自到A地的距离s(千米)都是行驶时间t(时)的一次函数,图象如图所示,请利用所结合图象回答下列问题:(1)甲的速度为60 ,乙的速度为80 ;(2)求出:l1和l2的关系式;(3)问经过多长时间两车相遇.【考点】一次函数的应用;由实际问题抽象出一元一次方程;一元一次方程的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】综合题;图表型;函数思想;方程思想;待定系数法;一次方程(组)及应用;函数及其图像;一次函数及其应用.【分析】(1)由图象知,根据l1上t=2时,s=120可得甲的速度,l2上t=1时s=220可得乙的速度;(2)利用待定系数法可分别求出l1、l2的函数关系式;(3)相向行驶问题中,可根据:甲的路程+乙的路程=A、B间距离,列方程求解.【解答】解:(1)由题意可知,l1表示甲到A地的距离s关于行驶时间t函数图象,当t=2时,s=120,∴甲的速度为:120÷2=60(千米/小时);l2表示乙到A地的距离s关于行驶时间t函数图象,且当t=1时,s=220,∴乙的速度为:(千米/小时);(2)根据题意设l1的函数关系式为y=k1t,l2的函数关系式为y=k2t+b,由图象可知,点(2,120)在l1上,∴120=2k1,解得k1=60,∴l1的函数关系式为:y=60t;由图象可知,点(0,300),(1,220)在l2上,代入有,解得,∴l2的函数关系式为:y=﹣80t+300;(3)设经过x小时后两车相遇,根据题意有60x+80x=300,解得x=,答:经过小时后两车相遇.故答案为:(1)60,80.【点评】本题主要考查一次函数图象、待定系数法求函数解析式及用方程来解决问题的基本能力,属基础题.23.已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?【考点】矩形的性质;勾股定理.【分析】(1)由长方形的性质和等腰三角形的性质得出∠ACG=∠AGC,由已知条件得出∠AGC=∠GAF+∠F,得出∠F=∠FAG,∠ACG=2∠EC B,由∠ACB=∠ACG+∠ECB=3∠ECB=60°,即可得出结果;(2)设△AEF中EF边上的高为hcm,证出EG=AG=GF,由直角三角形斜边上的中线性质得出EF=2AG=13(cm),由勾股定理求出AE,由三角形的面积即可得出结果.【解答】解:(1)∵四边形ABCD是长方形,∴DF∥BC,∴∠AFC=∠ECB,∵AC=AG,∴∠ACG=∠AGC,∵∠ACG=2∠GAF,∠AGC=∠GAF+∠F,∴∠F=∠FAG,∴∠ACG=2∠ECB,∴∠ACB=∠ACG+∠ECB=3∠ECB=60°,∴∠ECB=20°;(2)设△AEF中EF边上的高为hcm,∵∠F=∠FAG,∴AG=GF,∵∠BAF=90°,∴∠EAG+∠GAF=90°,∠AEF+∠EFA=90°,∴∠EAG=∠AEG,∴EG=AG=GF,∴EF=2AG=2×6.5=13(cm),∴AE===5(cm),。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。

2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。

1 B2 C.3 D.4 2。

与3—2相等的是( )A.91B.91- C.9D.-9 3。

当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。

x >2 C.x ≠2 D 。

x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。

1,2,3B.1,5,5 C 。

3,3,6 D 。

4,5,6 5.下列式子一定成立的是( )A 。

3232a a a =+B 。

632a a a =• C. ()623a a = D 。

326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。

7 C.8 D 。

97。

空气质量检测数据pm2。

5是值环境空气中,直径小于等于2。

5微米的颗粒物,已知1微米=0。

000001米,2。

5微米用科学记数法可表示为( )米。

A 。

2。

5×106B.2.5×105C 。

2.5×10—5D 。

2.5×10-68。

已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

2015-2016学年第一学期初二数学期末考试综合试卷(1)及答案

2015-2016学年第一学期初二数学期末考试综合试卷(1)及答案

2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。

达州市开江县2015-2016学年八年级下期末数学试卷含答案解析

达州市开江县2015-2016学年八年级下期末数学试卷含答案解析

1500 元,试说明选用那种方案成本最低?最低成本为多少元?
(四)(本题 2 个小题,共 16 分)
24.阅读与应用:同学们:你们已经知道(a▱b)2≥0,即 a2▱2ab+b2≥0.
∴a2+b2≥2ab(当且仅当 a=b 时取等号).
使工厂每月所付的工资总额最少,那么工厂招聘 A 种工人的人数至多是
( )人.
A.50 B.40 C.30 D.20
9.如图,在已知的△ABC 中,按以下步骤作图:
①分别以 B,C 为圆心,以大于 BC 的长为半径作弧,两弧相交于两点 M,N;
2015-2016 学年四川省达州市开江县八年级(下)期末数学试

一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字
母代号填在答题卡内,本题 10 小题,每小题 3 分,共 30 分)
求证:四边形 ABCD 是平行四边形.
23.某市为创建省卫生城市,有关部门决定利用现有的 4200 盆甲种花卉和
3090 盆乙种花卉,搭配 A、B 两种园艺造型共 60 个,摆放于入城大道的两侧,
阅读 1:若 a、b 为实数,且 a>0,b>0,∵( ▱ )2≥0,∴a▱2 +b≥0
∴a+b≥2 (当且仅当 a=b 时取等号).
阅读 2:若函数 y=x+ (m>0,x>0,m 为常数),由阅读 1 结论可知:
②作直线 MN 交 AB 于点 D,连接 CD.
若 CD=AC,∠ACB=120°,则∠A 的度数为( )
A.60° B.50° C.40° D.不能确定
10.如图,在平行四边形 ABCD 中,AD=2AB,F 是 AD 的中点,作 CE⊥AB,垂

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。

2.本卷是试题卷,不能答题。

答题必须写在答题卡上。

解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。

3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。

★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

八年级上册达州数学全册全套试卷检测题(Word版 含答案)

八年级上册达州数学全册全套试卷检测题(Word版 含答案)

八年级上册达州数学全册全套试卷检测题(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得: ∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..2.等腰三角形的三边长分别为:x +1,2x +3,9,则x =________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

所以x 的值是3.故填3.3.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.4.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.5.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.6.如图,AB∥CD,∠ABE=66°,∠D=54°,则∠E=____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵AB∥CD,∴∠BFC=∠ABE=66°.在△EFD中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC=∠E+∠D,∴ ∠E =∠BFC -∠D =12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.二、八年级数学三角形选择题(难)7.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【答案】C【解析】【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒,故选:C.【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.9.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A.5B.10C.15D.20【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12×40=20cm 2, ∴S △BCE =12S △ABC =12×40=20cm 2, ∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×20=10cm 2. 故选B.【点睛】 本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.10.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )A .23B .8C .43D .6 【答案】B【解析】分析:延长BG 交AC 于D .由重心的性质得到 BG =2GD ,D 为AC 的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC =2GD ,即有BG =AC ,从而得到AC 、GD 的长.当GD ⊥AC 时,△AGC 的面积的最大,最大值为:12AC •GD ,即可得出结论. 详解:延长BG 交AC 于D .∵G 是△ABC 的重心,∴BG =2GD ,D 为AC 的中点.∵AG ⊥CG ,∴△AGC 是直角三角形,∴AC =2GD ,∴BG =AC .∵BG •AC =32,∴AC =32=42,GD =22.当GD ⊥AC 时,.△AGC 的面积的最大,最大值为:12AC •GD =142222⨯⨯=8.故选B .点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.12.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA =30°,则线段AO的长是_____.【答案】5【解析】【分析】作∠CAO的平分线AD,交BO的延长线于点D,连接CD,由等边对等角得到∠CAB=∠CBA=50°,再推出∠DAB=∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证△ACD≌△AOD,即可得AO=AC=5.【详解】解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB =10°,∴∠CAD =∠OAD =1(CAB OAB)2∠-∠=()150102︒︒-=20°, ∵∠DAB =∠OAD+∠OAB =20°+10°=30°,∴∠DAB =30°=∠DBA ,∴AD =BD ,∠ADB =120°,在△ACD 与△BCD 中 AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS )∴∠CDA =∠CDB ,∴∠CDA =∠CDB =()1360ADB 2︒-∠=()13601202︒︒-=120°, 在△ACD 与△AOD 中CDA ADO 120AD ADCAD OAD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△ACD ≌△AOD (ASA )∴AO =AC=5,故答案为5.【点睛】本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.14.如图,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 是△ABC 内一点,若∠AEB=∠CED=90°,AE=BE ,CE=DE=2,则图中阴影部分的面积等于__________.【答案】4【解析】【分析】作DG ⊥BE 于G ,CF ⊥AE 于F ,可证△DEG ≌△CEF ,可得DG=CF ,则是S △BDE =S △AEC ,由D 是BC 中点可得S △BED =2,即可求得阴影部分面积.【详解】作DG ⊥BE 于G ,CF ⊥AE 于F ,∴∠DGE=∠CFE=90°,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠GED=∠CEF,又∵DE=EC,∴△GDE≌△FCE,∴DG=CF,∵S△BED=12BE•DG,S△BED=12AE•CF,AE=BE,∴S△BED=S△BED,∵D是BC的中点,∴S△BDE=S△EDC=1222⨯⨯=2,∴S阴影=2+2=4,故答案为4.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.15.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,BF=2,则EF=__.【答案】6【解析】【分析】由于AB//CD、AE/CF,根据平行线的性质可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知条件就可以证明△AEF≌△CFD,最后利用全等三角形的性质和已知条件即可求解.【详解】解:∵AB//CD、AE/CF,∴∠B=∠D,∠AEF=∠CFD,而AE=CF,∴△AEF≌△CFD,∴DF=EB,∴DE=BF,∴EF=BD-2BF=6.故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,解题时首先利用平行线的性质构造全等条件证明三角形全等,然后利用全等三角形的性质即可解决问题.16.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.17.如图,已知ABC △是等边三角形,点D 在边BC 上,以AD 为边向左作等边ADE ,连结BE ,作BF AE ∥交AC 于点F ,若2AF =,4CF =,则AE =________.【答案】27【解析】【分析】证明△BAE ≌△CAD 得到ABE BAC ∠=∠,从而证得BE AF ,再得到AEBF 是平行四边形,可得AE=BF ,在三角形BCF 中求出BF 即可.【详解】作FH BC ⊥于H ,∵ABC 是等边三角形,2AF =,4CF =∴BC=AC=6在HCF 中, CF=4, 060BCF ∠=030,2CFD CH ∴∠==2224212FH ∴=-=22241227BF BH FH ∴++=∵ABC 是等边三角形,ADE 是等边三角形∴AC=AB ,AD=AE ,060CAB DAE ∠=∠=CAD BAE ∴∠=∠CAD BAE ∴∆≅∆060ABE ACD ∴∠=∠=ABE BAC ∴∠=∠BE AF ∴∵BF AE∴AEBF 是平行四边形∴AE=BF= 27本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.18.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.【答案】3.【解析】【分析】由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交BE与点G,连接AG,可得△AGF, △AGE,△CEG 均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.【详解】解:如图Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角∴∠BAF=∠CAE,∠ABC=∠ACB=45°, BE⊥CE∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,∴∠ABF=∠ACE,在△ABF与△ACE中,有AB ACBAF CAEABF ACE=⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABF≌△ACE,∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,AF=22∴AG=GE=CE=FG=2,又AG⊥BE,CE⊥BE,可得AG∥CE,∴四边形AGCE为平行四边形,∴DF=FG+GD=2+1=3.【点睛】本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt △BRP 和Rt △QSP 中,只有PR=PS.无法判断Rt △BRP 和Rt △QSP 是否全等,故③错误.如图,连接PS∵△APR ≌△APS∴AR =AS ,∠RAP=∠PAC∴AP 垂直平分RS ,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键20.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF ,∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴DE=故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.21.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选:D.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是( )A .1+2B .1+22C .2-2D .2-1【答案】B【解析】 第一次折叠后,等腰三角形的底边长为1,腰长为22; 第一次折叠后,等腰三角形的底边长为2,腰长为12,所以周长为1122122++=+. 故答案为B.23.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,AQ PQ =,PR PS =,下面三个结论:①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).A .①②B .②③C .①③D .①②③【答案】A【解析】连接AP ,由题意得,90ARP ASP ∠=∠=︒,在Rt APR 和Rt APS 中,AP AP PR PS=⎧⎨=⎩, ∴△APR ≌()APS HL ,∴AS AR =,故①正确.BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,∴PQ AB ∥,故②正确;在Rt BRP 和Rt CSP 中,只有PR PS =,不满足三角形全等的条件,故③错误.故选A .点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.24.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S△ACD:S△ABD=CD:BD=12×32×3:12×32×5=3:5.故选:B.点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.26.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.27.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB=6,∵AC=BC=2AB=23,∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.28.如图,在ABC∆中,AB AC=,点D和点A在直线BC的同侧,,82,38BD BC BAC DBC=∠=︒∠=︒,连接,AD CD,则ADB∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.29.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B ∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..30.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.【详解】∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°,∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线,∴2∠FBC+2∠FCB =90°∴∠FBC+∠FCB =45°∴∠BFC =135°故④正确.∵AG ∥BC ,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.32.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【解析】【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.33.如图,已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②连结AC 、BC ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④在射线AM 上截取AB =a ;以上画法正确的顺序是( )A .①②③④B .①④③②C .①④②③D .②①④③【答案】B【解析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.34.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D.点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.35.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.36.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.38.边长为a,b的长方形周长为12,面积为10,则a2b+ab2的值为()A.120 B.60 C.80 D.40【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.39.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.40.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.41.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.42.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .八、八年级数学整式的乘法与因式分解填空题压轴题(难)43.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与。

【数学】2016年四川省达州市开江县八年级(下)数学期末试卷带答案PDF版

【数学】2016年四川省达州市开江县八年级(下)数学期末试卷带答案PDF版

2015-2016学年四川省达州市开江县八年级(下)期末数学试卷一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.(3分)下列从左到右的变形,是因式分解的是()A.(a﹣b)(a+b)=a2﹣b2B.x2+2x+3=x(x+2)+3C.ab﹣a﹣b+1=(a﹣1)(b﹣1)D.m2+4m﹣4=(m﹣2)23.(3分)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.(3分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于()A.12 B.10 C.8 D.65.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对6.(3分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.7.(3分)已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种8.(3分)某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是()人.A.50 B.40 C.30 D.209.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠ACB=120°,则∠A的度数为()A.60°B.50°C.40°D.不能确定10.(3分)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S=2S△CEF;④∠DFE=3∠AEF.△BECA.①②B.②③④C.①②④D.①②③④二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)11.(3分)分解因式:3a2﹣12=.12.(3分)已知分式的值是0,则m的值为.13.(3分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.14.(3分)已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.(3分)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)17.(5分)解不等式组:,并把它的解集在数轴上表示出来.18.(5分)解方程;=﹣1.19.(7分)先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.(二)(本题2小题,共13分)20.(5分)如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.21.(8分)某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?(三)(本题2个小题,共14分)22.(6分)已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.23.(8分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?(四)(本题2个小题,共16分)24.(8分)阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=时,函数y=a﹣1+(a>1)的最小值为;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题3:求代数式(m>﹣1)的最小值.25.(8分)如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.(1)求AB的长.(2)求图中阴影部分的面积.(五)(本题12分)26.(12分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.2015-2016学年四川省达州市开江县八年级(下)期末数学试卷参考答案与试题解析一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)1.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.2.(3分)下列从左到右的变形,是因式分解的是()A.(a﹣b)(a+b)=a2﹣b2B.x2+2x+3=x(x+2)+3C.ab﹣a﹣b+1=(a﹣1)(b﹣1)D.m2+4m﹣4=(m﹣2)2【解答】解:下列从左到右的变形,是因式分解的是ab﹣a﹣b+1=(ab﹣a)﹣(b﹣1)=a(b﹣1)﹣(b﹣1)=(a﹣1)(b﹣1),故选:C.3.(3分)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c【解答】解:依题意得b=2c;a>b.∴a>b>c.故选:A.4.(3分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于()A.12 B.10 C.8 D.6【解答】解:在直角△ABC中,BC===6.则△ABC的周长是10+8+6=24.∵E、F分别为AC和AB的中点,即EF是△ABC的中位线,∴EF∥BC,∴△AEF∽△ACB,相似比是1:2,∴=,∴△AEF的周长=×24=12.故选:A.5.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选:B.6.(3分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选:C.7.(3分)已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种【解答】解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.8.(3分)某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是()人.A.50 B.40 C.30 D.20【解答】解:设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=1500x+3000(120﹣x)=﹣1500x+360 000,由题意得120﹣x≥2x,解得:x≤40,y=﹣1500x+360 000中的y随x的增大而减少,所以当x=40时,y取得最小值300000.即当招聘A工种工人40人时,可使每月所付工资最少.故选:B.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠ACB=120°,则∠A的度数为()A.60°B.50°C.40°D.不能确定【解答】解:∵△ABC中,∠ACB=120°,∴∠A+∠B=60°.∵由题意得出MN是线段BC的垂直平分线,∴BD=CD,∴∠B=∠BCD,∴∠CDA=∠B+∠BCD=2∠B.∵CD=AC,∴∠CDA=∠A=2∠B,∴3∠B=60°,解得∠B=20°,∴∠A=2∠B=40°.故选:C.10.(3分)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S=2S△CEF;④∠DFE=3∠AEF.△BECA.①②B.②③④C.①②④D.①②③④【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC <2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选:C.二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)11.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【解答】解:3a2﹣12=3(a+2)(a﹣2).12.(3分)已知分式的值是0,则m的值为3.【解答】解:∵分式的值是0,∴m2﹣9=0,且m+3≠0,解得:m=3.故答案为:3.13.(3分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=240度.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.14.(3分)已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.15.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.16.(3分)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)17.(5分)解不等式组:,并把它的解集在数轴上表示出来.【解答】解:,解①得:x≥﹣1,解②得:x<4,不等式组的解集为:﹣1≤x<4,在数轴上表示:.18.(5分)解方程;=﹣1.【解答】解:去分母得:1+x=﹣1﹣x+2,解得:x=0,经检验x=0是分式方程的解.19.(7分)先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.【解答】解:原式=•=•=,当x=1时,原式=﹣3.(二)(本题2小题,共13分)20.(5分)如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.【解答】解:过点P作PE⊥OB于点E,∵∠AOB=60°,PE⊥OB,12cm,∴OE=OP=6cm,∵OC=5cm,PC=PD,∴CE=DE=1cm,∴OD=7.21.(8分)某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作a天,根据题意得:0.8a+×0.5≤16,解得:a≥10,答:至少应安排甲队工作10天.(三)(本题2个小题,共14分)22.(6分)已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.23.(8分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一种方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算四种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低为70000元.(四)(本题2个小题,共16分)24.(8分)阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=4时,函数y=a﹣1+(a>1)的最小值为6;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=2时,周长的最小值为8;问题3:求代数式(m>﹣1)的最小值.【解答】解:问题1,由阅读2知,a﹣1=时,即:a=4时,函数y=a﹣1+(a>1)的最小值是2=6,答案为4,6;问题2,由阅读2知,x==2时,周长为2(x+)的最小值是2×2=8,故答案为2,8;(3)===m+1+,∴当m+1=时,即m=1时,(m>﹣1)最小值是2=4.25.(8分)如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.(1)求AB的长.(2)求图中阴影部分的面积.【解答】解:(1)∵△CDF为等边三角形,∴DF=DC=FC,∠D=60°,根据折叠的性质,∠BCA=∠ECA,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6cm,AB=CD,∴∠FAC=∠BCA,∴∠FAC=∠FCA,∴FA=FC,∴∠DAC=30°,∴∠ACD=90°,∴CD=AD=3cm,∵AB=3cm;(2)∵CD=3cm,∠ACD=90°,∠DAC=30°,∴AC=3cm,=S△ACD=×AC•CD=×3×3=(cm2).∴S△ACF(五)(本题12分)26.(12分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°。

2015-2016学年新课标人教版八年级上期末数学试卷(有答案)

2015-2016学年新课标人教版八年级上期末数学试卷(有答案)

2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。

2015~2016学年度上学期期末考试试卷八年级数学附答案

2015~2016学年度上学期期末考试试卷八年级数学附答案

2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。

2015-2016学年八年级上学期期末数学试卷

2015-2016学年八年级上学期期末数学试卷

2015-2016学年八年级上学期期末数学试卷一、选择题(每题3分,共45分) 1.下列各式中计算正确的是( ) A .B .C .D .2.(3分)如图中点P 的坐标可能是( ) A . (﹣5,3) B . (4,3) C . (5,﹣3) D .(﹣5,﹣3)3.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A . 0 B . 1 C . 2 D .3 4.在﹣2,0,3,这四个数中,最大的数是() A . ﹣2 B . 0 C . 3 D . 5.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°, 则∠2的度数是( ) A . 50° B . 45° C . 35° D .30° 6.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限 7.若方程mx+ny=6的两个解是,,则m ,n 的值为( )A . 4,2B . 2,4C . ﹣4,﹣2D .﹣2,﹣4 8.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果: 居民(户) 1 3 2 4 月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是() A . 中位数是55 B . 众数是60 C . 方差是29 D .平均数是54 9.(3分)下列四组线段中,可以构成直角三角形的是() A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D .1,,3 10.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米 D . 张强从早餐店回家的平均速度是3千米/小时11.下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

四川省达州市开江县八年级(上)期末数学试卷(解析版)

四川省达州市开江县八年级(上)期末数学试卷(解析版)

四川省达州市开江县八年级(上)期末数学试卷、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本大题10个小题,每小题3分,共30分)1. (3分)在平面直角坐标系中,点A (2,- 3)在第()象限.A. —B.二C.三D.四2. (3 分)实数写,二,一二,:-.,0.1010010001 •中,无理数有()A. 5个B. 4个C. 3个D. 2个(3分)给出下列命题:①两条直线被第三条直线所截,内错角相等;②如果/ 1和/2是对顶角,那么/ 1=7 2;③三角形的一个外角大于任何一个内角;④如果x2〉0,那么x>0,其中真命题的个数为()A . 1个B. 2个C. 3个D . 4个5. (3分)为了选派教师参加开江县中小学教师三字一话”教学基本功大赛,某校组织全校教师进行了预赛,其中三字”(粉笔字、钢笔字、毛笔字)项目有10 名教师报名参加,比赛成绩每项满分10分,比赛成绩每项满分10分,并按粉笔字:钢笔字:毛笔字=3: 3: 4的权重计算总分,总分最高的3名教师参加县级比赛,10名教师的比赛成绩如表:项目1号2号3号4号5号6号7号8号9号10号粉笔字9.89.69.69.59.69.69.89.79.69.6钢笔字9.69.79.69.89.69.79.89.79.89.7毛笔字9.69.79.89.79.79.89.69.79.69.7 4.(1) 粉笔字成绩的众数为9.6;( 2)钢笔字成绩的平均数为9.7;(3)毛笔字成绩的中位数为9.7;(4)参加县级比赛的教师为 3号,6号和8 号.则上面的说法中正确的个数为( )A . 4个B. 3个C. 2个D. 1个6. ( 3分)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛 球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320 元购买了 6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为 xGO. 3 尸①2 8. ( 3分)如图,以直角三角形a 、b 、c 为边,向外作等边三角形,半圆,等A . 1B . 2 C. 3 D . 4 9.(3分)如图,在长方形 ABCD 中,动点P 从点B 出发,沿BC CD DA 运动 至A停止,设点P 运动的路程为x ,A ABP 的面积为y ,如果y 关于x 的函数图 象如图2元,每副乒乓球拍为y 元,列二元一次方程组得(B 16(x+y)=320 得尸50 D I6x+y=320 'C. 6x-Fl 0y=320,10x+6y=320 f 2a-3b=13 ” s 口,3且+5b=30. g 的解疋:7 . ( 3分)已知方程组:, r2(x+2)-3(y-l)=13 的的曰 z 、C 、 L f 八切『的解是( ) l3(x+2)+5(y-l)=30. £ ::驚,则方程组: ,b —L. 2 俨 3 B.] \=10.3 C. f °,( 】尸L2 炖2 ly=2. 2腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有 A. a 、( )所示,则△ ABC的面积是( )10. ( 3分)如图,AD 是厶ABC 的中线,/ ADC=45,把△ ADC 沿着直线AD 对 折,点C 落在点E 的位置.如果BC=6,那么线段BE 的长度为()A . 6 B. 6 二 C. 2 二 D. 3 二二、填空题(本题6个小题,每小题3分,共18分,把最后答案直接填在题中 的横线上) 11. (3分)在函数\y= ______________ 中,自变量x 的取值范围是.12. _____________ (3分)有一组数据如下:3,a ,4, 6,7,它们的平均数是5,那么这组数 据的方差是 . y=ax+b 和直线y=kx 交于点P ,则关于x ,y 的二元14. ______________________________________________________________ (3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐 标分别为A13.( 3分)如图,已知直线D團 tIS2A . 16 B. 10 C. 18 D . 20次方程组严血的解是,y=ax+b(- 2,1)和B(- 2,- 3),那么第一架轰炸机C的平面坐标是_________________15. (3分)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l i, I2,过点(1,0)作x轴的垂线交l i于点A i,过点A i作y轴的垂线交12于点A2,过点A2作x轴的垂线交l i于点A3,过点A3作y轴的垂线交12于点A4, ••依交AC于点E, DF交BC于点F,下列结论正确的是_________ .(填写正确答案的(i)图形中全等的三角形有3对(2)△ ABC的面积等于四边形CEDF的面积的2倍(3) CEhCF=】DA (4) AE2+BF2=EF^.三、解答题(本题2个小题,共16 分)i7.(i0分)计算:D 为AB 中点,/ EDF=90, DE(D 计算:£:.+1 3 : - 6|f3x-y=8(2)解方程组:「18. (6分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,根据表中的数据,回答下列问题:每周做家务的时间(小时) 01 1.52 2.53 3.54人数(人) 2268121343(1) 该班学生每周做家务劳动的平均时间是多少小时?(2) 这组数据的中位数、众数分别是多少?(3) 请你根据(1)、( 2)的结果,用一句话谈谈自己的感受.四、解答题(本题2个小题,共12 分)19. (6分)如图,△ ABC的顶点坐标分别为A (1, 3),B(4, 2),C (2, 1)(1) 作出与△ ABC关于x轴对称的厶A1B1C1,并写出A1,B1,Ci的坐标;(2) 作出与△ ABC关于原点对称的厶A2B2C2,并写出A2,B2, C2的坐标.以20. (6 分)如图,四边形ABCD中,/ BAD=1O0, / BCD=70,点M,N 分别在AB,BC上,将△ BMN 沿MN 翻折,得△ FMN,若MF// AD, FN// DC,求/ B 的度数.21. ( 8分)如图,在平面直角坐标系中,过点B (6, 0)的直线AB与直线OA相交于点A (4, 2),动点M沿路线C K A-C运动.—2—片C五、解答题(本题2个小题,共16 分)(1) 求直线AB的解析式.(2) 求厶OAC的面积.(3) 当厶OMC的面积是厶OAC的面积的[时,求出这时点M的坐标.22. (8分)某中学为了美化校园环境,计划购进桂花树和黄桷树两种树苗共200 棵,现通过调查了解到:若购进15棵桂花树和6棵黄桷树共需600元,若购进12棵桂花树和5棵黄桷树共需490元.(1)求购进的桂花树和黄桷树的单价各是多少元?(2)已知甲、乙两个苗圃的两种树苗销售价格和上述价格一样,但有如下优惠:甲苗圃:每购买一棵黄桷树送两棵桂花树,购买的其它桂花树打9折.乙苗圃:购买的黄桷树和桂花树都打7折.设购买黄桷树x棵,y i和y2分别表示到甲、乙两个苗圃中购买树苗所需总费用,求出y i和y2关于x的函数表达式;(3)现在,学校根据实际需要购买的黄桷树的棵数不少于35棵且不超过40棵,请设计一种购买方案,使购买的树苗所花费的总费用最少.最少费用是多少?六、解答题(本题2个小题,共16分)23. ( 7分)问题背景:在厶ABC中,AB、BC AC三边的长分别为「、一、一,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ ABC( 即^ ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ ABC的高,而借用网格就能计算出它的面积.(1) ________________________________________ 请你将△ ABC的面积直接填写在横线上_____________________________________ ;思维拓展:(2) 我们把上述求△ ABC面积的方法叫做构图法.若A ABC三边的长分别为一•、•:、(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC并求出它的面积;探索创新:(3) 若厶ABC三边的长分别为匚^^、…、.;:(m>0, n>0,且m工n),试运用构图法求出这三角形的面积.24. ( 9分)如图1,在厶ABC中,BE平分/ ABC CE平分/ ACB 若/ A=82°,则/ BEC ______;若/ A=a ,则/ BEC ________【探究】(1)如图2 ,在厶ABC中,BD , BE三等分/ ABC, CD, CE三等分/ ACB若/A=a°,则/ BEC= _____ ;(2)如图3 , O是/ABC与外角/ ACD的平分线BO和CO的交点,试分析/ BOC 和/A有怎样的关系?请说明理由;(3)如图4 , O是外角/ DBC与外角/ BCE的平分线BO和CO的交点,则/ BOC 与/A有怎样的关系?请说明理由.七、解答题(本题1个小题,共12分)25. (12分)如图,平面直角坐标系中,已知直线y=x上一点P (2 , m) , C(0 , n)为y 轴上一点,以P为直角顶点作等腰Rt^PCD,过点D作直线AB丄x轴, 垂足为B ,直线AB与直线y=x交于点A.(1)求m的值,并求出直线PC的函数表达式(用含n的式子表示);(2)判断线段OB和OC的数量关系,并证明你的结论;(3)当厶OPC^A ADP时,求点A的坐标.團1 圈?图孑图4参考答案与试题解析一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本大题10个小题,每小题3分,共30分)1. (3分)在平面直角坐标系中,点 A (2,- 3)在第()象限.A. 一B.二C.三D.四【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A (2,- 3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-, +);第三象限(-,-);第四象限(+,-).2. (3 分)实数:,.:,「- -.,0.1010010001 •中,无理数有()A. 5个B. 4个C. 3个D. 2个【考点】26:无理数;22:算术平方根;24:立方根.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解::,——,-,,0.1010010001是无理数,22■■是有理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如n 鉅,0.8080080008・(每两个8之间依次多1 个0)等形式.3. (3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()【考点】E2:函数的概念.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4. (3分)给出下列命题:①两条直线被第三条直线所截,内错角相等;②如果/ 1和/2是对顶角,那么/仁/ 2;③三角形的一个外角大于任何一个内角;④如果x2>0,那么x>0,其中真命题的个数为()A. 1个B. 2个C. 3个D. 4个【考点】01:命题与定理.【分析】根据平行线的性质对①进行判断;根据三角形外角性质对③进行判断;根据对顶角的性质对②进行判断;根据平方的意义对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;三角形的一个外角大于任何一个与之不相邻的内角,所以③错误;如果/ 1和/2是对顶角,那么/仁/2,所以②正确;如果x1 2 3>0,那么X M0,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果••那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5. (3分)为了选派教师参加开江县中小学教师三字一话”教学基本功大赛,某校组织全校教师进行了预赛,其中三字”(粉笔字、钢笔字、毛笔字)项目有10 名教师报名参加,比赛成绩每项满分10分,比赛成绩每项满分10分,并按粉笔字:钢笔字:毛笔字=3: 3: 4的权重计算总分,总分最高的3名教师参加县级比赛,10名教师的比赛成绩如表:1 粉笔字成绩的众数为9.6;( 2)钢笔字成绩的平均数为9.7;(3)毛笔字成绩的中位数为9.7;(4)参加县级比赛的教师为3号,6号和8 号.则上面的说法中正确的个数为( )A. 4个B. 3个C. 2个D. 1个【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】分别根据众数、平均数、中位数及加权平均数逐一判断即可得.【解答】解:(1)粉笔字成绩的众数为9.6分,此结论正确;2 钢笔字成绩的平均数为八"丄J —L ;;;' '=9.7 (分)此结论正确;9 7+9 7(4) 1 至U 10 号的平均成绩依次为 9.66、9.67、9.68、9.67、9.64、9.71、9.72、9.70、9.66、9.67,则参加县级比赛的教师为6号,7号和8号.此结论错误; 故选:B.【点评】本题主要考查众数、中位数、平均数,解题的关键是掌握众数、中位数、 平均数的定义及其计算公式.6. ( 3分)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛 球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320 元购买了 6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为 x 元,每副乒乓球拍为y 元,列二元一次方程组得(\+y=50B. 1G (x+y )=320 仃+y=50 D I6z+y=320 D【分析】分别根据等量关系:购1副羽毛球拍和1副乒乓球拍共需50元,用320 元购买了 6副同样的羽毛球拍和10副同样的乒乓球拍,可得出方程,联立可得 出方程组.【解答】解:由题意得, 故选:B.【点评】此题考查了由实际问题抽象二元一次方程组的知识, 属于基础题,关键 是仔细审题得出两个等量关系,建立方程组.0y=320,10x+6y=320【考点】99:由实际问题抽象出二元一次方程C.7 . ( 3分)已知方程组:(2(对”-3(y-l)=13 ___ 13(x+2)+5(y-l)=30^.3B. 2a-3b=13 ” s 口■1! - . 的解疋:a=8. 3b=12,则方程组:的解是()亠x=6. 3尸乙2D. '\=10.3y=0. 2A.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.故选:C.【点评】这类题目的解题关键是灵活运用二元一次方程组的解法,观察题目特点灵活解题.8. ( 3分)如图,以直角三角形a b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S i+S^=S3图形个数有A. 1B. 2C. 3D. 4【考点】KQ:勾股定理.【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S I+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S+Q=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰【解答】解: 在方程组■■々仗+2)七(y-l)=133(x+2)+5(y-l)=30^设x+2=a, y—仁b,则变形为方程组(2a-3b=1313a+5b=30.9由题知(a=8. 3lb=L2所以x+2=8.3, y—1=1.2,fx=6. 3ly=2. 2( )直角三角形的面积;然后根据a2+b2=c2,可得S+S b=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得Si+S b=Ss.【解答】解:(,)§** ††严2, 『&= €,••• a2+b2=c2Si+S b=S3.2 2 2(2) S= a , S2= b , S B=—^c ,•/ a2+b2=c2,a2+ b2= c2••: a+:b= :c,• S|+S=S3.(3) Sja2, S?=,b2, S s= c ,•/ a F+b2=c2,§S|+S=S3.(4)S=a2, S2=b2, S3=c ,†† a2+b2=c2,• S|+S?=S3.综上,可得面积关系满足0+82=怎图形有4个.故选:D.【点评】(I)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法, 要熟练掌握.9. (3分)如图,在长方形ABCD中,动点P从点B出发,沿BC CD DA运动至A 停止,设点P运动的路程为x,A ABP的面积为y,如果y关于x的函数图象如图2所示,则△ ABC的面积是()A. 16B. 10C. 18D. 20【考点】E7:动点问题的函数图象.【分析】根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ ABC的面积.【解答】解:•••动点P从点B出发,沿BC CD DA运动至点A停止,而当点P 运动到点C,D之间时,△ ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4, x=9时,接着变化,说明CD=9- 4=5,••• AB=5, BC=4•••△ABC的面积是:寸4X 5=10.故选:B.【点评】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出有关的线段的长度,从而得出三角形的面积是本题的关键.10. (3分)如图,AD是厶ABC的中线,/ ADC=45,把厶ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()B r> cA. 6B. 6 7C. 2 二D. 3 7【考点】PB:翻折变换(折叠问题)【分析】根据折叠的性质判定△ EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED / CDA=Z ADE=45,•••/ CDE W BDE=90,••• BD=CD BC=6••• BD=ED=3即△ EDB是等腰直角三角形,••• BE=「BD= _X 3=3 二,故选:D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.二、填空题(本题6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上)11. (3分)在函数v二:中,自变量x的取值范围是x>- 1且X M0 .y【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出X的范围.【解答】解:根据题意得:X+1 >0且X M 0,解得:X>- 1且X M0.故答案为:X>- 1且X M 0.【点评】考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12. (3分)有一组数据如下:3,a,4, 6, 7,它们的平均数是5,那么这组数据的方差是.【考点】W7:方差;W1:算术平均数.【分析】先利用平均数的定义求出a ,然后根据方差公式计算.【解答】解:根据题意得(3+a+4+6+7) =5X 5,解得a=5,所以这组数据为3, 4, 5, 6, 7,数据的方差=:[(3-5) 2+ (4- 5) 2+ (5-5) 2+ (6-5) 2+ (7- 5) 2] =2. 5故答案为2.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差•计算公式是:S 2=l [ (X 1 - x 0 2+ (X 2 - X )2+-+ ( X n n-x ) 2] •也考查了算术平均数.13.( 3分)如图,已知直线y=ax+b 和直线y=kx 交于点P ,则关于x , y 的二元 g 的解是y^ax+b直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答 案.解:•••直线y=ax+b 和直线y=kx 交点P 的坐标为(1, 2),尸也的解为- y=as+b1-.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函 数解析式组成的方程组的解.14. (3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐【解答】 二关于X , y 的二元一次方程组- 故答案为 次方程组【分次方程(组).标分别为A (- 2, 1)和B (- 2, - 3),那么第一架轰炸机C 的平面坐标是(2,【考点】D3:坐标确定位置.【分析】根据A (- 2, 1)和B (- 2,- 3)的坐标以及与C 的关系进行解答即 可.【解答】解:因为A (- 2, 1)和B (-2,- 3),所以可得点C 的坐标为(2,- 1),故答案为:(2,- 1).【点评】此题考查坐标问题,关键是根据 A (- 2, 1 )和B (-2,- 3)的坐标 以及与C 的关系解答.15. (3分)如图,在平面直角坐标系中,函数 y=2x 和y=-x 的图象分别为直线11, 12,过点(1, 0)作x 轴的垂线交11于点A 1,过点A 1作y 轴的垂线交12于点A 2,过点A 2作x 轴的垂线交h 于点A 3,过点A 3作y 轴的垂线交12于点A 4, ••依(2〔008 21009)F8: —次函数图象上点的坐标特征.写出部分A n 点的坐标,根据坐标的变化找出变化规律 “2n +1 ((- 2) n ,n )( n 为自然数)”依此规律即可得出结论. 解:观察,发现规律:A 1 (1, 2), A 2 (- 2, 2), A 3 (- 2,- 4),【分析】 2 (- 2)【解-1) • 【考A4 (4,- 4), A5 (4, 8),…,••• A2n+1 ((-2) n, 2 (- 2) n)( n 为自然数).••• 2017=1008X 2+1,••• A2017 的坐标为((-2) 1008, 2 (- 2) 1008) = (21008, 21009).故答案为:(21008, 21009).【点评】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“2n+1 ((-2)n, 2 (-2) n)( n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,写出部分A n点的坐标,根据坐标的变化找出变化规律是关键.16. (3 分)Rt A ABC 中,AC=BC / ACB=90, D 为AB 中点,/ EDF=90, DE 交AC于点E, DF交BC于点F,下列结论正确的是 (1) (2) (3) (4).(填写正确答案的序号)(1)图形中全等的三角形有3对 (2) △ ABC的面积等于四边形CEDF的面积的2倍(3)C8CF=「DA (4) AE2+BF2=EF?.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】只要证明厶DAE^A DCF, △ DCE^A DBF,即可解决问题;【解答】解::CA=CB Z ACB=90,/•Z A=Z B=45,••• AD=DB••• CD丄AB ,•••△ ACD, △ CDB都是等腰直角三角形,•••△ADC^A BDC,•••Z EDF=/ ADC=90 ,•••Z ADEN CDF,••• AD=DC / A=Z DCF=45,•••△DAE^A DCF 同法可证厶DCE^A DBF,•••图形中有3对全等三角形,故(1)正确,•: △ DAE^A DCF• S四边形DECF S ADC誌ABC 故(2)正确,•••△DAE^A DCF•AE=CF•C^CF=CEAE F AC^AD ,连接EF,•/ CA=CB AE=CF•CE=BF在Rt A ECF中,EF^C W+CF F B^+A理,故(4)正确, 故答案为(1)( 2)( 3)( 4);【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质和判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本题2个小题,共16分)17. (10分)计算:(1)计算:寸+1 3「—6|(3K-y=8(2)解方程组:....|【考点】79:二次根式的混合运算;98:解二元一次方程组.【分析】(1)先分母有理化和去绝对值,然后合并即可;(2)利用加减消元法解方程组.【解答】解:(1)原式=3(:_+1)+6-3 :_=3 一+3+6 - 3 —=9;(刀戸曲①1 3x-5y=-20 ②'①-②得4y=28,解得y=7,把y=7代入①得3x- 7=8,解得x=5,所以方程组的解为,:【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式, 然后进行二次根式的乘除运算,再合并即可•也考查了解二元一次方程组.18.(6分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,根据表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.【考点】W2:加权平均数;W4:中位数;W5:众数.【分析】(1)平均时间=总时间宁总人数.(2)50个数据,中位数应是第25个和第26个数据的平均数,3小时出现的次数最多,为13次,应是众数.(3)根据平均数、中位数和众数的意义谈感受.【解答】解:(1 )该班学生每周做家务劳动的平均时间为0X2+1X 2+1. 5 X 6+2 X 8+2 5 XI 戈+3 X 13+3. 5X4+4X=2.44 (小时)答:该班学生每周做家务劳动的平均时间为 2.44小时.(2)这组数据的中位数是2.5 (小时),众数是3 (小时)(3)评分说明:只要叙述内容与上述数据有关或与做家务劳动有关,并且态度积极即可.【点评】本题用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数•中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,平均数=总数宁个数.四、解答题(本题2个小题,共12分)19. (6分)如图,△ ABC的顶点坐标分别为A (1, 3),B( 4, 2),C(2, 1)(1)作出与△ ABC关于x轴对称的厶ABC,并写出",B i, G的坐标;(2)作出与△ ABC关于原点对称的厶A2B2C2,并写出A2, B2, C2的坐标.【分析】(1)分别作出点A、B C关于x轴的对称点,再顺次连接可得;(2)分别作出点A、B C关于原点的对称点,再顺次连接可得.【解答】解:(1)如图所示,△ A1B1C1即为所求,(2)如图所示, △ A2B2C2 即为所求,A? ( - 1,- 3), B2( - 4,- 2), C2(-2,- 1).【点评】本题主要考查作图-轴对称变换和旋转变换,解题的关键是根据轴对称和旋转的性质作出变换后的对应点.20. (6 分)如图,四边形ABCD中,/ BAD=1O0, / BCD=70,点M, N 分别在AB, BC上,将△ BMN 沿MN 翻折,得△ FMN,若MF// AD, FN// DC,求/ B 的度数.A B【考点】L3:多边形内角与外角;JA:平行线的性质;K7:三角形内角和定理. 【分析】根据两直线平行,同位角相等求出/ BMF、/ BNF,再根据翻折的性质求出/ BMN和/BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解::MF// AD, FN// DC,•••/ BMF=Z A=100o, / BNF=Z C=70 ,•••△ BMN 沿MN 翻折得△ FMN,•••/ BMN= / BMF= X 100°=50°,2 2 '/ BNM」/ BN©X 70°=35°,2 2 '在厶BMN 中,/ B=180°- (/ BMN+Z BNM) =180°- (50°+35°) =180°- 85°=95°.【点评】本题考查了平行线的性质,用到的知识点是两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.五、解答题(本题2个小题,共16分)21. ( 8分)如图,在平面直角坐标系中,过点B (6, 0)的直线AB与直线OA 相交于点A (4, 2),动点M沿路线XA-C运动.(1)求直线AB的解析式.(2)求厶OAC的面积.(3)当厶OMC的面积是厶OAC的面积的时,求出这时点M的坐标.【考点】FA :待定系数法求一次函数解析式;F5: —次函数的性质;F8: —次函 数图象上点的坐标特征.【分析】(1)利用待定系数法即可求得函数的解析式;(2) 求得C 的坐标,即0C 的长,利用三角形的面积公式即可求解;(3) 当厶OMC 的面积是厶OAC 的面积的]时,根据面积公式即可求得 M 的横坐 标,然后代入解析式即可求得 M 的坐标.【解答】解:(1)设直线AB 的解析式是y=kx+b ,6k+b=0''k=-l 则直线的解析式是:y= - x+6 ;(2) 在 y=- x+6 中,令 x=0,解得:y=6,S k OA (=— X 6X 4=12;(3) 设OA 的解析式是y=mx ,则4m=2,解得:m=-?,则直线的解析式是:y=?x ,•••当△ OMC 的面积是厶OAC 的面积的时,••• M 的横坐标是一 X 4=1,在y=〒x 中,当x=1时,y=[,则M 的坐标是(1,三);在y=- x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是:M 1 (1,)或M 2 (1,5).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字根据题意得:解得:母系数的方程,解方程求解即可得到函数解析式. 当已知函数解析式时,求函数 中字母的值就是求关于字母系数的方程的解.22. (8分)某中学为了美化校园环境,计划购进桂花树和黄桷树两种树苗共 200 棵,现通过调查了解到:若购进15棵桂花树和6棵黄桷树共需600元,若购进 12棵桂花树和5棵黄桷树共需490元.(1) 求购进的桂花树和黄桷树的单价各是多少元?(2) 已知甲、乙两个苗圃的两种树苗销售价格和上述价格一样, 但有如下优惠: 甲苗圃:每购买一棵黄桷树送两棵桂花树,购买的其它桂花树打 9折•乙苗圃: 购买的黄桷树和桂花树都打7折.设购买黄桷树x 棵,y i 和y 2分别表示到甲、乙 两个苗圃中购买树苗所需总费用,求出 y i 和y 2关于x 的函数表达式;(3) 现在,学校根据实际需要购买的黄桷树的棵数不少于 35棵且不超过40棵, 请设计一种购买方案,使购买的树苗所花费的总费用最少•最少费用是多少?【考点】FH: —次函数的应用;9A :二元一次方程组的应用.【分析】(1)设购进的桂花树为x 元/棵,黄桷树为y 元/棵,由题意可列方程 组,可求得答案;(2) 禾U 用题目中所给的方案,分别表示 旳、y 2即可;(3) 令y 1=y 2,可求得x=32,利用一次函数的增减性,进行判断即可.【解答】解:(1)设购进的桂花树为x 元/棵,黄桷树为y 元/棵,答:购进的桂花树为20元/棵,黄桷树为50元/棵;(2)由题意可得 y 1=50x+ (200- x -2x )x 20X 90%,即 y 〔二—4x+3600, y 2=[ 50x+ (200- x )X 20] X 70%, 即卩 y 2=21x+2800;(2)v 当 屮=丫2 时,即-4x+3600=21x+2800,解得 x=32,•••当x=32时,y 1=y 2,即当x=32时,到两家苗圃购买费用一样,••• y 1随x 的增大而减小,y 可随x 的增大而增大,•选择到甲苗圃购买,•/ 35< x < 40,由题意Ct 尸需,ll2s+5y=490 解得* r x=20 y=50•••当 x=40 时,费用最少为:y=-4X 40+3600=3440元,即到甲苗圃购买40棵黄桷树,160棵桂花树时,费用最小,最少费用为3440元.【点评】本题有要考查一次函数及二次一次方程组的应用, 正确把握题目中的等 量关系是解决这类问题的关系.六、解答题(本题2个小题,共16分)23. ( 7分)问题背景:在厶ABC 中,AB 、BC AC 三边的长分别为 「、 一、—,求这个三角形的面 积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1), 再在网格中画出格点△ ABC (即厶ABC 三个顶点都在小正方形的顶点处),如图 ①所示.这样不需求△ ABC 的高,而借用网格就能计算出它的面积.(1) 请你将△ ABC 的面积直接填写在横线上 _ ;思维拓展:(2) 我们把上述求△ ABC 面积的方法叫做构图法.若△ ABC 三边的长分别为匸、> — (a >0),请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ ABC ,并求出它的面积;探索创新:(3) 若厶 ABC 三边的长分别为11; 1■、讥」;;J 、‘I : - i 「(m >0,n > 0,且m 工n ),试运用构图法求出这三角形的面积.【考点】N5:作图一代数计算作图.【分析】(〔)△ ABC 的面积=3X 3 - 1 X 2-2 - 1X 3-2 -2X 3-2=3.5;(2) ~a 是直角边长为a ,2a 的直角三角形的斜边;2二a 是直角边长为2a , 2a 的直角三角形的斜边;a 是直角边长为a, 4a 的直角三角形的斜边,把A/ \/ 、 B ■- C。

达州市开江县2015-2016学年八年级下期末数学试卷含答案解析(初中 数学试卷)

达州市开江县2015-2016学年八年级下期末数学试卷含答案解析(初中 数学试卷)

2015-2016学年四川省达州市开江县八年级(下)期末数学试卷一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.2.下列从左到右的变形,是因式分解的是()A.(a﹣b)(a+b)=a2﹣b2B.x2+2x+3=x(x+2)+3C.ab﹣a﹣b+1=(a﹣1)(b﹣1)D.m2+4m﹣4=(m﹣2)23.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于()A.12 B.10 C.8 D.65.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A. B. C. D.7.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种8.某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是()人.A.50 B.40 C.30 D.209.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠ACB=120°,则∠A的度数为()A.60°B.50°C.40°D.不能确定10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()=2S△CEF.①∠DCF=∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BECA.①②③B.②③④C.①②④D.①③④二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)11.分解因式:3a2﹣12=.12.已知分式的值是0,则m的值为.13.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.14.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)17.解不等式组:,并把它的解集在数轴上表示出来.18.解方程;=﹣1.19.先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.(二)(本题2小题,共13分)20.如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.21.某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?(三)(本题2个小题,共14分)22.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?(四)(本题2个小题,共16分)24.阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=时,函数y=a﹣1+(a>1)的最小值为;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题3:求代数式(m>﹣1)的最小值.25.如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B 的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.(1)求AB的长.(2)求图中阴影部分的面积.(五)(本题12分)26.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.2015-2016学年四川省达州市开江县八年级(下)期末数学试卷参考答案与试题解析一、选择题(下面每小题的四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10小题,每小题3分,共30分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选D.2.下列从左到右的变形,是因式分解的是()A.(a﹣b)(a+b)=a2﹣b2B.x2+2x+3=x(x+2)+3C.ab﹣a﹣b+1=(a﹣1)(b﹣1)D.m2+4m﹣4=(m﹣2)2【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:下列从左到右的变形,是因式分解的是ab﹣a﹣b+1=(ab﹣a)﹣(b﹣1)=a(b﹣1)﹣(b﹣1)=(a﹣1)(b﹣1),故选C3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c【考点】不等式的性质;等式的性质.【分析】观察图形可知:b=2c;a>b.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选A.4.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则△AEF的周长等于()A.12 B.10 C.8 D.6【考点】三角形中位线定理.【分析】在直角△ACB中利用勾股定理求得BC的长,则△ACB的周长即可求得,然后根据EF是△ACB的中位线得到△AEF∽△ACB,利用相似三角形的性质即可求解.【解答】解:在直角△ABC中,BC===6.则△ABC的周长是10+8+6=24.∵E、F分别为AC和AB的中点,即EF是△ABC的中位线,∴EF∥BC,∴△AEF∽△ACB,相似比是1:2,∴=,∴△AEF的周长=×24=12.故选A.5.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A. B. C. D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.7.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种【考点】平行四边形的判定.【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.【解答】解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.8.某工厂要招聘A、B两个工种的工人120人,A、B两个工种的工人的月工资分别为1500元和3000元,现要求B工种的人数不少于A工种人数的2倍,要使工厂每月所付的工资总额最少,那么工厂招聘A种工人的人数至多是()人.A.50 B.40 C.30 D.20【考点】一元一次不等式的应用.【分析】题中不等关系是:A,B两种工种的工人共120人,B工种的人数不少于A工种人数的2倍,据此列出不等式组并解答,求出总工资最少时A工种的工人数.【解答】解:设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人人,根据题意得y=1500x+3000=﹣1500x+360 000,由题意得120﹣x≥2x,解得:x≤40,y=﹣1500x+360 000中的y随x的增大而减少,所以当x=40时,y取得最小值300000.即当招聘A工种工人40人时,可使每月所付工资最少.故选:B.9.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠ACB=120°,则∠A的度数为()A.60°B.50°C.40°D.不能确定【考点】作图—基本作图;线段垂直平分线的性质.【分析】先根据△ABC中,∠ACB=120°求出∠A+∠B的度数,再由题意得出MN 是线段BC的垂直平分线得出BD=CD,故可得出∠B=∠BCD.由三角形外角的性质得出∠CDA=∠B+∠BCD=2∠B,根据CD=AC得出∠CDA=∠A=2∠B,再由三角形内角和定理即可得出结论.【解答】解:∵△ABC中,∠ACB=120°,∴∠A+∠B=60°.∵由题意得出MN是线段BC的垂直平分线,∴BD=CD,∴∠B=∠BCD,∴∠CDA=∠B+∠BCD=2∠B.∵CD=AC,∴∠CDA=∠A=2∠B,∴3∠B=60°,解得∠B=20°,∴∠A=2∠B=40°.故选C.10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()=2S△CEF.①∠DCF=∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BECA.①②③B.②③④C.①②④D.①③④【考点】四边形综合题.【分析】①根据平行四边形的性质和平行线的性质解答即可;②延长EF,交CD延长线于M,证明△AEF≌△DMF,得到EF=FM,根据直角三角形斜边上的中线等于斜边的一半解答;③设∠FEC=x,用x分别表示出∠DFE和∠AEF,比较即可;=S△CFM,根据MC>BE,得到S△BEC<2S△EFC.④根据EF=FM,得到S△EFC【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②如图1,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,故②正确;③设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确;④∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC <2S△EFC故S△BEC=2S△CEF错误,故选:A.二、填空题(本题共6小题,每小题3分,共18分,请把最后答案直接填在题中横线上)11.分解因式:3a2﹣12=3(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).12.已知分式的值是0,则m的值为3.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则其分子为0,且分母不为0,进而得出答案.【解答】解:∵分式的值是0,∴m2﹣9=0,且m+3≠0,解得:m=3.故答案为:3.13.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240度.【考点】多边形内角与外角.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.14.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.【考点】旋转的性质.【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.【考点】一次函数与一元一次不等式.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.16.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4.【考点】分式方程的解.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a 或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.三、解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共17分)17.解不等式组:,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解答】解:,解①得:x≥﹣1,解②得:x<4,不等式组的解集为:﹣1≤x<4,在数轴上表示:.18.解方程;=﹣1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1+x=﹣1﹣x+2,解得:x=0,经检验x=0是分式方程的解.19.先化简,再求值:(﹣x﹣2)÷,请你从﹣2,0,1,2中选择一个自己喜欢的数进行计算.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后选取合适的x的值代入进行计算即可.【解答】解:原式=•=•=,当x=1时,原式=﹣3.(二)(本题2小题,共13分)20.如图,∠AOB=60°,OP=12cm,OC=5cm,PC=PD,求OD的长.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】首先过点P作PE⊥OB于点E,利用直角三角形中30°所对边等于斜边的一半得出OE的长,再利用等腰三角形的性质求出ED的长.【解答】解:过点P作PE⊥OB于点E,∵∠AOB=60°,PE⊥OB,12cm,∴OE=OP=6cm,∵OC=5cm,PC=PD,∴CE=DE=1cm,∴OD=7.21.某校为美化校园,计划对面积1800㎡的区域进行绿化,安排甲、乙两个工程队完成.已知加队每天完成绿化面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为600㎡区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两队每天能完成绿化的面积分别是多少㎡?(2)若学校每天需付给甲队的绿化费用为0.8万元,乙队为0.5万元,要使这次的绿化费用不超过16万元,要使这次的绿化总费用不超过16万元,需先让甲队工作一段时间,余下的由乙队完成,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为1800m2区域的绿化时,甲队比乙队少用6天,列出方程,求解即可;(2)设应安排甲队工作a天,根据这次的绿化总费用不超过16万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作a天,根据题意得:0.8a+×0.5≤16,解得:a≥10,答:至少应安排甲队工作10天.(三)(本题2个小题,共14分)22.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】首先利用平行线的性质与判定方法得出∠DAE=∠BCF,进而利用AAS得出△ADE≌△CBF,即可得出ADBC,即可得出答案.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?【考点】一元一次不等式组的应用.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.(2)计算出每种方案的花费,然后即可判断出答案.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一种方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算四种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低为70000元.(四)(本题2个小题,共16分)24.阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=4时,函数y=a﹣1+(a>1)的最小值为6;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=2时,周长的最小值为8;问题3:求代数式(m>﹣1)的最小值.【考点】反比例函数综合题.【分析】(1)由阅读2得到a﹣1=时,函数y=a﹣1+(a>1)取最小值;(2)同(1)方法x=2时周长取到最小值;(3)先将处理成m+1+,同(1)的方法得出结论;【解答】解:问题1,由阅读2知,a﹣1=时,即:a=4时,函数y=a﹣1+(a>1)的最小值是2=6,答案为4,6;问题2,由阅读2知,x==2时,周长为2(x+)的最小值是2×2=8,故答案为2,8;(3)===m+1+,∴当m+1=时,即m=1时,(m>﹣1)最小值是2=4.25.如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B 的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.(1)求AB的长.(2)求图中阴影部分的面积.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】(1)首先根据等边三角形的性质可得DF=DC=FC,∠D=60°,根据折叠的性质,∠BCA=∠ECA,再利用平行四边形的性质证明∠DAC=30°,∠ACD=90°,利用直角三角形30°角所对的边等于斜边的一半可得CD长,进而可得AB的长;(2)利用三角函数值计算出AC,然后根据三角形的中线平分三角形的面积可得S△ACF=S△ACD,进而可得答案.【解答】解:(1)∵△CDF为等边三角形,∴DF=DC=FC,∠D=60°,根据折叠的性质,∠BCA=∠ECA,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6cm,AB=CD,∴∠FAC=∠BCA,∴∠FAC=∠FCA,∴FA=FC,∴∠DAC=30°,∴∠ACD=90°,∴CD=AD=3cm,∵AB=3cm;(2)∵CD=3cm,∠ACD=90°,∠DAC=30°,∴AC=3cm,=S△ACD=×AC•CD=×3×3=(cm2).∴S△ACF(五)(本题12分)26.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质.【分析】(1)根据AF平分∠BAD,可得∠BAF=∠DAF,利用四边形ABCD是平行四边形,求证∠CEF=∠F即可.(2)根据∠ABC=90°,G是EF的中点可直接求得.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°2017年2月21日。

八年级上册达州数学全册全套试卷检测题(Word版 含答案)

八年级上册达州数学全册全套试卷检测题(Word版 含答案)

八年级上册达州数学全册全套试卷检测题(Word 版 含答案)一、八年级数学三角形填空题(难)1.在ABC 中,BAC α∠=,边AB 的垂直平分线交边BC 于点D ,边AC 的垂直平分线交边BC 于点E ,连结AD ,AE ,则DAE ∠的度数为______.(用含α的代数式表示)【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B =∠BAD ,∠C =∠CAE ,进而得到∠BAD +∠CAE =∠B +∠C =180°-a ,再根据角的和差关系进行计算即可. 解:有两种情况:①如图所示,当∠BAC ⩾90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAC −(∠BAD +∠CAE )=α−(180°−α)=2α−180°;②如图所示,当∠BAC <90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAD +∠CAE −∠BAC =180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【解析】【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BAC BAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP 的面积来表示△BEA 的面积3.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD . 【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.4.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.5.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.6.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.二、八年级数学三角形选择题(难)7.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B 、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C 、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n 取任何正整数时,m 不能得正整数,故不能铺满,故此选项错误;D 、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D .【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.8.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【详解】连接OA ,∵OB=OD ,∴S △BOC =S △COD =2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.9.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.B.C.D.不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333 =S△ABC=1111••••2222BC AH AB PD BC PE AC PF ==+∴1111 3?3?3?3? 2222AH PD PE PF ⨯=⨯+⨯+⨯∴33即点P到三角形三边距离之和为33 2.故选B.10.一个多边形内角和是900°,则这个多边形的边数是()A.7 B.6 C.5 D.4【答案】A【解析】【分析】n边形的内角和为(n-2)180°,由此列方程求n的值即可.【详解】设这个多边形的边数为n,则:(n-2)180°=900°,解得n=7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.11.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°【答案】D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选12.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()A .B .C .D .【答案】D【解析】【分析】根据同底等高判断△ABD 和△ACD 的面积相等,即可得到,即,同理可得△ABC 和△BCD 的面积相等,即. 【详解】∵△ABD 和△ACD 同底等高, ,,即△ABC 和△DBC 同底等高, ∴∴故A,B,C 正确,D 错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A ; ③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则AEF S mn ∆=.其中正确的结论是____.(填序号)【答案】①②③【解析】【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义可得△BEO和△CFO是等腰三角形可得①EF=BE+CF正确;由角平分线的性质得出点O到△ABC 各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m,AE+AF=n,则△AEF的面积=12mn,④错误.【详解】在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°,故②∠BOC=90°+12∠A正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠EOB,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,即①EF=BE+CF正确;过点O作OM⊥AB于M,作ON⊥BC于点N,连接AO,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;∴S△AEF=S△AOE+ S△AOF=12AE·OM+12AF·OD=12OD·(AE+AF)=12mn,故④错误;故选①②③【点睛】此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.14.在Rt △ABC 中,∠C =90°,∠A 的平分线AD 分对边BD ,DC 的长度比为3:2,且BC =20cm ,则点D 到AB 的距离是_____cm .【答案】8【解析】【分析】根据题意画出图形,过点D 作DE ⊥AB 于点E ,由角平分线的性质可知DE =CD ,根据角平分线AD 分对边BC 为BD :DC =3:2,且BC =10cm 即可得出结论.【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,∵AD 是∠BAC 的平分线,∠C =90°,∴DE =CD .∵BD :DC =3:2,且BC =10cm ,∴CD =20×25=8(cm ). 故答案为:8.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.15.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.【答案】2【解析】【分析】根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案【详解】如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,在Rt △OBA 和Rt △PAC 中,OBA PAC AOB CPA BA AC ∠∠⎧⎪∠∠⎨⎪⎩===,Rt △OBA ≌Rt △PAC (AAS ),∴AP=OB=b ,PC=OA=a .由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (2a b +,2a b +), ∴OD=22a b +() ∴22a b +()=2, ∴a+b=2.故答案为2.【点睛】本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.16.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②AF∥EB ;③∠FAN =∠EAM ;④△ACN ≌△ABM 其中正确的有 .【答案】①③④【解析】【分析】由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.【详解】解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN≌△ABM,故选项④正确;若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,则正确的选项有:①③④.故答案为①③④17.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S四边形AEDF=14AD2,其中正确结论是_____(填序号)【答案】①②③【解析】【分析】先由ASA 证明△AED ≌△CFD ,得出AE =CF ,DE =FD ;再由全等三角形的性质得到BE +CF =AB ,由勾股定理求得EF 与AB 的值,通过比较它们的大小来判定④的正误;先得出S 四边形AEDF =S △ADC =12AD 2,从而判定⑤的正误. 【详解】解:∵Rt △ABC 中,AB =AC ,点D 为BC 中点,∴∠C =∠BAD =45°,AD =BD =CD ,∵∠MDN =90°,∴∠ADE +∠ADF =∠ADF +∠CDF =90°,∴∠ADE =∠CDF .在△AED 与△CFD 中,EAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =ABBD ,∵EFED ,BD >ED ,∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =12AD 2.故⑤错误. 综上所述,正确结论是①②③.故答案是:①②③.【点睛】考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.18.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC的平分线上,与A相距1cm的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.【详解】工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键20.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23AEAB=,则313DHCEDHSS=.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;②由SAS证明△EHF≌△DHC即可;③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;④若AEAB=23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.详解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,EF=CD;∠EFH=∠DCH;FH=CH,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;④∵AEAB=23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,EG=DF;∠EGH=∠HFD;GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD 为等腰直角三角形, 如图,过H 点作HM ⊥CD 于M ,设HM=x,则DM=5x,DH=26x ,CD=6x ,则S △DHC =12×HM×CD=3x 2,S △EDH =12×DH 2=13x 2, ∴3S △EDH =13S △DHC ,故④正确;故选D. 点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.21.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF ,∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF 是等腰直角三角形(故(1)正确).当D. E 分别为AC 、BC 中点时,四边形CDFE 是正方形(故(2)错误).由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF ⊥AC 时,DE 最小,此时142DF BC == .∴DE =故(3)错误).∵△ADF ≌△CEF ,∴S △CEF =S △ADF∴S 四边形CDFE =S △AFC ,∵CF 恰好把四边形CDFE 的面积分成1:2两部分∴S △CEF :S △CDF =1:2 或S △CEF :S △CDF =2:1即S △ADF :S △CDF =1:2 或S △ADF :S △CDF =2:1当S △ADF :S △CDF =1:2时,S △ADF=13S △ACF =111684323⨯⨯⨯= 又∵S △ADF =1422AD AD ⨯⨯= ∴2AD=163∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.22.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中 ()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.23.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,故①正确;∵M为EF的中点,∴AM⊥EF,故②正确;过点F作FH⊥AB于点H,∵BE平分∠ABC,且AD⊥BC,∴FD=FH<FA,故③错误;∵AM⊥EF,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD 和△NAD中{FBD DANBD ADBDF ADN∠∠∠∠===∴△FBD≌△NAD,∴DF=DN,故④正确;故选C.24.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD∠∠=,则BAC∠=( )A.70B.45C.60D.48【答案】D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.五、八年级数学轴对称三角形填空题(难)25.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,BM CEMBD ECDBD CD⎧⎪∠∠⎨⎪⎩==,=∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,MD EDMDN EDNDN DN⎧⎪∠∠⎨⎪⎩==,=∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.26.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.27.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.28.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.29.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 ______cm .【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.【详解】解:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC ,AE 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠DBC=∠D=60°,∴△BDM 为等边三角形,∴△EFD 为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.30.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.六、八年级数学轴对称三角形选择题(难)31.点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P 共有()个A.6 B.7 C.8 D.9【答案】C【解析】【分析】根据等腰三角形的性质,要使△AOP是等腰三角形,可以分两种情况考虑:当OA是底边时,作OA的垂直平分线,和坐标轴出现2个交点;当OA是腰时,则分别以点O、点A为圆心,OA为半径画弧,和坐标轴出现6个交点,这样的点P共8个.【详解】如图,分两种情况进行讨论:当OA是底边时,作OA的垂直平分线,和坐标轴的交点有2个;当OA是腰时,以点O为圆心,OA为半径画弧,和坐标轴有4个交点;以点A为圆心,OA为半径画弧,和坐标轴出现2个交点;∴满足条件的点P共有8个,故选:C.【点睛】本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA为腰或底两种情况分类讨论,运用数形结合的思想进行解决.32.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A 36B33C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.33.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN ,根据全等三角形的性质得到CM=CN ,∠ACM=∠BCN ,得到∠MCN=α,推出△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.【详解】解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,∴△CGE≌△CHD(AAS),∴CH=CG,∴OC平分∠AOE,故④正确,故选:B.【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.34.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省达州市开江县2015~2016学年度八年级上学期期末数学试卷一、选择题:下面每小题得四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10个小题,每小题3分,共30分.1.的算术平方根为()A.9 B.±9 C.3 D.±32.根据下列表述,能确定位置的是()A.开江电影院左侧第12排B.甲位于乙北偏东30°方向上C.开江清河广场D.某地位于东经107.8°,北纬30.5°3.计算的结果是()A.6B.6C.4D.24.如图,是由5个大小相同的正方形组成的图形,则∠BAC的度数是()A.45°B.30°C.60°D.不能确定5.2015~2016学年度八年级5班的李军同学为了解他家所在小区居民的用电情况,随机对该小区20户居民进行了调查,下表是这20户小区居民2015年10月份用电量的调查结果:那么关于这206.王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B 处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A.B.C.D.7.下列语句是真命题的是()A.过一点有且只有一条直线与已知直线平行B.在直线l上截取一条线段AB,使AB=3cmC.在同一坐标系内,直线y=2x+3与直线y=x+3平行D.三角形的一个外角大于任意一个内角8.为了开展阳光体育活动,2015~2016学年度八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有()A.8种B.6种C.4种D.2种9.已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=3,b=4,c=;②a2:b2:c2=6:8:10;③∠A:∠B:∠C=3:4:5;④∠A=2∠B,∠C=3∠B.其中能判断△ABC 是直角三角形的条件为()A.①②B.①④C.②④D.②③10.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a﹣b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,﹣1 B.1,﹣3 C.﹣3,1 D.﹣1,3二、填空题:本题6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m=.12.如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需元.13.已知函数y=mx+n和y=的图象交于点P(a,﹣2),则二元一次方程组的解是.14.如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E,若∠AEC=70°,则∠B=.15.若关于x、y的二元一次方程组的解也是二元一次方程3x+2y=14的解,则k的值是.16.如图,在△ABC中,AB=BC,∠ABC=20°,点E1在AB上,且AE1=AA1,点E2在A1E1上,且A1E2=A1A2,点E3在A2E2上,且A2E3=A2A3…A1、A2、A3、…A n在CA的延长线上,则∠A n A n+1E n=.三、解答题:73分,解答时写出必要的文字说明、证明过程或演算步骤.17.(1)计算:;(2)解方程组:.18.某学校为了增强学生体质,决定开设以下体育课外活动项目:A、篮球,B、乒乓球,C、羽毛球,D、足球.为了解学生最喜欢哪一种活动项目,随机从2400名学生中抽取部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)试估计该校2400名学生中参加篮球和羽毛球的学生人数共有多少人?19.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.(参考数据:)20.在如图所示的平面直角坐标系中有下面各点:A(0,3),B(1,﹣2),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,﹣3),G(4,0).(1)写出与点C关于坐标轴对称的点;(2)连接CE,则直线CE与y轴是什么关系(直接写出结论)?(3)若点P是x轴上的一个动点,连接PD,PF,当PD+PF的值最小时,在图中标出点P的位置,并直接写出P点的坐标.21.某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B 型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:(1)A、B两种型号的计算器进价分别是多少元?(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?22.A、B两地相距300千米,甲、乙两辆汽车同时分别从A、B两地相向而行,假设它们都保持匀速行驶,则它们各自到A地的距离s(千米)都是行驶时间t(时)的一次函数,图象如图所示,请利用所结合图象回答下列问题:(1)甲的速度为,乙的速度为;(2)求出:l1和l2的关系式;(3)问经过多长时间两车相遇.23.已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?24.阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.25.如图,一次函数y1=x+m(m>0)的图象与x轴交于点A,一次函数y2=nx+2的图象与x轴交于点B,点P()是两函数图象的交点.(1)求函数y1、y2的关系式;(2)若∠PBA=64°,求∠APB的度数;(3)求四边形PCOB的面积;(4)在x轴上,是否存在一点Q,使以点Q、B、C为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.四川省达州市开江县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:下面每小题得四个选项中只有一项是正确的,请将正确答案的字母代号填在答题卡内,本题10个小题,每小题3分,共30分.1.的算术平方根为()A.9 B.±9 C.3 D.±3【考点】算术平方根.【分析】直接根据算术平方根的定义进行解答即可.【解答】解:∵=9,32=9∴的算术平方根为3.故选C.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.根据下列表述,能确定位置的是()A.开江电影院左侧第12排B.甲位于乙北偏东30°方向上C.开江清河广场D.某地位于东经107.8°,北纬30.5°【考点】坐标确定位置.【分析】根据在平面直角坐标系中,要用两个数据才能表示一个点的位置:有序数对,坐标,极坐标,经纬度,可得答案.【解答】解:A、开江电影院左侧第12排,不能确定具体位置,故A错误;B、甲位于乙北偏东30°方向上,不能确定甲乙的距离,故B错误;C、开江清河广场,一个数据无法确定位置,故C错误;D、某地位于东经107.8°,北纬30.5°,故D正确;故选:D.【点评】本题考查了坐标确定位置,本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.3.计算的结果是()A.6B.6C.4D.2【考点】二次根式的混合运算.【分析】首先化简二次根式进而求出答案.【解答】解:=2×+2=2+2.故选:D.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.4.如图,是由5个大小相同的正方形组成的图形,则∠BAC的度数是()A.45°B.30°C.60°D.不能确定【考点】等腰直角三角形.【分析】设小正方形的边长为1,连接BC,求出AC、BC、AB的长,可判断出△ABC是等腰直角三角形,继而可得出∠BAC的度数.【解答】解:设小正方形的边长为1,则AC==,AB==,BC==,∴△ABC是等腰直角三角形,∴∠BAC=45°.故选A.【点评】本题考查了正方形的性质及等腰直角三角形的性质,求出AC、BC、AB的长,判断出△ABC 是等腰直角三角形是解答本题的关键,难度一般.5.2015~2016学年度八年级5班的李军同学为了解他家所在小区居民的用电情况,随机对该小区20户居民进行了调查,下表是这20户小区居民2015年10月份用电量的调查结果:那么关于这20【考点】方差;算术平均数;中位数;众数.【分析】根据众数、平均数、众数和方差的概念,分别对每一项进行分析即可得出答案.【解答】解:∵共有20个数,最中间的两个数是第10和11个数的平均数,∴中位数是:=55,∵60出现了8次,出现的次数最多,∴众数是60;平均数是:(40×2+50×6+55×4+60×8)=54(度),则方差是:[2(40﹣54)2+6(50﹣54)2+4(55﹣54)2+8(60﹣54)2]=39;故选A.【点评】本题考查了众数、中位数、平均数和方差的知识,解答本题的关键是掌握各知识点的概念.6.王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B 处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据图形可知,路灯在A与B之间,那么王小红由A处匀速直行到B处时,她与路灯的距离S随时间t的变化先逐渐减小直到0,再逐渐增大,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,王小红由A处径直走到B处,她与路灯的距离S与行走的时间t之间的变化关系,应为当小红走到灯下以前为:S随t的增大而减小,当小红走到灯下以后再往前走时,S随t的增大而增大,∴用图象刻画出来应为B.故选:B.【点评】此题主要考查了函数图象,得出S随t的变化规律是解决问题的关键.7.下列语句是真命题的是()A.过一点有且只有一条直线与已知直线平行B.在直线l上截取一条线段AB,使AB=3cmC.在同一坐标系内,直线y=2x+3与直线y=x+3平行D.三角形的一个外角大于任意一个内角【考点】命题与定理.【分析】利用平行线的性质、一次函数的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故原命题错误,为假命题;B、在直线l上截取一条线段AB,使AB=3cm,正确,为真命题;C、因为两条直线的比例系数不相等,所以两条直线不平行,故错误,为假命题;D、三角形的一个外角大于任何一个与之不相邻的内角,故原命题错误,为假命题,故选B.【点评】考查了命题与定理的知识,解题的关键是能够了解平行线的性质、一次函数的性质、三角形的外角的性质,属于基础知识,难度较小.8.为了开展阳光体育活动,2015~2016学年度八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有()A.8种B.6种C.4种D.2种【考点】二元一次方程的应用.【分析】设毽子能买x个,跳绳能买y根,依据“共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元”列出方程,并解答.【解答】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=200﹣33×5,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选D.【点评】此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.9.已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=3,b=4,c=;②a2:b2:c2=6:8:10;③∠A:∠B:∠C=3:4:5;④∠A=2∠B,∠C=3∠B.其中能判断△ABC 是直角三角形的条件为()A.①②B.①④C.②④D.②③【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理即可判断①②,根据三角形内角和定理求出最大角,即可判断③④.【解答】解:①∵a=3,b=4,c=,∴a2+c2=b2,∴此时△ABC是直角三角形;②∵a2:b2:c2=6:8:10,∴a2+b2≠c2,∴此时△ABC不是直角三角形;③∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C==75°,∴此时△ABC不是直角三角形;④∵∠A=2∠B,∠C=3∠B,∠A+∠B+∠C=180°,∴6∠B=180°,∴∠B=30°,∴∠C=90°,∴此时△ABC是直角三角形;∴能判断△ABC是直角三角形的条件为①④,故选B.【点评】本题考查了三角形内角和定理,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键.10.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a﹣b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,﹣1 B.1,﹣3 C.﹣3,1 D.﹣1,3【考点】二元一次方程组的应用.【分析】根据题意可得方程组,再解方程组即可.【解答】解:由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,列出方程组.二、填空题:本题6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m=8.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得方程,解出m、n 的值可得答案.【解答】解:∵点P(3,m)关于x轴的对称点Q的坐标是(n,2),∴m=﹣2,n=3,∴2n﹣m=8,故答案为:8.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.12.如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需420元.【考点】勾股定理的应用.【分析】先利用勾股定理求得三角形的底边长,然后根据地毯长度=BC+AC可知地毯长=7米,然后再根据题意计算即可.【解答】解:如图所示:在Rt△ABC中,由勾股定理可知:BC==4米.地毯的总长=BC+AC=4+3=7米.地毯的面积=7×1.5=10.5平方米.地毯的总价=40×10.5=420元.故答案为:420元.【点评】本题主要考查的是勾股定理的应用,依据勾股定理求得BC的长,从而得到地毯的总长度是解题的关键.13.已知函数y=mx+n和y=的图象交于点P(a,﹣2),则二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】把P(a,﹣2)代入y=x求得a的值,得出P(﹣4,﹣2),根据方程组的解就是两函数图象的交点坐标即可求得.【解答】解:∵y=的图象过点P(a,﹣2),∴﹣2=a,解得a=﹣4,∴P(﹣4,﹣2),∵函数y=mx+n和y=的图象交于点P(﹣4,﹣2),∴二元一次方程组的解是,故答案为:【点评】此题主要考查了一次函数与二元一次方程组,关键是掌握一次函数与二元一次方程组的关系.14.如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E,若∠AEC=70°,则∠B= 40°.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形内角和定理求出∠EAC+∠ACE的度数,再根据AE、CE分别是∠DAC与∠ACF的角平分线得出∠DAC+∠ACF的度数,进而得出∠BAC+∠ACB的度数,根据三角形内角和定理即可得出结论【解答】解:∵△ACE中,∠AEC=70°,∴∠EAC+∠ACE=180°﹣70°=110°,∵AE、CE分别是∠DAC与∠ACF的角平分线,∴∠DAC+∠ACF=2(∠EAC+∠ACE)=220°,∴∠BAC+∠ACB=360°﹣220°=140°,∴∠B=180°﹣140°=40°.故答案为:40°.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.15.若关于x、y的二元一次方程组的解也是二元一次方程3x+2y=14的解,则k的值是2.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把k看作已知数表示出方程组的解,代入已知方程求出k的值即可.【解答】解:,①﹣②得:5y=4k,即y=k,把y=k代入②得:x=k,代入3x+2y=14中得:k+k=14,解得:k=2.故答案为:2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.如图,在△ABC中,AB=BC,∠ABC=20°,点E1在AB上,且AE1=AA1,点E2在A1E1上,且A1E2=A1A2,点E3在A2E2上,且A2E3=A2A3…A1、A2、A3、…A n在CA的延长线上,则∠A n A n+1E n=.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠E1A2A1,∠E2A3A2及∠E3A4A3的度数,找出规律即可得出∠A n A n+1E n的度数.【解答】解:∵在△AEA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1E1,∠BA1A是△A1A2E1的外角,∴∠E1A2A1==40°;同理可得,∠E2A3A2=20°,∠E3A4A3=10°,∴∠A n A n+1E n=.故答案为:.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.三、解答题:73分,解答时写出必要的文字说明、证明过程或演算步骤.17.(1)计算:;(2)解方程组:.【考点】实数的运算;解二元一次方程组.【专题】计算题;实数.【分析】(1)原式利用二次根式的乘除法则,以及立方根定义计算,合并即可得到结果;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)原式=2﹣+﹣4÷2=2﹣3+4﹣2=1;(2)方程组整理得:,①+②×3得:10x=5,即x=0.5,把x=0.5代入①得:y=0.75,则方程组的解为.【点评】此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.18.某学校为了增强学生体质,决定开设以下体育课外活动项目:A、篮球,B、乒乓球,C、羽毛球,D、足球.为了解学生最喜欢哪一种活动项目,随机从2400名学生中抽取部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)试估计该校2400名学生中参加篮球和羽毛球的学生人数共有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图中A类的圆心角的度数,即可得到A所占的百分比,然后根据A类有20人,即可求得调查的总人数;(2)利用总人数减去其它组的人数即可求得B类的人数,从而补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)调查的总人数是:20÷=200(人).故答案是:200;(2)C类的人数是:200﹣20﹣80﹣40=60.;(3)该校2400名学生中参加篮球和羽毛球的学生人数共有2400×=960(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.(参考数据:)【考点】勾股定理的应用.【分析】由题意可知OP=30米,由△POA为等腰直角三角形可知OA=OP=30米,由勾股定理可知AP=30,由翻折的性质可知AB=AP,然后根据速度=路程÷时间求得汽车的速度即可.【解答】解:∵由题意得:∠AOP=90°,PO=30m,∠PAO=45°,∴∠OAP=∠OPA=45°.∴AO=OP=30.在Rt△AOP中,由勾股定理可知:AP==30.∵由翻折的性质可知AB=AP,∴AB=30.∴汽车行驶的速度=30÷3×3.6≈50.76(千米/时).∵50.76<60,∴汽车未超限制速度.【点评】本题主要考查的是勾股定理的应用、翻折的性质,依据勾股定理和翻折的性质求得AB的长是解题的关键.20.在如图所示的平面直角坐标系中有下面各点:A(0,3),B(1,﹣2),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,﹣3),G(4,0).(1)写出与点C关于坐标轴对称的点;(2)连接CE,则直线CE与y轴是什么关系(直接写出结论)?(3)若点P是x轴上的一个动点,连接PD,PF,当PD+PF的值最小时,在图中标出点P的位置,并直接写出P点的坐标.【考点】轴对称-最短路线问题;关于x轴、y轴对称的点的坐标.【分析】(1)根据平面直角坐标系点关于坐标轴对称的特点解答即可;(2)根据图形判断CE与y轴平行;(3)作点F关于x轴的对称点F′(5,3),连接DF′交x轴于P,则DF′的长度即为PD+PF的最小值,求得直线DF′的解析式为y=x﹣2,当y=0时,x=2,即可得到结论.【解答】解:(1)点C(3,﹣5)关于x轴对称的点E(3,5),点C(3,﹣5)关于y轴对称的点D(﹣3,﹣5);(2)如图所示:直线CE与y轴平行;(3)作点F关于x轴的对称点F′(5,3),连接DF′交x轴于P,则DF′的长度即为PD+PF的最小值,设直线DF′的解析式为:y=kx+b,∴,∴,∴直线DF′的解析式为:y=x﹣2,当y=0时,x=2,∴P点的坐标(2,0).【点评】此题主要考查了轴对称﹣最短距离问题,点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.21.某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B 型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:(1)A、B两种型号的计算器进价分别是多少元?(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用;一次函数的性质;根据实际问题列一次函数关系式.【专题】应用题;函数思想;方程思想;一次方程(组)及应用;一次函数及其应用.【分析】(1)根据:A计算器20个费用+B计算器25个费用=1265、A计算器16个费用+B计算器12个费用=1265,即可列方程组求解;(2)所获利润=A型号计算器利润+B型号计算器利润,计算可得;(3)根据(2)中相等关系列出,总利润与A型号计算器数量间的函数关系式,结合函数增减性可得最大利润.【解答】解:(1)设A型号的计算器进价为x元,B型号的计算器进价为y元,根据题意得:解得:,答:A型号的计算器进价为22元,B型号的计算器进价为33元.(2)(30﹣22)×20+(45﹣33)×20=400(元)答:商店所获利润是400元.(3)设购进A型号计算器m个,则购进B型号计算器有(40﹣m)个,所获得总利润为W,由题意得:W=(30﹣22)m+(45﹣33)(40﹣m)=﹣4m+480∵﹣4<0,∴W随m的增大而减小,∵A型号的计算器的数量不得少于5个,即m≥5,∴当m=5时,W最大,最大值为:W=﹣4×5+480=460元;答:商店应购进A计算器5个、B计算器35个,才能使所获利润最大,最大利润是460元.【点评】本题主要考查利用二元一次方程组和一次函数的性质解决实际问题的能力,属中档题.22.A、B两地相距300千米,甲、乙两辆汽车同时分别从A、B两地相向而行,假设它们都保持匀速行驶,则它们各自到A地的距离s(千米)都是行驶时间t(时)的一次函数,图象如图所示,请利用所结合图象回答下列问题:(1)甲的速度为60,乙的速度为80;(2)求出:l1和l2的关系式;(3)问经过多长时间两车相遇.【考点】一次函数的应用;由实际问题抽象出一元一次方程;一元一次方程的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】综合题;图表型;函数思想;方程思想;待定系数法;一次方程(组)及应用;函数及其图像;一次函数及其应用.【分析】(1)由图象知,根据l1上t=2时,s=120可得甲的速度,l2上t=1时s=220可得乙的速度;(2)利用待定系数法可分别求出l1、l2的函数关系式;(3)相向行驶问题中,可根据:甲的路程+乙的路程=A、B间距离,列方程求解.【解答】解:(1)由题意可知,l1表示甲到A地的距离s关于行驶时间t函数图象,当t=2时,s=120,∴甲的速度为:120÷2=60(千米/小时);l2表示乙到A地的距离s关于行驶时间t函数图象,且当t=1时,s=220,∴乙的速度为:(千米/小时);(2)根据题意设l1的函数关系式为y=k1t,l2的函数关系式为y=k2t+b,由图象可知,点(2,120)在l1上,∴120=2k1,解得k1=60,∴l1的函数关系式为:y=60t;由图象可知,点(0,300),(1,220)在l2上,代入有,解得,∴l2的函数关系式为:y=﹣80t+300;(3)设经过x小时后两车相遇,根据题意有60x+80x=300,解得x=,答:经过小时后两车相遇.故答案为:(1)60,80.【点评】本题主要考查一次函数图象、待定系数法求函数解析式及用方程来解决问题的基本能力,属基础题.23.已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?【考点】矩形的性质;勾股定理.【分析】(1)由长方形的性质和等腰三角形的性质得出∠ACG=∠AGC,由已知条件得出∠AGC=∠GAF+∠F,得出∠F=∠FAG,∠ACG=2∠ECB,由∠ACB=∠ACG+∠ECB=3∠ECB=60°,即可得出结果;(2)设△AEF中EF边上的高为hcm,证出EG=AG=GF,由直角三角形斜边上的中线性质得出EF=2AG=13(cm),由勾股定理求出AE,由三角形的面积即可得出结果.【解答】解:(1)∵四边形ABCD是长方形,∴DF∥BC,∴∠AFC=∠ECB,∵AC=AG,∴∠ACG=∠AGC,∵∠ACG=2∠GAF,∠AGC=∠GAF+∠F,∴∠F=∠FAG,。

相关文档
最新文档