浙教版七年级下因式分解
浙教版七年级数学下册因式分解(无答案)
第八讲 因式分解思维导图重难点分析重点分析:1.因式分解的实质是多项式的恒等变形,是将多项式转化为几个整式的积的形式,和整式乘法是互逆关系.2.提取公因式法是因式分解的基本方法,关键在于找公因式.找公因式的方法是:一看系数,二看相同的字母或因式.3.平方差公式:a 2-b 2=(a+b )(a-b );完全平方公式:a 2±2ab+b 2=(a±b)2是常用的两个公式,平方差公式适用于二项式,完全平方公式适用于三项式.4.因式分解的一般步骤:(1)若多项式有公因式,先提取公因式;(2)若多项式没有公因式,对于二项式,可以考虑应用平方差公式;对于三项式可以考虑应用完全平方公式或十字相乘法[x 2+(a+b )x+ab=(x+a )(x+b )];(3)当多项式不能应用公式或者项数多于三项时,也就是既没有公因式也不能用公式分解时,可以尝试用分组分解法,项数较少时可通过拆项或添项后再分组.难点分析:1.因式分解的对象是多项式.2.因式分解的两种常见错误:一是“提不净”,即有公因式没提干净;二是“分不清”,即分解不彻底,因式分解一定要分解到每一个因式都不能再分解为止.3.十字相乘法和分组分解法虽然是课本上不作要求的方法,但对于整式的变形有很大的作用,建议学会这两种方法.4.配方法、换元法、待定系数法、求根法、拆(添)项法等都是因式分解的常用方法.例题精析例1、下列从左到右的变形:①15x 2y=3x·5xy;②(a+b )(a-b )=a 2-b 2;③a 2-2a+1=(a-1)2;④3x 3-6x 2+4=3x 2(x-2)+4;⑤a 2-21b =(a+b 1)(a-b1),其中是因式分解的个数是( ). A.0个 B.1个 C.2个 D.3个思路点拨:因式分解就是把多项式分解成几个整式的积的形式,根据定义即可进行判断.①⑤分解的对象不是多项式,所以不是因式分解;②是整式的乘法;④没有完全分解成整式的乘积形式;只有③是因式分解.参考答案:B方法归纳:因式分解的几个特点:(1)“和差化积”,即等式右边是整式的乘积形式;(2)分解的对象是多项式;(3)恒等变形,即等式两边恒相等.易错误区:注意a 2-21b =(a+b 1)(a-b1)虽然是利用平方差公式将代数式分解成乘积形式,但由于分解的对象不是多项式,所以不能称为因式分解.例2、分解因式:(1)-4+x2;(2)-4x2y+4xy2-y3;(3)9(a-b)2-4(a+b)2;(4)3a2+bc-3ac-ab;(5)16x4-8x2y2+y4.思路点拨:(1)交换两个加数的位置,即可运用平方差公式;(2)提取公因式-y,即可运用完全平方公式;(3)首先运用平方差公式,再对括号内的式子进行整理即可;(4)首先要合理分组,再运用提公因式法完成因式分解;(5)先运用完全平方公式因式分解,再运用平方差公式因式分解.解题过程:(1)原式=x2-4=(x+2)(x-2).(2)原式=-y(4x2-4xy+y2)=-y(2x-y)2.(3)原式=(3a-3b+2a+2b)(3a-3b-2a-2b)=(5a-b)(a-5b).(4)原式=(3a2-3ac)+(bc-ab)=3a(a-c)-b(a-c)=(3a-b)(a-c).(5)原式=(4x2-y2)2=(2x+y)2(2x-y)2.方法归纳:本题考查了用公式法、分组分解法分解因式,熟练掌握公式结构是解答本题的关键,合理分组也很重要.易错误区:第(2)题要先提取公因式,第(4)题要合理分组,第(5)题要分解彻底.例3、分解因式:x2-120x+3456.分析:由于常数项数值较大,则采用将x2-120x变为差的平方的形式进行分解,这样简便易行:原式=x2-2×60x+3600-3600+3456=(x-60)2-144=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面的方法分解因式:x2+42x-3528.思路点拨:先把x2+42x-3528转化为x2+2×21x+441-441-3528,因为前三项符合完全平方公式,将x2+2×21x+441作为一组,然后进一步分解.解题过程:原式=x2+2×21x+441-441-3528=(x+21)2-3969=(x+21+63)(x+21-63)=(x+84)(x-42).方法归纳:本题考查的是用分组分解法分解因式,关键是将原式转化为完全平方的形式,然后分组分解.解题时要求同学们要有构造意识和想象力.易错误区:本题主要方法是配方法,关键是将x2+42x配成完全平方式,配上的数应该是42的一半的平方,不要配成42的平方.例4、阅读下列材料并解答问题:因为(x+a)(x+b)=x2+(a+b)x+ab,所以对于二次项系数为1的二次三项式x2+px+q的因式分解,就是把常数项q分解成两个数的积且使这两个数的和等于p,即若有a,b两数满足a·b=q 且a+b=p,则有x2+px+q=(x+a)(x+b).例如:分解因式x2+5x+6.解:∵2×3=6,2+3=5,∴x2+5x+6=(x+2)(x+3).再如:分解因式x2-5x-6.解:∵-6×1=-6,-6+1=-5,∴x2-5x-6=(x-6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.分解因式:(1)x2+7x+12;(2)x2-7x+12;(3)x2+4x-12;(4)x2-x-12.思路点拨:发现规律:二次项系数为1的二次三项式x2+px+q的因式分解,就是把常数项q分解成两个数的积且使这两个数的和等于p,则x2+px+q=(x+a)(x+b).解题过程:(1)∵3×4=12,3+4=7,∴原式=(x+3)(x+4).(2)∵(-3)×(-4)=12,-3+(-4)=-7,∴原式=(x-3)(x-4).(3)∵6×(-2)=-12,6+(-2)=4,∴原式=(x+6)(x-2).(4)∵(-4)×3=-12,-4+3=-1,∴原式=(x-4)(x+3).方法归纳:本题考查用十字相乘法分解因式,是x2+(a+b)x+ab型式子的因式分解的应用,应掌握x2+(a+b)x+ab=(x+a)(x+b).易错误区:注意系数的符号,将常数项分解成两个数的积的时候要将符号考虑周全.例5、阅读下面的材料,解答下列问题:材料1:公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c2-6c+8分解因式;(2)结合材料1和材料2完成下面各题:①分解因式:(a-b)2+2(a-b)+1;②分解因式:(m+n)(m+n-4)+3.思路点拨:(1)利用已知结合完全平方公式以及平方差公式分解因式得出答案;(2)①直接利用完全平方公式分解因式得出答案;②利用已知结合完全平方公式以及平方差公式分解因式得出答案.解题过程:(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3-1)=(c-2)(c-4). (2)①(a-b)2+2(a-b)+1=(a-b+1)2.②设m+n=t,则t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-1)(t-3),∴(m+n)(m+n-4)+3=(m+n-1)(m+n-3).方法归纳:本题主要考查了用公式法分解因式以及整体换元思想,熟练应用公式是解题关键. 易错误区:完全平方公式是配方的基本公式,特别注意配方是根据a2+2ab+b2来配常数,即若二次项系数是1,则常数项配一次项系数一半的平方,不是一次项系数的平方.探究提升例、分解因式:(1)4x3-31x+15;(2)x3+5x2+3x-9;(3)2a4-a3-6a2-a+2.思路点拨:(1)需把-31x拆项成-x-30x,再分组分解;(2)把x3+5x2+3x-9拆项成(x3-x2)+(6x2-6x)+(9x-9),再提取公因式因式分解;(3)先分组分解因式,再用拆项法把因式分解彻底.解题过程:(1)原式=4x3-x-30x+15=x(2x+1)(2x-1)-15(2x-1)=(2x-1)(2x2+x-15)=(2x-1)(2x-5)(x+3).(2)原式=(x3-x2)+(6x2-6x)+(9x-9)=x2(x-1)+6x(x-1)+9(x-1)=(x-1)(x2+6x+9)=(x-1)(x+3)2.(3)原式=a3(2a-1)-(2a-1)(3a+2)=(2a-1)(a3-3a-2)=(2a-1)(a3+a2-a2-a-2a-2)=(2a-1)[a 2(a+1)-a (a+1)-2(a+1)]=(2a-1)(a+1)(a 2-a-2)=(a+1)2(a-2)(2a-1).方法归纳:本题考查用公式法、分组分解法、十字相乘法、提取公因式法等方法进行因式分解,同时都应用了“拆项”、“添项”,所以难度较大.易错误区:本题是通过拆项法因式分解,拆项要围绕因式分解的基本方法进行,主要是为了出现公因式或可以应用公式,不能盲目去拆.走进重高1.【潍坊】将下列多项式因式分解,结果中不含有因式a+1的是(). A.a 2-1 B.a 2+a C.a 2+a-2 D.(a+2)2-2(a+2)+12.【贺州】将m 3(x-2)+m (2-x )分解因式的结果是 .3.【大庆】已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3的值.4.先阅读第(1)题的解答过程,再解答第(2)题.(1)已知多项式2x 3-x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3-x 2+m=(2x+1)(x 2+ax+b ),则2x 3-x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b.比较系数得⎪⎩⎪⎨⎧==+=+m,b 0,2b a -1,12a 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===.21m ,21b -1,a ∴m=21.解法二:设2x 3-x 2+m=A·(2x+1)(A 为整式).由于上式为恒等式,为方便计算取x=-21,2×-(21)3-(-21)2+m=0,故m=21.(2)已知x 4+mx 3+nx-16有因式x-1和x-2,求m ,n 的值.高分夺冠1.分解因式:(1)x4-1-4x2-4x;(2)x5+x+1;(3)a2-b2+4a+2b+3.2.因为(x+2)(x-1)=x2+x-2,所以(x2+x-2)÷(x-1)=x+2,这说明x2+x-2能被x-1整除,同时也说明多项式x2+x-2有一个因式为x-1,另外当x=1时,多项式x2+x-2的值为0.利用上述阅读材料求解:(1)已知x-2能整除x2+kx-16,求k的值;(2)已知(x+2)(x-1)能整除2x4-4x3+ax2+7x+b,试求a,b的值.无答案)4.已知x,y为正整数,并且xy+x+y=71,x2y+xy2=880,求3x2+8xy+3y2的值.。
浙教版七年级下第六章-因式分解-知识点+习题
第六章因式分解知识点回顾1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。
因式分解和整式乘法互为逆运算2、常用的因式分解方法:(1)提取公因式法:ma mb mc m(a b c)(2)运用公式法:平方差公式:a 2 b2 (a b)(a b) ;完全平方公式:a2 2ab b2 (a b)2(3)十字相乘法:x2 (a b)x ab (x a)(x b)(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若ax2 bx c 0(a 0)的两个根是x1、x2,则有:2ax bx c a(x x1)(x x2 )因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法考点一、因式分解的概念因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。
因式分解和整式乘法互为逆运算1、下列从左到右是因式分解的是( )2 2 2A. x(a-b)=ax-bxB. x -1+y =(x-1)(x+1)+y2C. x -1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若4a2 kab 9b2可以因式分解为(2a 3b)2,贝U k的值为______________3、已知a为正整数,试判断a2 a是奇数还是偶数?24、已知关于x的二次三项式x mx n有一个因式(x 5),且m+n=17,试求m , n的值考点二提取公因式法提取公因式法:ma mb mc m(a b c)公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式找公因式的方法:1、系数为各系数的最大公约数 2 、字母是相同字母3、字母的次数- 相同字母的最低次数习题1、将多项式20a3b212a2bc分解因式,应提取的公因式是( )2 2A 、abB 4a bC 4abD 4a beb , e 均为整数,则a+b+e 等于()A 、-12B -32C 、38D 、723、分解因式4、先分解因式,在计算求值(1) (2x 1)2 (3x 2) (2x 1)(3x 2)2 x(1 2x)(3x 2) 其中 x=1.5 (2) (a 2)(a 2 a 1) (a 2 1)(2 a) 其中 a=18AO O5、 已知多项式 x 4 2012x 2 2011x 2012有一个因式为 x 2 ax 1,另一个因式为x 2 bx 2012,求 a+b 的值6、 若ab 2 1 0,用因式分解法求 ab (a 2b 5 ab 3 b )的值bc b c ca c a 3,求(a 1)(b 1)(c 1)的值。
浙教版七年级数学下册:第四章 因式分解 教学课件
1.提取公因式法口决
①系数:提取最大的公因数;
课堂小结
②字母:提取相同字母最低次幂。
2、提取公因式法分解因式
① 确定应提取的公因式 ② 用公因式去除多项式,所得的商为另一个因式 ③ 把多项式写成这两个因式积的形式
3、添括号法则
括号前面是“+”号,括到括号里的各项都不变号; 括号前面是“—”号,括到括号里的是各项都变号.
(6)4x2 ( y)2
练习:把下列各式分解因式:
(1)16a2 1 (2) m2n2 4l 2
(3) 9 x2 1 y4 25 16
(4)121-4a2b2
我能行!
(1)(x z)2 ( y z)2
(2)(2n+1)2-(2n-1)2
(3) (2x-y)2-4(x+y)2 (4) a4-81
x2 1 x(x 1) x
不是因式分解,为什么?
例1. 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y) 正确 (2) 2x2-1=(2x+1)(2x-1) 不正确 (3) x2+3x+2=(x+1)(x+2) 正确
下列代数式从左到右的变形是因式分解吗? 多
(1) a2 a a(a 1)
第4章 因式分解
4.1 因式分解
计算:
2×3×5= 30 这是整数乘法运算,
30 =2×3×5是什么运算呢? (因数分解)
整数乘法
2×3×5 因数分解 30
一般地,把一个多项式化成几个整式的 积的形式,叫做因式分解,也叫分解因式。
注意:因式分解是整式范围内的概念.
x 4 ( x 2)( x 2)
提取公因式法的一般步骤:
浙教版七年级下数学因式分解难题
一■分式知识要点回顾1.因式分解几中常用方法①提取公因式法。
②乘法公式法:a2-b2二a b a-b ;a2_2ab b2二a_b 2。
③分组分解法:ma mb na nb = m a b n a b j i:a b m n。
④十字相乘法:x2・a・bx・ab=x・ax・b。
2.分式的有关概念A A .C A A 十C(1 )分式的基本性质:一=——C或—= --------- (C M0),其中A , B, C均为整式。
B B *C B B + C(2)分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幕,约去分子和分母系数的最大公约数。
(3)分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。
(4)分式的运算①分式乘法法则: a c•—=ac - 。
b d bd②分式除法法则: a c / d : _ adb d bc bca c a 二c③分式的加减法:(1)同分母分式相加减:;(2)异分母分式相加减:b b ba c ad bc ad 二bc———= 十 = -------------- 。
b 一d bd bd bd3.分式方程(1)定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。
(2)解分式方程。
温馨提示:(1)在方程两边都乘以最简公分母时,切勿漏项;(2)验根是必要步骤。
二•巩固练习1.解下列分式方程‘ 2 小x 1 -x 2x (2)x_2 x -5x 6 x_3 2 -x , 11 -x -3 3 - x2.因式分解2 2a -6ab 12b 9b -4a x2_ 2xy「xz yz y2x2 -7x 6 x2 4x - 523x -11x 10 2x -11x 242 2x y 「3xy 2 2y -12y-282 2 2 x 4 -16xx 2「4xy _1 4y 2o12a b x-y -4ab y-x3.分式的混合运算(a 2-5a 21) 且-b . a? -a+2b‘ a 2+4ab+4 b 2a 1 a 1a —1 a -2a 1 a亠 a 2 -42 2xr. E y _ 2y打如* x2+6xy+9y £ 时卩2x-6 ,4-4x x 2(x 3)x 2 x -6 3—x其中a=1.4. 化简求值2x 2x -8/ X -2 x 4、—2十(x 3 2x xx x 1a 2「5a 6 a 2 -5a 4 a 「3 T—2 2a —16 a -4 a 41 —x 3 (2)x^ g 厂2),其中1 x= . 25•计算2 2x -x_2x x-6X2_X_6 X2X_2的结果是6.当m为非负数时,求代数式———3有最大值还是最小值,并求出此最值。
浙教版七下第六章《因式分解》教案
浙教版七下第六章《因式分解》教案一、教学内容本节课选自浙教版七年级下册第六章《因式分解》的第一课时。
主要内容包括:因式分解的意义,提取公因式法,以及应用举例。
具体涉及的教材章节为6.1节。
二、教学目标1. 理解因式分解的概念,掌握提取公因式法进行因式分解的方法。
2. 能够运用因式分解解决一些实际问题,提高数学思维能力。
3. 培养学生的观察能力、分析能力和解决问题的能力。
三、教学难点与重点教学重点:提取公因式法进行因式分解。
教学难点:理解因式分解的意义,以及如何找出多项式中的公因式。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、草稿纸、笔。
五、教学过程1. 实践情景引入通过一个简单的实际问题,引导学生思考如何求解一个多项式的值。
如:计算长方形的面积和周长,引导学生将面积和周长公式中的多项式进行因式分解。
2. 知识讲解(1)因式分解的意义:将一个多项式表示成几个整式的乘积的形式。
(2)提取公因式法:找出多项式中的公因式,并将其提取出来。
3. 例题讲解讲解两道例题,一道为提取公因式的简单例子,另一道为稍微复杂的多项式因式分解。
4. 随堂练习让学生独立完成两道练习题,巩固因式分解的方法。
5. 答疑解惑针对学生在练习中遇到的问题,进行解答和讲解。
六、板书设计1. 因式分解的概念及意义。
2. 提取公因式法进行因式分解的步骤。
3. 两道例题的解答过程。
4. 练习题目及答案。
七、作业设计1. 作业题目:(1)分解因式:6x^2 9x。
(2)分解因式:5a^2 + 10a。
2. 答案:(1)3x(2x 3)。
(2)5a(a + 2)。
八、课后反思及拓展延伸1. 反思:本节课学生掌握了因式分解的基本方法,但部分学生在提取公因式时仍存在困难,需要在今后的教学中加强练习。
2. 拓展延伸:引导学生思考,除了提取公因式法,还有哪些方法可以进行因式分解?为学生学习下一节课的内容做好准备。
重点和难点解析1. 教学难点与重点的明确。
因式分解课件浙教版数学七年级下册
4.1 因式分解
学习目标
1. 理解因式分解的概念和意义 2. 认识因式分解与整式乘法的相互关系——相反变 形,并会运用它们之间的相互关系寻求因式分解的方 法。
新知导入
小 学
初 中
7×11= 77
整数的乘法 77= ?×?
7 11 因数分解
a(a+1)= a2+a 整式的乘法 a2+a= a(a+1)
习题巩固
1. 检验下列因式分解是否正确. (1)m2+mn=m(m+n) (2)a2-b2=(a+b)(a-b) (3)x2-x-2=(x+2)(x-1)
解:(1)正确 (2)正确 (3)错误, 原式=(x-2)(x+1)
2. 计算下列各题,并说明你的算法.
(1)87 2 + 87 ×13
(2)1012 - 99 2
分析:检验因式分解是否正确。只要看等式右边 几个整式相乘的积与左边的多项式是否相等.
解:
(1) xy(x y) xy • x xy • y x2 y xy2 ,
因式分解x2 y xy2 xyx y正确。
(2)(2x 1)(2x 1) 4x2 1 2x2 1 因式分解2x2 1 (2x 1)(2x 1)不正确 (3)(x 1)(x 2) x2 2x x 2 x2 3x 2 因式分解x2 3x 2 (x 1)(x 2)正确
因式分解要注意以下几点:
1.分解的对象必须是多项式. 2.分解的结果一定是几个整式的乘积 的形式. 3.要分解到不能分解为止.
分析:因式分解 把一个多项式转化成几个整式的积 的形式。
解:
(1)因式分解是对
x2
2
1 x2
(x 1)2 x
浙教版七年级数学下册课件 4.1 因式分解
是因式分解,而是整式乘法,故B错误;因为a2+ a-5=(a-2)(a+3)+1,结果不是积的形式,因
此不是因式分解,故C错误;x2y+xy2=xy(x+y),
符合因式分解的概念,因此是因式分解,故D正 确.
(来自《点拨》)
知1-讲
总 结
识别某个等式的变形是因式分解的方法,关键扣 住两点:一是等式的左边是多项式;二是等式的右边 是整式的积.
1 a a B.(x+1)(x-1)=x2-1
A.a2+1=a C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
(来自《点拨》)
知1-讲
1 导引: 紧扣因式分解的定义进行判断.因为 不是整式, a 1 2 所以a +1=a a 不是因式分解,故A错误; a 因为(x+1)(x-1)=x2-1不是和差化积,因此不
要点精析:
(1)研究的对象是多项式,结果是整式的积. (2)因式分解是恒等变形,形式改变但值不改变.
(3)因式分解必须分解到多项式的每个因式不能再分
解为止. (4)因式分解是有范围的,若无特殊说明,一般在有 理数范围内分解,有时也要求在实数范围内分解.
(来自《点拨》)
知1-讲
例1 下列各式从左到右的变形属于因式分解的是( D )
(来自《教材》)
知2-讲
例3 (中考· 毕节)下列因式分解正确的是( B ) A.x3y-2x2y+xy=xy(x2-2x) 2 1 1 2 B.x -x+ = x 4 2 C.x2-2x+4=(x-2)2
D.4x2-y2=(4x+y)(4x-y)
导引: 根据因式分解与整式乘法的关系逆向判断.利用整 式的乘法法则将各选项中的等式的右边展开,与等 式的左边相比较,左右两边相同的只有B选项.
因式分解(课件)七年级数学下册(浙教版)
都 比一是多比项,式这化些为式几子个有整什式么 的 共积 同的 点形 ?式
讲授新课
定义: 把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把
这个多项式因式分解,也叫做把这个多项式分解因式.
想一想:整式乘法与因式分解有什么关系? 是互为相反的变形,即
因式分解
x2-1
(x+1)(x-1)
整式乘法
当堂检测
4.在分解因式x2+ax+b时,小明看错了b,分解结果为(x+2)(x+4); 小张看错了a,分解结果为(x-1)(x-9),求a,b的值.
【分析】根据题意甲看错了b,分解结果为(x+2)(x+4),可得a系数 是正确的,乙看错了a,分解结果为(x-1)(x-9),b系数是正确的, 在利用因式分解是等式变形,可计算的参数a、b的值. 【详解】解:∵(x+2)(x+4)=x2+6x+8,小明看错了b, ∴a=6, ∵(x-1)(x-9)=x2-10x+9,小张看错了a, ∴b=9, ∴a=6,b=9. 【点睛】本题主要考查因式分解的系数计算,解题的关键在于弄清 哪个系数是正确的.
【点睛】本题考查了已知因式分解结果求参数,掌握多项式的乘法与 因式分解是解题的关键.
讲授新课
练一练
1.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为 ________.
【详解】∵x2+3x+c=(x+1)(x+2),(x+1)(x+2)=x2+3x+2. ∴c=2 故答案为:2.
方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者 是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形 式,整式乘法的右边是多项式的形式.
浙教版数学七年级下册因式分解课件
因式分解与整式乘法的关系 整式乘法
m(a+b+c)=ma+mb+mc
因式分解
因式分解和整式乘法是互逆关系
正确认识因式分解 (1)因式分解的对象必须是一个多项式. (2)因式分解的结果必须是几个整式的积的情势. 一般有两种情势:①单项式×多项式;②多项式×多项式. (3)因式分解是一个恒等变形.
对于(x+1)(x+2)=x2+3x+2是 整式乘法 ; 对于16-x2=(4+x)(4-x)是 因式分解 . (填“整式乘法”或“因式分解”)
因式分解与整式乘法是互逆变形,可以用整式的乘法算出结 果,再利用对应系数相等,求出未知系数的值.
因式分解的
因
概念
式
分
解
与整式乘法 的区分
因式分解的 简单应用
1.已知(x+1)(x-1)=x2-1,则将x2-1进行因式分解的结果
是 (x+1)(x-1)
.
2.[202X·瑞安期末] 下列各式从左到右的变形中,是因式分解
因式分解和整式的乘法有互逆关系,因此可以用整式的乘 法运算,来检验因式分解
例1 检验下列因式分解是否正确: (1) x²y-xy=xy (x-y) (2) 2x²-1=(2x+1)(2x-1) (3) x²+3x+2=(x+1)(x+2)
检验因式分解是否正确,只要看等式右边几个整式相乘的积 与左边的多项式是否相等。
第四章 因式分解
4.1 因式分解
1. 3×3×4=36 整数的乘法
2. 2×7×8=112 整数的乘法
36=3×3×4 因数分解
112=2×7×8 因数分解
浙教版七年级下册 4.1因式分解(共14张PPT)
下列代数式从左到右的变形是因式分解吗?
a a ( a 1) 2 (2)( a 3)( a 3) a 9
( 1) a
2
是 不是
( 3) ( 4) x
2
4 x 4 x 1 (2 x 1)
2
2
是
不是 不是 不是
3x 1 x ( x 3) 1 1 2 ( 5) x 1 x ( x ) x 3 2 (6) 18a bc 3a b6ac
(x+y)(x+2y) = x² +3xy+2y²
例 2 手工课上,老师给某同学发下一张如左图形状的纸张,
要求他在恰好不浪费纸张的前提下剪拼成右图形状的长 方形,作为一幅精美剪纸的衬底,请问你能帮助这个同 学解决这个问题吗?能给出数学解释吗?
a2-b2=(a+b)(a-b)
例3 计算下列各题,并说明你的算法。数乘法 )
30 = 2×3×5 ( 因数分解 ) 2.在初中里,我们学过: x (x + y) = x2 + xy ( 整式乘法 ) x2 + xy = x (x + y) (
?
)
2. 按要求填表: 整式的乘法
多项式转化为几个整式的积
a(a+1)= a2+a (a+b)(a-b)=a2-b2 (a+1)2= a2+2a+1 (x-y)2=x2-2xy+y2
(1) 87 8713
2
(2) 103 97
2
2
思维拓展
x ( 1)
2
mx n能分解成 ( x 2)( x 5)
则 m = ______,
因式分解(考点剖析)浙江省七年级数学下学期期末必考点复习(浙教版)
专题07 因式分解【考点剖析】1、因式分解的概念分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.注意:因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.2、因式分解的常用方法:①提公因式法:pa+pb+pc=p(a+b+c);②公式法:a2-b2=(a+b)(a-b);a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2;③分组分解法:ac+ad+bc+cd=a(c+d)+b(c+d)=(a+b)(c+d);④十字相乘法:a2+(p+q)a+pq=(a+p)(a+q) .3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4、因式分解的应用(1)利用因式分解解决求值问题;(2)利用因式分解解决证明问题;(3)利用因式分解简化计算问题.【规律方法】因式分解在求代数式值中的应用1.因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.2.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.因式分解的定义【典例】例1.下列各式从左边到右边的变形中,是因式分解的是()A.ax﹣ay=a(x﹣y)B.x2﹣4x+4=x(x﹣4)+4C.x2﹣9+8x=(x+3)(x﹣3)+8xD.(3a﹣2)(﹣3a﹣2)=4﹣9a2【答案】A【解析】解:A、是因式分解,正确;B、结果不是整式的积的形式,故不是因式分解,选项错误;C、结果不是整式的积的形式,故不是因式分解,选项错误;D、结果不是整式的积的形式,故不是因式分解,选项错误.故选:A.【点睛】因式分解就是把多项式分解成整式的积的形式,依据定义即可判断.本题主要考查了因式分解的定义,因式分解与整式的乘法互为逆运算.是中考中的常见题型.【巩固练习】1.下列从左到右的变形中,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.a2﹣2ab+b2=(a﹣b)2C.am+bm﹣1=m(a+b)﹣1D.(x﹣1)2﹣1=(x﹣1)(x﹣1)【答案】B【解析】解:A.属于整式的乘法运算,不合题意;B.符合因式分解的定义,符合题意;C.右边不是乘积的形式,不合题意;D.右边不是几个整式的积的形式,不合题意;故选:B.因式分解计算【典例】例1.因式分解:(1)x2y﹣2xy2+y3(2)4ax2﹣48ax+128a;(3)(x2+16y2)2﹣64x2y2【答案】见解析【解析】解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)4ax2﹣48ax+128a=4a(x2﹣12x+32)=4a(x﹣4)(x﹣8);(3)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点睛】(1)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.(2)此多项式有公因式,应先提取公因式,再对余下的多项式根据十字相乘法分解因式;(3)先根据平方差公式分解因式,再采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.【巩固练习】1.分解因式:(1)ax+ay(2)x4﹣b4(3)3ax2﹣6axy+3ay2【答案】见解析【解析】解:(1)ax+ay=a(x+y);(2)x4﹣b4=(x2+b2)(x2﹣b2)=(x2+b2)(x+b)(x﹣b);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2.2.因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2).【答案】见解析【解析】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)=x2+3x+2=x2+3x=(x)2.因式分解综合【典例】例1.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的______;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:______________;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】见解析【解析】解:(1)故选:C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,原式=(y+1)(y+7)+9,=y2+8y+16,=(y+4)2,=(x2﹣4x+4)2,=(x﹣2)4;故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2+2x+1)2,=(x+1)4.【点睛】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.例2.阅读与思考:整式乘法与因式分解是方向相反的变形,由(x+p)(x+q)=x2+(p+q)x+pq,可得x2+(p+q)x+pq=(x+p)(x+q).利用这个式子可以将某些二次项系数是1的二次三项式分解因式.例如:将式子x2+3x+2分解因式.这个式子的常数项2=1×2,一次项系3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2).上述分解因式x2+3x+2的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).请仿照上面的方法,解答下列问题:(1)分解因式:x2﹣5x+6=________________________;(2)若x2+px+8可分解为两个一次因式的积,则整数P的所有可能值是______________.【答案】见解析【解析】解:(1)x2﹣5x+6=(x﹣2)(x﹣3).故答案是:(x﹣2)(x﹣3).(2)∵8=1×8;8=﹣8×(﹣1);8=﹣2×(﹣4);8=﹣4×(﹣2),则p的可能值为﹣1+(﹣8)=﹣9;8+1=9;﹣2+(﹣4)=﹣6;4+2=6.∴整数p的所有可能值是±9,±6,故答案为:±9或±6.【点睛】(1)、(2)发现规律:二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,则x2+px+q=(x+a)(x+b).此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.【巩固练习】1.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【答案】见解析【解析】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1).2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,则原式=(y+2)(y+6)+4=y2+8y+16=(y+4)2=(x2﹣4x+4)2(1)该同学因式分解的结果是否彻底?__________(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果______________.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x﹣2)﹣3进行因式分解.【答案】见解析【解析】解:(1)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4,故答案为:不彻底、(x﹣2)4.(2)设:x2﹣2x=y.原式=y(y﹣2)﹣3,=(y﹣3)(y+1),=(x2﹣2x﹣3)(x2﹣2x+1),=(x﹣3)(x+1)(x﹣1)2.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的______(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?______.(填“是”或“否”)如果否,直接写出最后的结果_____________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【答案】见解析【解析】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)这个结果没有分解到最后,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:否,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.因式分解的应用【典例】例1.已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是()A.直角三角形B.等腰三角形C.等腰三角形或直角三角形D.等腰直角三角形【答案】C【解析】解:移项得,a2c2﹣b2c2﹣a4+b4=0,c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,(a2﹣b2)(c2﹣a2﹣b2)=0,所以,a2﹣b2=0或c2﹣a2﹣b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选:C.【点睛】移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.【巩固练习】1.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】C【解析】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.2.如图,在一块边长为a米的正方形空地的四角均留出一块边长为米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a=13.6,b=1.8时,草坪的面积.【答案】见解析【解析】解:由图可得,草坪的面积是:a2﹣4b2,当a=13.6,b=1.8时,a2﹣4b2=(a+2b)(a﹣2b)=(13.6+2×1.8)×﹣2×1.8)×10=172,即草坪的面积是172.3.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.【答案】见解析【解析】解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b﹣4.3)=456.。
《因式分解》说课稿7篇
《因式分解》说课稿7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《因式分解》说课稿7篇下面是本店铺收集的《因式分解》说课稿7篇,供大家参考。
浙教版七年级下《因式分解》总复习
25、已知正方形的面积
是 9x2 6xy y2 (x 0, y 0)
,
利用因式分解写出表示该正方形的边
长的代数式。
三、因式分解的综合应用
13、巧算:
(1)7.292 2.712 (2)6752 31 5752 31 (3)2003 20032 20042 (4)19992 1999 3994 19972
A、 a 2 b 2
B、 a4 3ab4
C、 a 4 b4
D、 x 2 4 y 2
10、下列代数式:① a2 ab b2
② 4a2 4a 1
③ a2 b2 2ab
④ x2 2xy 1 y2
⑤
4
4a2 12a 9b2
⑥
4x2 2xy 1 y2 4
3、一个多项式分解因式的结果
是 (b3 2)(2 b3 ) ,那么这个多项式
是:
。
4、若 x2 ax b 能分解 (x 6)(x 7)
为 a,b
,试求
的值。
5、已知 1 x2 5 x 1 有一个因式
为
(
1
x
6
1)
6
,则另一个因式
2
是:
。
6、一个多项式若能因式分解成两个因式
6a3b34a2b2 12ab
提取公因式的常见思维误区:1、漏项; 2、变错符号;3、分解不彻底;4、混淆因 式分解与整式乘法的意义。
8、用提取公因式法对下列各式进行 因式分解:
(1)6x 4 y (2)8a3b2 12ab3c (3)9a2 6ab 3a (4) 7ab 14abx 49aby (5) 4x2n 6x4n
2024年浙教版七年级下册因式分解教案汇总
2024年浙教版七年级下册因式分解教案汇总一、教学内容本教案依据2024年浙教版七年级下册数学教材,涉及第九章《因式分解》的相关内容。
具体包括:9.1因式分解的意义,9.2提公因式法,9.3运用公式法,9.4十字相乘法,9.5因式分解的应用。
二、教学目标1. 理解因式分解的概念,掌握因式分解的基本方法。
2. 能够运用提公因式法、公式法、十字相乘法等方法进行因式分解。
3. 学会运用因式分解解决实际问题,提高数学思维能力。
三、教学难点与重点教学难点:因式分解的方法及其运用。
教学重点:提公因式法、公式法、十字相乘法的掌握。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入(约5分钟)通过一个生活实例,引导学生了解因式分解的实际意义,激发学习兴趣。
2. 知识讲解(约15分钟)(1)讲解因式分解的概念。
(2)介绍提公因式法、公式法、十字相乘法的具体步骤。
3. 例题讲解(约10分钟)(1)用提公因式法进行因式分解。
(2)用公式法进行因式分解。
(3)用十字相乘法进行因式分解。
4. 随堂练习(约10分钟)学生进行随堂练习,教师巡回指导。
5. 知识巩固与拓展(约10分钟)(2)讲解因式分解在实际问题中的应用。
六、板书设计1. 因式分解的概念及意义。
2. 提公因式法、公式法、十字相乘法的步骤。
3. 例题及解答过程。
4. 随堂练习题目及答案。
七、作业设计1. 作业题目:(1)用提公因式法进行因式分解:2x^2 + 4x。
(2)用公式法进行因式分解:a^2 + 2ab + b^2。
(3)用十字相乘法进行因式分解:x^2 5x + 6。
2. 答案:(1)2x(x + 2)。
(2)(a + b)^2。
(3)(x 2)(x 3)。
八、课后反思及拓展延伸2. 拓展延伸:了解因式分解在数学竞赛中的应用,提高解题能力。
重点和难点解析1. 教学目标的设定。
2. 教学难点与重点的识别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式乘法
因式分解
一般地,把一个多项式转化成几个
整式的积的形式,叫做因式分解,有时
我们也把这一过程叫做分解因式。 要点:1.变形对象:多项式
2.由和的形式变成积的形式 3.几个整式的积
(1)∵3a(a+4) =3a2+12a ∴ 3a2+12a = ( 3a)( a+4);
(2)∵ (a+3)2=a2+6a+9
∴a2+6a+9 = ( a(+a3)+( 3a)+23);
(3)∵(2-a)(2+a) = 4-a2 ∴4-a2 = ( 2-a )( 2+a);
.例 检验下列因式分解是否正确:
(=(2x+1)(2x-1) (3) x2+3x+2=(x+1)(x+2)
你知道因式分解的定义吗? 你会判别哪些代数式的变形是因式分解吗 你知道因式分解与整式的乘法的关系吗? 你会验证因式分解是否正确吗? 你会利用因式分解快速解决某些问题吗?
作业
(1) 课本P139A组 (2) 作业本(2)
(2)文成县某风景带修建了三块长方形的绿化草 坪,他们的宽都是8㎝,长分别是55.5㎝,24.4 ㎝,20.1㎝,那么这些绿化带的面积之和是 __________
8 55.5
24.4
20.1
1 - 2 1 2 1 - 3 1 2 1 - 4 1 2 1 - 9 1 9 2 1 - 1 0 1 0 2
义务教育课程标准 浙江版七年级下
七年级数学备课组
你能尝试把a2-b2化成几个整式的积的形式吗?
整式的积 多项式 (a+b)(a-b) =a2-b2 (a+b)2 =a2+2ab+b2 m(a+b) =am+bm
多项式 整式的积
a2-b2=(a+b)(a-b) a2+2ab+b2 =(a+b)2 am+bm =m(a+b)
检验因式分解:
(1)是否满足因式分解的形式.
(2) 看等式右边几个整式相乘的积与左边的多项式是否 相等.
(1)1012-992= (2)872+87×13= (3)512-2×51+1= (4)992-1=
(1)x2m xn能分解成 (x2)(x5 )
则 m = ______, n = ______.