三极管共射极放大电路实验报告
实验三晶体管共射极单管放大器
实验三 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调试方法, 分析静态工作点对放大器性能的影响2.掌握放大器电压放大倍数A V 、输入电阻Ri 、输出电阻RO 及最大不失真输出电压的测试方法。
3.熟悉常用电子仪器及模拟电路实验仪的使用方法。
二、实验原理晶体管单级放大电路有三种基本接法, 即共射电路、共集电路、共基电路。
三种基本接法的特点分别为:1.共射电路既能放大电流又能放大电压, 输入电阻在三种电路中居中, 输出电阻大, 频带较窄;常做为低频电压放大电路的单元电路。
2.共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大、输出电阻最小的电路,具有电压跟随的特点。
常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用射极输出的形式。
3.共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,但频率特性是三种接法中最好的电路,常用于宽频带放大器。
放大电路的主要性能指标有:放大倍数、输入电阻、输出电阻、通频带等。
而保证基本放大电路处于线性工作状态(不产生非线性失真)的必要条件是设置合适的静态工作点Q, Q 点不但影响电路输出是否失真, 而且直接影响放大器的动态参数。
本实验所采用的放大电路为电阻分压式工作点稳定的单管放大电路(图3-1)。
它的偏置电路采用RB1和RB2组成分压电路, 因此基极电位UB 几乎仅决定于RB1与RB2对VCC 的分压, 而与环境温度的变化无关;同时三极管的发射极中接有电阻RE, 它将输出电流IC 的变化引回到输入回路来影响输入量UBE, 以达到稳定静态工作点的目的。
当放大器的输入端加入输入信号ui 后, 在放大器的输出端便可以得到一个与ui 相位相反, 幅值被放大了的输出信号uO, 从而实现了电压放大。
图3-1电路的静态工作点可用下式估算:CC2B 1B 1B B R +R R ≈U V I E =C EBEB I ≈R U U -U CE =V CC -(R C +R E )而电压放大倍数、输入电阻、输出电阻分别为:A V =- beLC r R //R βbe 2B 1B i r //R //R =RC O R ≈R 注意: 测量放大器的静态工作点时, 应在输入信号ui=0的条件下进行。
实验三晶体管共射极单管放大器(1)
实验三晶体管共射极单管放⼤器(1)实验⼆晶体管共射极单管放⼤器预习部分⼀、实验⽬的⒈学会放⼤器静态⼯作点的调试⽅法,分析静态⼯作点对放⼤器性能的影响。
⒉掌握放⼤器主要性能指标及其测试⽅法。
⒊熟悉⽰波器、函数发⽣器、交流毫伏表、直流稳压电源及模拟实验箱的使⽤。
⼆、实验原理1.静态⼯作点对放⼤器性能的影响及调试1)静态⼯作点当放⼤电路未加输⼊信号(u i= 0)时,在直流电源作⽤下,晶体管基极和集电极回路的直流电流和电压⽤I BQ、U BEQ、I CQ、U CEQ表⽰,它们在晶体管输⼊和输出特性上各⾃对应⼀个点,称为静态⼯作点。
放⼤器静态⼯作点Q的位置对放⼤器的性能和输出波形有很⼤影响。
以NPN型三极管为例,如⼯作点偏⾼(如图2-2-1中的Q1点),放⼤器在加⼊交流信号以后易产⽣饱和失真,此时u o的负半周将被削底;如⼯作点偏低(如图2-2-1中的Q2点)则易产⽣截⽌失真,即u o的正半周被缩顶(⼀般截⽌失真不如饱和失真明显)。
这些情况都不符合不失真放⼤的要求。
所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤器的输⼊端加⼊⼀定的u i,检查输出电压u o的⼤⼩和波形是否满⾜要求。
如不满⾜,则应调节静态⼯作点的位置。
图2-2-1 静态⼯作点不合适产⽣波形失真最后还要说明的是....:上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔,如信号幅度很⼩,即使⼯作点较⾼或较低也不⼀定会出现失真。
所以确切地说,产⽣波形失真是信号幅度与静态⼯作点设置配合不当所致。
若要获得最⼤的不失真输出电压,静态⼯作点最好尽量靠近交流负载线的中点,如图2-2-2中的Q 点。
u CEI图2-2-2 具有最⼤动态范围的静态⼯作点+U CC +12Vs U oU图2-2-3 共射极单管放⼤器2) 静态⼯作点的调试和测量⽅法静态⼯作点由偏置电路设置。
放⼤电路常⽤的偏置电路有固定和分压式偏置电路。
固定偏置电路仅由⼀个基极电阻构成,要求电阻在兆欧数量级上,Q 点易受晶体管参数变化和基极电阻值误差的影响。
共射极放大电路实验报告
共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。
本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。
一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。
二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。
在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。
1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。
注意连接正确,避免短路和接反等问题。
2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。
通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。
3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。
四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。
通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。
2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。
3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。
通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。
通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。
实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。
共射极单管放大电路实验报告
共射极单管放大电路实验报告一、实验目的。
本实验旨在通过搭建共射极单管放大电路,掌握共射极放大电路的基本原理,了解其放大特性,并通过实验验证其放大性能。
二、实验原理。
共射极单管放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大特性,实现信号的放大。
在共射极放大电路中,输入信号加在基极上,输出信号则从集电极上取出。
当输入信号加在基极上时,晶体管的输出电流会随之变化,从而实现对输入信号的放大。
三、实验仪器与器材。
1. 三极管(晶体管)×1。
2. 电阻(1kΩ,10kΩ)×2。
3. 电容(0.1μF,10μF)×2。
4. 信号发生器。
5. 示波器。
6. 直流稳压电源。
7. 万用表。
8. 面包板。
9. 连接线。
四、实验步骤。
1. 将三极管、电阻和电容等元器件按照电路图连接在面包板上;2. 将信号发生器的正负极分别连接到输入端,将示波器的探头分别连接到输入端和输出端;3. 调节直流稳压电源,给电路提供适当的电压;4. 调节信号发生器的频率和幅度,观察示波器上的波形变化;5. 记录输入信号和输出信号的波形,并测量其幅度。
五、实验结果与分析。
通过实验观察和记录,我们得到了输入信号和输出信号的波形图,并测量了其幅度。
根据实验数据,我们可以得出共射极单管放大电路的放大倍数、频率响应等性能指标。
六、实验结论。
通过本次实验,我们成功搭建了共射极单管放大电路,并对其放大特性进行了验证。
实验结果表明,共射极单管放大电路具有良好的放大效果和频率响应特性,能够对输入信号进行有效放大,并且在一定频率范围内保持稳定的放大倍数。
七、实验总结。
本次实验使我们深入了解了共射极单管放大电路的工作原理和特性,掌握了搭建和调试放大电路的方法,提高了对电子电路的实际操作能力和理论知识的应用水平。
通过本次实验,我们不仅学到了共射极单管放大电路的基本原理和实验操作技巧,还对电子电路的实际应用有了更深入的了解。
希望通过今后的实验学习,能够进一步提高自己的实验能力和动手能力,为今后的学习和科研打下坚实的基础。
三极管共射极放大电路 实验报告
实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。
为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
2.测量电压放大倍数(R L =∞、R L =1k Ω)专业: 姓名:学号: 日期: 地点:学生序号6实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。
三极管10倍放大电路设计
另外因为用 将 的直流成分截去,故交流输出信号 即为 的本身: = =( ) 。因此,该电路的交流电压放大倍数 为: = / = / 。所以可以认为放大倍数 与 无关,而是由 与 之比来决定的(因为基极电流为0,所以与 无关,然而,严格来讲,是有关系的)。在该实验中输出信号增益≥20dB,故 / ≥10
3.6确定电源去耦电容
在电源上并联一个小电容和一个大电容,可以在很宽的频率范围内降低电源对GND的阻抗。一般选用1uF的瓷片电容,与10uF的电解电容。
3.2multisim仿真
按照设计在multisim中连接好电路图,如图所示
用示波器仿真如下图,此时频率为10kHZ
波特图示仪仿真结果如下
中频区
半功率点,10HZ满足实验要求
事先一定要用万用表测量管子的hFE,以便可以准确的确定基极电流和射极电流。
在调试时,输入信号的峰峰值不要设得过大。
事先要预留出各个测试点以及接地点。
通过这次试验深入学习了三极管放大电路的频率特性的控制
VB=1.37V,VC=9.18V,VE=0.72V,VCEQ=8.48V。
4.2电路频率范围
fmin=9.4Hz;fmax=1.21MHz;。
4.3放大倍数
经测量当f=10Hz时AV=7.68;经测量当f=1KHz时AV=10.6,当f=1MHz时AV=8.16,
4.4电路输出振幅
经测量当f=10Hz时A=7.68V经测量当f=1KHz时A=10.6V;;当f=1MHz时A=8.16V,
理工大学
开放性实验报告
(A类/B类)
项目名称:三极管放大电路设计
实验室名称:创新实验室
学生姓名:
创新实验项目报告书
三极管共射极放大电路-实验报告
精品文档实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻专业: 姓名: 学号: 日期: 地点:学生序号66.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ=6mA。
为方便起见,测量I CQ时,一般采用测量电阻R C两端的压降V Rc,然后根据I CQ=V Rc/Rc计算出I CQ。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
2.测量电压放大倍数(R L=∞、R L=1kΩ)实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。
实验一基本共射放大电路实验报告
实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。
二、实验仪器:1.示波器;2.多用电表;3.功放电路板。
三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。
工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。
由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。
而这个增大的电流会引发晶体管的放大作用。
输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。
四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。
五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。
根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。
具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。
2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。
3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。
根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。
六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。
这些数据可以帮助我们评估电路的性能和效果。
实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。
2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。
3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。
三极管共射放大电路实验报告
实验报告一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。
2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。
3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。
二、实验内容和原理仿真电路图专业:姓名:学号:日期:地点:实验名称:_______________________________姓名:________________学号:__________________静态工作点变化而引起的饱和失真与截止失真1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。
测量个点的静态电压值2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。
3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压V omax 。
4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。
5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707倍。
6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。
三、主要仪器设备示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤准备工作:a) 修改实验电路◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路;◆ 在V 1处插入NPN 型三极管(9013);◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。
共射放大电路实验报告(精品文档)_共10页
实验报告课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名:一、实验目的1、学习晶体管放大电路的设计方法,2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。
3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。
4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。
5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。
二、实验任务与要求1.设计一个阻容耦合单级放大电路已知条件:,,=+10V cc V 5.1L R k =Ω10,600i SV mV R ==Ω性能指标要求:,对频率为1kHz 的正弦信号30L f Hz <15/,7.5v i A V V R k >>Ω2.设计要求(1)写出详细设计过程并进行验算(2)用软件进行仿真3.电路安装、调整与测量自己编写调试步骤,自己设计数据记录表格4.写出设计性实验报告三、实验方案设计与实验参数计算共射放大电路(一).电路电阻求解过程(β=100)(没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计):(1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取,即4V,25BBCC VV =(3),恰为电阻标称值0.7 3.3BB EEV R k I -≈=Ω(4)212124:3:2CCBB R V V VR R R R ==+∴=取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k ,R 1=33.75k ;ΩΩ112110=0.1,60,40cc BB V V IR I mA R K R K IR -===Ω=Ω由综上:取标称值R1=51k ,R2=33k ΩΩ(5) 25T T eE CV V r I I =≈=Ω(6)从输入电阻角度考虑:,R i =R 1//R 2//[(β+1)(r e +R E1)]>7.5kΩ取(获得4V 足够大的正负信号摆幅)得:R i =9kΩ,V c =35V CC =6VR E1=118Ω,R E 2= 3.3kΩ,R C = 6.6kΩ从电压增益的角度考虑:>15V/V,取得:A v =5100//R Cr e +R E1A v =20V/V;;R E1=86Ω,R E 2= 3.3kΩ,R C =4kΩ为综上:取标称值R E1=100Ω,R E 2= 3.3kΩ,R C = 5.1kΩ(二).电路频率特性(1)电容与低频截止频率取;f L =25HZ <30HZ C E =12πf [R E 2//(R E1+r e +R s //R 2//R 11+β=48.3μFC E 取标称值47μF ,C 1,C 2取推荐的标称值22μF (三).参数指标验算过程由已确定的参数: ,,R E1=86Ω,R E 2= 3.3kΩ,R C =4kΩ,=+10V cc V 5.1LR k =Ω,计算得:10,600i S V mV R ==ΩC 1=C 2=22μF,C E =47μFI C=V BB‒V BER BB1+β+R E=0.917m A,V CC‒I C R C=5.323V,|A v|=20.24>15VV,|A v|=20.24>15VV, R i=8.305kΩ>7.5kΩ,f L=12π∗C E∗R=26HZ<30HZ;,所有参数符合指标.(R为与CE串联的等效电阻)四、实验步骤与过程(一).实验电路仿真:1.代入参数的实验电路2.直流工作点Q:2.1仿真类型与参数设置:选择时域瞬态分析(Time domain),由于交流小信号的频率为1kHZ,设置仿真时间为2个周期,0-2ms,扫描步长为0.02ms,精度足够2.2图像处理:将交流小信号源断开,分别观察IC,VCE,VBE,VC,的波形,利用标尺(toggle cursor)得到仿真值为:IC=0.892V,VCE=2.38V,VBE=0.622V,VC=5.45V3.交流参数分析:3.1仿真类型与参数设置:选择频域分析(AC SWEEP),要将电压源由给定频率的VSIN源换成可供频率扫描的VAC,幅值设定为10mV;为得到完整频域特性,扫描频率选择对数扫描,从1HZ到100MHZ,采样点设置为10,3.2图像处理(其他图像略去,只摘取需要用到标尺工具的复杂图像)(1).电压增益:观察V2(RL)/V1(RS)的频域波形,用标尺得出1Khz时的电压增益为17.607;在直流分析中,设置y轴变量为max(V2(RL))/max(V1(RS),利用标尺得到电压增益为178.55mv/9.993mv=17.87;(2).上下限截止频率与通频带:同样是上面的频域增益波形,利用orcad自带的信号处理函数可以得到:Fl=26.24877HZ,FH=1.99MHZ,由于FL相对较小,通频带近似为FH(3).输入电阻:观察V(VS+)/I(C1)的频域波形,利用标尺可得,当信号源的频率为1Khz时,输入电阻Ri=7.6816kΩ4.数据处理与误差分析计算可得除VCE外直流工作点的相对误差约为2.5%,而频幅特性相对误差约为10 %,较大;直流工作状态的误差主要是由于将VCE直接认定为0.7V导致的,而交流特性是由三极管直流工作点决定的,且计算时忽略了电容对电路产生的影响,且忽略厄利效应,所以会有至少3类误差的叠加,导致误差较大.(二).实际电路测试:1.测试原理:(注释:由于事先不知道实际测试电路所用三极管放大倍数只有160的,而我设计是用100的,所以在测试时无法利用我的设计方案,采用了另一个设计方案,附在报告最后.)1.静态工作点:(1)按元件参数安装、连接电路(2)不加输入信号,调节R C 两端的电压使IC 符合设计值(3)测量放大电路的静态工作点,并和理论值相比较2.电压增益:(1)保持静态工作点不变,利用示波器观察输入信号波形,调节信号源,使输出信号为频率1kHz,幅值30MV 的正弦波.(2)输入、输出波形用双踪显示观察,指出它们的相位关系。
共射共集放大电路实验报告(共5篇)
共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。
二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。
它的信号输入在集-发极之间,输出在集-基极之间。
共射电路的输入电阻较低,输出电阻较高,放大系数较大。
但它的频率特性差,相位反向和输出幅度变化比较大。
共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。
在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。
共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。
三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。
2.接通电源,调节稳压电源直至设定值。
3.打开测量仪器,调整电位器,使输入端电压到达工作点。
4.调整电位器,使输出端交流信号最大。
5.更改输入信号,测量输出信号幅度的变化,记录测量结果。
6.重复操作5,并更改电源电压和电阻值,记录实验结果。
7.实验结束后,关闭电源,拆除实验装置,清理现场。
四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。
2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。
同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。
3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。
对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。
4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。
输出波形为正弦波。
5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。
同时,要注意接线正确,切勿操作不当以免损坏实验装置。
五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。
模电实验2三极管共射极放大电路
• 实验目的 • 三极管共射极放大电路的原理 • 实验设备和材料 • 实验步骤和操作 • 实验结果与分析 • 实验总结与思考
01
实验目的
掌握三极管共射极放大电路的工作原理
了解三极管的结构和特性,包括 电流放大作用、输入输出特性等。
理解共射极放大电路的基本工作 原理,包括信号的输入、放大和
通过实验,我更加深入地理解了三极管共射极放大电路的工作原理,包括输入信号的放大 和输出信号的反馈等。
掌握了电路的搭建和调试技巧
在实验过程中,我学会了如何搭建和调试三极管共射极放大电路,了解了电路中各个元件 的作用和相互关系。
提高了实践操作能力
通过实际操作,我提高了对电子电路实验的操作能力,包括仪器的使用、数据的测量和处 理等。
THANKS
感谢观看
对实验中遇到的问题和解决方案的思考
问题1
输入信号过大导致三极管工作点 饱和。
解决方案
调整输入信号的大小,选择合适 的工作点。
问题2
输出信号失真。
解决方案
采用多次测量求平均值的方法, 提高测量精度。
问题3
测量数据误差较大。
解决方案
调整反馈电阻和偏置电阻,改善 电路的线性度和稳定性。
对未来学习和实践的建议和展望
输出信号电压:100mV 放大倍数:100倍
数据分析与解释
放大倍数
实验得到的放大倍数为100倍,与理论值相符,说明三极管共射 极放大电路的放大能力正常。
输入阻抗和输出阻抗
实验测得的输入阻抗和输出阻抗均为1kΩ,表明电路的输入输出 匹配良好。
信号失真
实验中观察到的输出信号未出现明显失真,表明电路的性能稳定。
三极管10倍放大电路设计
理工大学开放性实验报告(A类/B类)项目名称:三极管放大电路设计实验室名称:创新实验室学生姓名:创新实验项目报告书实验名称 三极管放大电路设计 日期 2011年11月21日姓名专业一、 实验目的1、 设计一个三极管放大电路,采用单电源供电;2、 使输出信号增益≥20dB ,输出幅值≥10Vpp ;3、使3dB 带宽10Hz~1MHz ;二、 实验原理2.1根据实验要求构建出基本电路图如图为共射级放大电路共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。
改变电路的静态工作点,可调节电路的电压放大倍数。
而电路工作点的调整,主要是通过改变电路参数来实现。
(负载电阻R L 的变化不影响电路的静态工作点,只改变电路的电压放大倍数。
)该电路信号从基极输入,从集电极输出。
输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。
故选择此种电路设计方案。
2.2根据电路图进行基本计算2.2.1求各部分直流电位基极直流电位: B V =)/(212R R R V CC + 发射极直流电位: BE B E V V V -= 又BE V =0.6v ,故6.0-=B E V V V发射极上的直流电流:E I =E V /E R =(6.0-B V V)/E R 集电极的直流电压C V =CC V -C I C R 2.2.2求交流电压放大倍数由交流输入电压i v 引起的e i 的交流变化e i ∆为:e i ∆=i v /E R用示波器仿真如下图,此时频率为10kHZ波特图示仪仿真结果如下中频区半功率点,10HZ满足实验要求高频特性不符合实验要求,过高于是修改电路图,并仿真,在R上并联一个小电容,使其在高频时放大倍数下降,仿C真结果如下波特图示仪仿真结果如下大致符合实验要求,故采用此电路图进行焊接 3.3焊接电路并进行实际测试测试结果显示,放大电路无失真现象,在10HZ 时频率特性较好,但在1MHZ 时放大倍数急剧下降,实际半功率点在150KHZ 左右,将C R 旁并联的小电容拆除后高频特性仍旧只在200KHZ 左右,严重不符标准,故此电路作废,重新设计电路。
三极管放大电路实验结论
三极管放大电路实验结论三极管放大电路实验结论在电子学中,三极管是一种重要的电子元件,常用于放大电路中。
三极管放大电路的实验是电子学教学中的基础实验之一。
通过该实验,我们可以深入了解三极管的工作原理以及其在放大电路中的应用。
本次实验中,我们使用了一种常见的三极管放大电路——共射极放大电路。
该电路由三极管、输入电阻、输出电阻、耦合电容等元件组成。
实验中,我们通过改变输入信号的幅度和频率,观察输出信号的变化,从而得出以下结论。
首先,三极管放大电路具有放大功能。
当输入信号的幅度较小时,输出信号的幅度也较小,但是随着输入信号幅度的增大,输出信号的幅度也随之增大,呈线性关系。
这表明三极管放大电路能够将输入信号放大到更大的幅度,实现信号的放大功能。
其次,三极管放大电路具有频率选择性。
在实验中,我们改变了输入信号的频率,观察到输出信号的变化。
当输入信号的频率较低时,输出信号的幅度较大;而当输入信号的频率超过一定范围时,输出信号的幅度会显著减小。
这说明三极管放大电路对于不同频率的输入信号有不同的放大效果,具有一定的频率选择性。
此外,三极管放大电路还具有非线性失真现象。
在实验中,我们观察到当输入信号的幅度较大时,输出信号会出现失真现象,即输出信号的波形发生畸变。
这是由于三极管工作在非线性区域时,引起了非线性失真。
因此,在实际应用中,我们需要注意控制输入信号的幅度,避免出现过大的失真。
此外,在本次实验中我们还发现了一些其他现象。
例如,当输入信号的幅度较小时,输出信号存在一定的噪声;而当输入信号的频率较高时,输出信号存在一定的畸变。
这些现象可能与实验条件、元件参数等因素有关,需要进一步研究和分析。
综上所述,通过本次三极管放大电路实验,我们深入了解了三极管的工作原理以及其在放大电路中的应用。
我们得出了三极管放大电路具有放大功能、频率选择性和非线性失真等特点的结论。
这些结论对于我们理解和应用三极管放大电路具有重要意义,并为进一步研究和应用提供了基础。
放大效应实验报告
一、实验目的1. 了解放大效应的基本原理,掌握放大电路的设计与调试方法。
2. 熟悉放大电路中三极管、运放等关键元件的特性。
3. 学会测量放大电路的静态工作点、电压放大倍数、输入阻抗、输出阻抗等参数。
二、实验原理放大效应是指电路中输入信号通过放大器后,输出信号幅度增大的现象。
放大电路通常由三极管、运放等元件组成。
本实验采用共射极放大电路,通过调整电路参数,实现信号放大。
三、实验仪器1. 双踪示波器2. 函数信号发生器3. 数字万用表4. 实验电路板5. 电阻、电容、三极管等电子元件四、实验内容1. 共射极放大电路的搭建与调试(1)搭建电路:按照电路图连接三极管、电阻、电容等元件,搭建共射极放大电路。
(2)调试电路:调整基极偏置电阻,使三极管工作在放大状态。
调整集电极电阻,使输出信号幅度合适。
2. 测量放大电路的静态工作点(1)使用数字万用表测量三极管基极、发射极、集电极的电压。
(2)计算静态工作点Q点:Q点电压Uq = Ube + Uce。
3. 测量放大电路的电压放大倍数(1)输入信号:使用函数信号发生器输出一定频率和幅度的正弦波信号。
(2)观察输出信号:使用示波器观察放大电路输出端的信号波形。
(3)计算电压放大倍数:A = Uo / Ui,其中Uo为输出信号幅度,Ui为输入信号幅度。
4. 测量放大电路的输入阻抗(1)输入阻抗测量电路:在放大电路输入端串联一个已知电阻R1。
(2)测量输入端电压:使用数字万用表测量输入端电压Uin。
(3)计算输入阻抗:Ri = R1 (Ui / Uin)。
5. 测量放大电路的输出阻抗(1)输出阻抗测量电路:在放大电路输出端串联一个已知电阻R2。
(2)测量输出端电压:使用数字万用表测量输出端电压Uo。
(3)计算输出阻抗:Ro = R2 (Uo / Ui)。
五、实验结果与分析1. 共射极放大电路的搭建与调试:成功搭建了共射极放大电路,调整了电路参数,实现了信号放大。
2. 静态工作点测量:测得三极管基极电压为0.7V,发射极电压为0.7V,集电极电压为2.8V,计算得Q点电压为3.5V。
(完整版)三极管共射放大电路(模电实验)
(完整版)三极管共射放⼤电路(模电实验)实验报告课程名称:模拟电⼦技术基础实验指导⽼师:张伟成绩:__________________ 实验名称:三极管共射极放⼤电路实验类型:直接测量型同组学⽣姓名:__________ ⼀、实验⽬的和要求(必填)⼆、实验内容和原理(必填)三、主要仪器设备(必填)四、操作⽅法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、⼼得⼀.实验⽬的和要求1、学习基本放⼤器的参数选取⽅法、安装与调试技术;2、掌握放⼤器静态⼯作点的测量与调整⽅法,了解在不同偏置条件下静态⼯作点对放⼤器性能的影响;3、学习放⼤器的电压放⼤倍数、输⼊电阻、输出电阻及频率特性等指标的测试⽅法;4、了解静态⼯作点与输出波形失真的关系,掌握最⼤不失真输出电压的测量⽅法;5、进⼀步熟悉⽰波器、函数信号发⽣器、交流毫伏表的使⽤。
⼆.实验内容和原理1、静态⼯作点的调整和测量2、电压放⼤倍数的测量3、输⼊电阻和输出电阻的测量4、观察静态⼯作点对输出波形的影响5、放⼤电路上限频率fH 、下限频率fL 的测量三极管共射极放⼤电路原理图:三、主要仪器设备1、稳压电源2、信号发⽣器3、晶体管毫伏表4、⽰波器5、放⼤电路板专业:电⽓⾃动化姓名:郑志豪学号:3110101577 ⽇期:2012/12/12 地点:东3-211 B5四、操作⽅法和实验步骤1. 静态⼯作点的调整和测量1)按所设计的放⼤器的元件参数焊接电路,根据电路原理图仔细检查电路的完整性和焊接质量。
2)开启直流稳压电源,将直流稳压电源的输出调整到12V,并⽤万⽤表检测输出电压,确认后,关闭直流稳压电源。
3)将放⼤器电路板的⼯作电源端与12V直流稳压电源接通。
然后,开启直流稳压电源。
此时,放⼤器处于⼯作状态。
4)调节电位器RP,使电路满⾜设计要求(ICQ=1.5mA)。
为⽅便起见,测量ICQ时,⼀般采⽤测量电阻Rc两端的压降URc,然后根据ICQ =URc/Rc计算出ICQ 。
模电实验报告1 三极管共射放大电路
P.9
实验名称:三极管共射放大器的电路调试和参数测量 姓名: 何迪 学号: 3100103195
3 测量 RL=∞时的最大不失真输出电压 Vomax 实测值 RL=∞ ICQ(max) 1.24mA Vimax 20.87mV Vomax(V) 3.264V Av 156.4
误差原因 1 实验仪器本身的系统误差 2 示波器波形不稳产生的误差 3 判断波形失真时由于人的主观判断造成的误差 4 示波器显示的伏值是跳跃的,很难读出准确值从而产生的误差 5 计算时取精度的不同产生的误差 6 稳压源输出电压不是恒定而引起的误差 7 导线电阻的影响 8 电路板上的电阻及其它器件的标称值与实际值有差异引起的误差 9 示波器受到外界的干扰引起的误差 10 电流通过电阻时电阻发热引起的误差
实验调试过程 静态工作点的调试: 根据实验电路计算集电极对地电位,连接好电路,做好实验的准备后,调节电位器,同时用万用表 测量集电极的对地电位,使其达到理论值,此时静态工作点调试完毕。 测量输入输出信号的调试: 保持静态工作点不变,输入中频信号(正弦波) ,首先将输入信号 Vs 与示波器直接相连,用示波器 监视波形,如果输入波形不稳定时,需要检查导线接触情况、线路有无短路、周围有没有烦扰信号, 同时调节示波器使其尽量稳定,可以使用 single\averaging 等功能键,测量并记录 Vs 然后将输入信 号 Vi 和输出信号(RL=∞/RL=2K)连接至示波器,用示波器监视输入,输出波形,相同的方法调试, 测量并记录 Vi,Vo 两个量。
共射极三极管放大电路
共射极三极管放大电路共射极三极管放大电路是一种常见的电子电路,用于放大弱信号。
它由一个共射极三极管和一些外部元件组成,可以将输入信号放大到较高的幅度。
共射极三极管放大电路的基本原理是利用三极管的放大特性。
三极管有三个引脚,分别是基极、发射极和集电极。
在共射极放大电路中,输入信号通过电容耦合连接到三极管的基极,而输出信号则从集电极获取。
当输入信号施加到基极时,通过电容的作用,信号被传递到三极管的发射极。
发射极是三极管的输出端,由于发射极有一个电阻,使得输出信号可以从发射极获取。
同时,通过集电极上的负载电阻,输出信号可以被放大。
在共射极放大电路中,三极管的发射极和集电极之间的电压被称为偏置电压。
这个偏置电压的设定非常重要,它可以影响放大电路的工作状态和放大效果。
如果偏置电压设置不当,可能会导致放大电路无法正常工作或者放大效果不佳。
在共射极放大电路中,放大效果可以通过增益来衡量。
增益是输出信号的幅度与输入信号的幅度之间的比值。
在理想情况下,增益应该是一个固定的值,不受输入信号的变化而变化。
然而,在实际应用中,由于各种因素的影响,增益可能会有一定的波动。
为了提高共射极放大电路的性能,可以采取一些措施。
例如,可以使用负反馈来稳定放大电路的增益,减少波动。
负反馈可以通过将一部分输出信号反馈到输入端来实现。
这样可以提高放大电路的稳定性和线性度。
共射极放大电路还可以通过选择合适的元件参数来优化性能。
例如,选择合适的电容和电阻值,可以影响放大电路的频率响应和频带宽度。
选择合适的三极管型号和工作点,可以提高放大电路的线性度和稳定性。
共射极三极管放大电路广泛应用于各种电子设备中。
例如,它可以用于音频放大器、射频放大器、通信设备等。
在这些应用中,共射极放大电路可以将弱信号放大到足够的幅度,以供后续的处理和传输。
总结一下,共射极三极管放大电路是一种常见的电子电路,用于放大弱信号。
它通过利用三极管的放大特性,将输入信号放大到较高的幅度。
三极管共射放大电路实验
实验10 三极管共射放大电路一、实验目的和要求1.学习共射放大电路的参数选取方法、安装与调试技术。
2.学习放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。
3.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。
4.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。
5.进一步掌握示波器、函数信号发生器、万用表的使用。
二、实验原理放大电路的最佳静态工作点•初选静态工作点时,可以选取直流负载线的中点,即V CE=1/2×V CC或I C=1/2×I CS(I CS为集电极饱和电流,I CS≈V CC/R c)这样便可获得较大的输出动态范围。
•当放大电路输出端接有负载R L时,因交流负载线比直流负载线要陡,所以放大电路的动态范围要变小,如前图所示。
当发射极接有电阻时,也会使信号动态范围变小。
•要得到最佳静态工作点,还要通过调试来确定,一般通过设置电位器的方法来调整静态工作点。
三极管共射放大电路原理图三、主要仪器设备1. MY61数字万用表2.函数信号发生器3.实验电路板实验电路板4.三极管5.导线若干6.示波器四、操作方法和实验步骤一、调整并测量放大电路的静态工作点:1、调节电位器W b,使电路满足设计要求(I CQ=6mA)。
2、测量I CQ时,一般采用测量电阻Rc两端的压降V Rc,然后根据ICQ=V Rc/Rc计算出I CQ。
3、测量三极管共射极放大电路的静态工作点,用表格记录测量值与理论估算值。
(V CQ≈9V,V EQ ≈4.5V)注意:•若V CEQ<0.5V,则说明三极管已经饱和;•若V CEQ≈+V CC,则说明三极管已经截止;•若V BEQ >2V,估计该三极管已被击穿。
V BQ(V) V BEQ(V) V CEQ(V) I CQ(mA) 理论估算值 5.2 0.7 4.5 6测量值 5.11 0.62 4.47 6.00再对比仿真结果V BQ(V) V BEQ(V) V CEQ(V) I CQ(mA) 仿真值 5.27 0.69 4.44 6可见在静态工作点时,实际测得的数据基本符合理论值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。
为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
2.测量电压放大倍数(R L =∞、R L =1k Ω)专业: 姓名:学号: 日期: 地点:学生序号6实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。
(2)用示波器检查放大电路输出端是否有放大的正弦波且无失真。
(3)用示波器测量输入Ui电压,调节函数信号发生器幅度,使电路输入Ui= 10mV(有效值)。
(4)负载开路,用示波器测出输出电压Uo有效值,求出开路放大倍数。
(5)负载接上1kΩ,再次测Uo,求出带载放大倍数。
3.测量最大不失真输出电压(R L=∞、R L=1kΩ)(1)负载开路,逐渐增大输入信号幅度,直至输出刚出现失真。
(2)用示波器测出此时的输出电压有效值,即为最大不失真输出电压Vomax。
(3)负载接上1kΩ,再次测Vomax。
4.测量输入电阻Ri(R L=1kΩ)测量原理:放大电路的输入电阻可用电阻分压法来测量,图中R为已知阻值的外接电阻,分别测出Vs和Vi,则实验步骤:(1)从函数信号发生器输出正弦波,加到电路板上的Us端。
(2)用示波器测出Us 和Ui电压。
(3)求出输入电阻。
5.测量输出电阻R O测量原理:放大电路的输出电阻可用增益改变法来测量,保持信号源幅度不变,分别测出负载开路时的输出电压V O'和带上负载R L后的输出电压V O,则实验步骤:(1)从函数信号发生器输出正弦波(幅度和频率?),加到共射放大电路的输入端。
(2)断开负载,用示波器测出输出电压V o'。
(3)接上负载,用示波器测出输出电压Vo。
(4)计算输出电阻Ro6. 测量上限频率和下限频率(R L=∞、R L=1 kΩ)1)从函数信号发生器输出1kHz的正弦波,加到放大电路输入端。
2)用交流毫伏表测输出电压,调节输入信号幅度,使输出Vo=1V。
(取1V有什么好处?)3)保持输入信号幅度不变,降低信号频率,使输出幅度下降至0.707V o时(用什么测?)得到下限频率f L。
4)保持输入信号幅度不变,增大信号频率,使输出幅度下降至0.707 V o时得到上限频率f H7. 研究静态工作点对输出波形的影响( R L=∞)1)负载开路,输入1kHz、幅度合适的正弦信号,用示波器监视输出电压。
2)调节电位器R Wb,使静态电流I CQ增大到足够大,测量并记录集电极静态电流。
(I CQ用什么测?如何测?)3)逐渐增大输入信号,使输出波形出现明显的失真。
记录此时的示波器波形,测量刚出现失真时的最大不失真输出电压。
4)减小输入信号,使电路回到正常的放大状态(输出电压无失真)。
5)调节电位器R Wb,使静态I CQ下降到足够小,测量并记录集电极静态电流。
6)逐渐增大输入信号,使输出波形出现明显的失真。
记录此时的示波器波形,测量刚出现失真时的最大不失真输出电压。
五、实验数据记录和处理V B/V V E/V V C/V I CQ/mA 理论值 5.258 4.558 9 6仿真值 5.271 4.558 9 6实测值 5.15 4.54 8.99 6测试条件实测值理论值A V仿真值A V V S/mV V i/mV V O/V A VR L=∞35 10 0.978 97.8 92.34 90.604 R L=1kΩ35 10 0.493 49.3 46.17 46.340 3.测量最大不失真输出电压先出现缩顶失真先出现削底失真同时出现缩顶和削底失真测试条件实测值理论值仿真值V OMAX(有效值)V OMAX(峰值)V OMAX(峰值)V OMAX(峰值)R L=∞ 2.29V 3.06V 3.75V 3.69V R L=1kΩ 2.78V 3.79V 4.27V 4.16V4.测量输入电阻R i输入电阻(实测值)理论值仿真值V S/mV V i/mV R i R i R i35 10 2040Ω1334Ω1393ΩO输出电阻(实测值)理论值仿真值V O’/V V O/V R i R O R O 0.978 0.493 984Ω1000Ω1000Ω测试条件实测值仿真值f L f H f L f HR L=∞91.5Hz 29.7kHz 172.12Hz 34.58MHz R L=1kΩ92.1Hz 51.9kHz 175.47Hz 63.30MHz7.研究静态工作点对输出波形的影响I CQ先出现V OMAX正/负半周形状7.68mA 饱和977mV 负削底2.55mA 截止 1.51V 正缩顶六、实验结果与分析共射放大电路的静态工作点在实验中随可变电阻R b1的阻值而改变,实验中和仿真均调整电位器使I CQ=6mA,而且理论值根据仿真的参数计算,实际上并不合理,因为仿真使用的三极管规格和实验不同,理论计算的值更适用于仿真结果,实验结果仅能用作参考。
电压放大倍数的实验值、理论值和仿真值都较为接近,由共射放大电路的放大倍数表达式其中r be已确定,R L’为等效负载,当负载增大时放大倍数也会增大,但本实验电路中最大的负载电阻为R C=1kΩ,外接R L=1kΩ时,等效负载为500Ω,因此开路的放大倍数应该为接1kΩ负载时的两倍,实验中开路放大倍数为97.8倍,负载1kΩ的放大倍数为49.3倍,97.8/49.3=1.98,非常符合预期。
最大不失真输出电压实际上在示波器难以测量,因为通过人眼判断正弦波形是否失真偏于主观,往往无法准确判定在某静态工作点下波形失真的临界输出电压,且当负载不同时,截止失真和饱和失真出现的先后可能不同,故实验中测得的数据仅作娱乐。
另外还保存了几种失真在不同位置出现的图片,也可以在仿真中进行观察。
输入电阻和输出电阻的理论值和仿真值非常吻合,但输入电阻的实验值差距较大,可能的原因是输入电压V S经过一个5.1kΩ的电阻R S分压,另一部分V i作为放大电路的输入信号,但实验中的V S和V i没有反复测量,可能在操作过程中已经变化,由输入电阻的计算公式如下:而R比较大,可见V S和V i的数量级相同,而且为比值形式,所以它们取值的较小变化对结果也会有较大影响,实验中应更加注重这两个数据的测量准确性。
通频带宽的测量,实验结果比仿真带宽更窄,也是三极管特性不同的原因,而且实验中由于结电容效应更加显著,通频带宽也会变窄。
对于不同静态工作点的输出特性,可以看出下图中当I CQ较小时,负载线斜率大小较小,正弦波形更靠近截止方向;当I CQ增大时,负载线斜率变大,正弦波更靠近饱和方向。
因此实验中I CQ=2mA时先出现了截止失真,I CQ=7mA时先出现了饱和失真。
七、讨论、心得本次实验有较多心得,主要是巩固了理论课的知识,前面用到的很多理论计算都不太容易,但最后跟仿真都符合得很好,但另一方面我认为本实验的仿真对实验没有太大的对比价值,因为三极管元件型号不同,且电位器位置也未必和实验一样,测算的数据自然也有很多不同。
但某些测量值存在较大的偏差,为了解释这些偏差需要了解电路里一些在实际实验中可能显著的现象比如结电容效应等,也加深了我对电路元件特性的认识。
另外,在老师所给实验PDF的第8页中,放大倍数的公式里不应该出现(1+β)R b2的项,而r be的计算公式中按照前面的约定,300应该改为200。
(1)试分析电路中的Re2、Rb1、Cb起什么作用?答:R e2作为发射极电阻,起到了很好的负反馈作用,当由于某些外部原因(如温度改变)引起电路内部参数变化,假设I C增大,相当于I E增大,则射极电阻R e2两端电压也增大,由于V CC不变,所以V BE 减小,从而I C减小,使电流稳定;R b1在电路中起到了保护电位器的作用,当电位器调节到0时,I C可能比较大烧坏管子,R b1可以限流;C b实现了低频信号隔离作用,输入信号中的直流成分无法通过电容,因此不会影响三极管的静态工作点,而交流信号可以通过电容并被放大。
(2)当静态工作电流I CQ通过测量V E或V C来间接地得到时,分析万用表内阻对测量误差的影响。
答:查手册得万用表在20V量程下内阻为10MΩ,比被测的R C=1kΩ大4个数量级,由电表误差公式代入数据得ΔU=6×10-4V,基本上可以忽略;(3)各仪器的接地端不再连在一起,示波器上的波形将发生什么变化?答:会造成示波器不同频道的参考零电势点不同,于是波形会出现数值方向上的平移,形状没有影响。
(4)在测试各项参数时,为什么要用示波器监视输出波形不失真?答:若波形发生失真,表明三极管并未工作在线性放大区,所有的理论公式便不再适用。
(5)与负载开路相比,接上负载对放大电路的上下限频率有什么影响?在测上限和下限频率时,如何择输入信号的大小?为什么使输出电压为1V?答:接上负载后,电路的等效负载变小,时间常数变小,因为上限截止频率由高频时间常数中最大的一个决定,因此放大倍数降低了,而上限频率会变大,通频带宽也更大,但下限频率基本不受影响。