汽车造型与空气动力学
空气动力学在汽车外形优化设计中的应用
空气动力学在汽车外形优化设计中的应用汽车的外形设计是汽车制造过程中的关键环节之一,它不仅决定了汽车的外观美观度,更重要的是影响到汽车的空气动力学性能。
在如今注重绿色环保和能源节约的社会背景下,通过优化汽车外形设计,降低空气阻力,提高其空气动力学性能成为了一项重要任务。
空气动力学是研究气体在流动时的力学性质的科学,以及研究这些力学性质对物体形状、方向和速度的影响。
在汽车设计中,优化汽车外形可以减少阻力、提高汽车的燃油效率并降低噪音。
因此,空气动力学在汽车外形优化设计中的应用变得至关重要。
一种常见的空气动力学改善汽车外形的方法是通过减小阻力系数,即减小汽车行驶时所受到的阻力大小。
例如,一些汽车制造商会将汽车车身造型设计得更加流线型,以减少空气对车身的阻力。
此外,对车身前部进行改进,如降低车头高度和增加前风挡的倾角,能够使空气更顺畅地穿过车身,从而减少了阻力。
除了减小阻力系数,还可以通过增加下压力,提高汽车的操控性能。
下压力是指汽车在高速行驶过程中产生的向下的空气力。
通过增加下压力,汽车能更牢固地贴地行驶,提高车辆的稳定性和操控性。
为了增加下压力,可以对汽车的车身底部进行设计,例如在车底安装扰流板或者增加前后轮拱罩等。
另一个关键的问题是降低车内噪音的产生和传播。
汽车行驶过程中,空气从车辆的前部流过,会产生噪音,并且在车内传播。
为了降低噪音,可以对汽车的前部进行改进,例如通过改变车头造型、增加隔音材料等。
此外,增加窗户密封性能和减少风挡玻璃的倾角,也可以减少噪音的产生和传播。
除了以上提到的方法,还有一些创新的空气动力学设计可以在汽车外形优化中应用。
比如,一些汽车制造商在汽车车顶上设置了可调节的后扰流板,通过调整后扰流板的角度,可以根据不同行驶速度和道路条件来优化车辆的空气动力学性能。
此外,一些高端汽车还采用了活动式车身气动套件,通过电脑自动监测车辆行驶状态和驾驶者的需求,来调整车身气动套件的形状和位置,以实现最佳的空气动力学性能。
车辆空气动力学
车辆空气动力学车辆空气动力学是指车辆行驶时空气对车辆的影响和作用的学科。
空气动力学在汽车设计中起着至关重要的作用,它涉及到车辆的气动外形设计、空气阻力、升力、气流优化等方面,直接影响到车辆的性能、稳定性和燃油经济性。
车辆在行驶过程中,空气对车辆的影响主要表现为空气阻力和升力。
空气阻力是车辆行驶时空气对车辆前进方向施加的阻力,直接影响到车辆的速度和燃油消耗。
为了降低空气阻力,汽车设计师需要通过合理设计车身外形、减小车身侧面积、降低车身下压力等方式来优化车辆的空气动力学性能。
除了空气阻力,车辆在高速行驶时还会受到空气的升力影响。
升力会使车辆在高速行驶时产生不稳定的飘移现象,降低车辆的操控性和行驶稳定性。
为了减小升力,汽车设计师需要通过设计合理的车身下压力装置、增加车身稳定性等措施来改善车辆的空气动力学性能。
在汽车设计中,空气动力学设计是一个复杂而重要的领域。
设计师需要考虑车辆的外形、车身结构、进气口、排气口等因素,以确保车辆在高速行驶时具有良好的空气动力学性能。
通过使用计算流体力学(CFD)等工具,设计师可以模拟车辆在不同速度下的空气流动情况,优化车辆的空气动力学性能。
除了影响车辆性能和燃油经济性外,空气动力学还可以影响到车辆的外观设计。
许多现代汽车设计都采用了流线型的外形设计,以降低空气阻力和减小升力,提高车辆的性能和稳定性。
流线型的外形设计不仅具有美观的外观,也是对空气动力学原理的有效运用。
总的来说,车辆空气动力学是汽车设计中不可忽视的重要领域。
通过优化车辆的空气动力学性能,可以提高车辆的性能、稳定性和燃油经济性,为驾驶员提供更加安全和舒适的驾驶体验。
未来随着科技的不断发展,空气动力学在汽车设计中的作用将变得更加重要,为汽车工业的发展带来新的机遇和挑战。
【研究】汽车车身空气动力学应用
【关键字】研究研究性学习论文小组成员:班级:机电1011指导教师:卢梅汽车车身的空气动力学应用摘要:汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响。
因此轿车的车身设计既要服从空气动力学,要有尽量低的空阻系数,降低发动机的输出负担,又要采取措施,降低诱导阻力,以保证轿车的行驶安全。
关键词:空气动力学,车身外形设计,导流板,扰流板背景:迄今为止,汽车的发展已经过了112年,无论是汽车的速度,还是汽车的配置,或者是汽车的造型多有了长足的发展。
随着汽车速度的提高,空气阻力成为汽车前进的最大障碍。
在此因素下,汽车造型经历了马车型汽车,箱型汽车,甲壳虫型汽车,船型汽车,鱼型汽车以及楔型汽车等六个阶段的演变,从而越来越符合空气动力学的要求,越来越符合人们的审美观。
在这一发展历程,也可看做是人们对空气动力学的认识及应用过程。
1934年,流体力学研究中心的雷依教授,采用模型汽车在风洞中试验的方法测量了各种车身的空气阻力,这是具有历史意义的试验。
它标志着人们开始运用流体力学原理研究汽车车身的造型。
1937年,德国设计天才费尔南德·保时捷开始设计类似甲壳虫外形的汽车。
它是第一代大量销售的空气动力学产物的汽车。
1949年福特公司推出了福特V8汽车,这种车型改变了以往汽车造型模式、使前翼子板和发动机罩,后翼子板和行李舱溶于一体,大灯和散热器罩也形成整体,车身两侧是一个平滑的面,驾驶室位于中部,整个造型很象一只小船,因此,我们把这类车称为“船型汽车”。
船形汽车不论从外形上还是从性能上来看都优于甲壳虫形汽车,并且还较好地解决了甲壳虫形汽车对横风不稳定的问题。
船型汽车尾部过分向后伸出,形成阶梯状,在高速行驶时会产生较强的涡流,为了克服这一缺点,人们把船型车的后窗玻璃逐渐倾斜,倾斜的极限即成为斜背式。
由于这个背部很象鱼的背脊,所以这类车称为“鱼型汽车”。
汽车造型设计与空气动力学
汽车造型与空气动力学的关系T813-9 20080130921 乔东兴空气动力学与汽车的造型有很大的关系,空气动力学主要研究运动汽车与空气之间的相互作用力,力的大小取决于空气与汽车之间的相对速度和汽车形状,通过对空气动力学课的学习,我们知道了汽车的形状对汽车的阻力有很大的影响,通过对汽车的造型演变历程研究发现,汽车的造型的改变很大方面是为了减少空气阻力,所以汽车造型与空气动力学有很大的关系。
自从德国工程师 Karl Benz 1885年发明了世界上第一辆汽车后25 a,德国就在Zeppelin工厂的航空风洞中进行了一系列有关车形的实验研究。
后来德国工程师杰瑞和他的助手 W. Klemperer发现前圆后尖的物体阻力最小 ,从而找到了解决形状阻力的途径 ,鱼和鸟的体形正是形状阻力较小的造型。
美国于 1934年采用风洞和模型汽车 ,测量了各种车身的空气阻力系数 ,这是具有重要历史意义的试验。
例如 ,他提出了“如果头部不是干净利落的圆滑 ,即使有良好的尾部造型也意义不大。
”我国是在 80年代才较为系统地研究汽车空气动力学。
汽车空气动力学主要是应用流体力学的知识 ,研究汽车行驶时 ,即与空气产生相对运动时 ,汽车周围的空气流动情况和空气对汽车的作用力 (称为空气动力 ),以及汽车的各种外部形状对空气流动和空气动力的影响。
此外 ,空气对汽车的作用还表现在对汽车发动机的冷却 ,车厢里的通风换气 ,车身外表面的清洁 ,气流噪声 ,车身表面覆盖件的振动 ,甚至刮水器的性能等方面的影响。
空气动力学上的每一项进展 ,都直观的反映在汽车造型的变化上。
几十年来 ,汽车造型的种种变化 ,都可以找到其空气动力学的依据。
当汽车的车速提高到每小时 50 km的时候 ,迎面而来的风使驾乘人员难以忍受 ,迫使人们考虑改变汽车的外形以克服其缺陷。
于是人们设计了一种带有球面的挡风板的汽车 ,这是流线型的萌芽。
汽车总高度的降低 ,汽车上部宽度的减小 ,都是为了减小汽车的迎风面积。
确定汽车外形有三个基本要素
确定汽车外形有三个基本要素,即机械工程学、人机工程学和空气动力学。
前两个要素在决定汽车构造的基本骨架上具有重要意义,特别在设计初期,受这两个要素的制约更大。
1、作为汽车,最主要的是能够行驶和耐用。
以此为前提,首先必须考虑到机械工程学的要素,包括发动机、变速器内部结构设计。
要使汽车具有行走功能,必须安装发动机、变速器、车轮、制动器、散热器等装置,而且要考虑把这些装置安装在车体的哪个部位才能使汽车更好地行驶。
这些设计决定之后,可根据发动机、变速器的大小和驱动形式确定大致的车身骨架。
如果是大量生产,则要强调降低成本,车身钣金件冲压加工的简易化,同时兼顾到维修简便性,即使发生撞车事故后,车身要易于修复。
上述这些都属于机械工程学的范畴。
2、其次是人机工程学要素。
因为汽车是由人驾驶的,所以必须保证安全性和舒适性。
首先应确保乘员的空间,保证乘坐舒适,驾驶方便,并尽量扩大驾驶员的视野。
此外,还要考虑上下车方便并减少振动。
这些都是设计车身外形时与人机工程学有关的内容。
3、以上两个要素决定了汽车的基本骨架,也可以说是来自汽车内部对车身设计的制约。
在确定汽车外形的时候,来自外部的制约条件即空气动力学要素则显得尤为重要,特别是近年来,由于发动机功率增大,道路条件改善,汽车的速度显著提高之后。
高速行驶的汽车,肯定会受到空气阻力。
空气阻力的大小,大致与车速的平方成比例增加。
因此,必须在车身外形上下工夫,尽量减少空气阻力。
空气阻力分为由汽车横截面面积所决定的迎风阻力和由车身外形所决定的形状阻力。
除空气阻力外,还有升力问题和横风不稳定问题。
这些都是与汽车造型密切相关的空气动力学问题。
4、当然,汽车并不仅仅是根据上述三要素制造的,还要考虑其他因素。
例如,商品学要素对汽车的设计就有一定的影响。
从制造厂商的角度出发,使汽车的外形能强烈刺激顾客的购买欲是最为有利的。
但是无视或轻视前面所述的三个基本要素,单纯取媚于顾客的汽车造型是不长久的,终究要被淘汰。
汽车造型设计知识点
汽车造型设计知识点汽车造型设计是指对汽车外观进行设计的过程,旨在创造具有吸引力、独特性和辨识度的汽车外观。
下面将介绍汽车造型设计的几个知识点。
一、比例和比例感比例是指各个部分之间的大小关系以及整体与局部之间的关系。
在汽车造型设计中,比例感的把握至关重要。
优秀的汽车设计师必须具备对比例的敏锐感知和准确判断能力。
一款成功的汽车造型应具备平衡感和和谐感,整体与细节之间的比例关系要协调一致,以产生视觉上的美感。
二、动感线条和造型处理动感线条是指汽车外观上具有一定流畅感、张力和动势感的线条,这些线条可以传达出车辆在运动中的速度和稳定性。
动感线条的设计常常通过流线型的曲线和切割面来实现,以产生动力感和运动感。
此外,对于整个造型的处理也需要符合品牌的风格和定位,以呈现出独特的外观特征。
三、灯光设计灯光在汽车的造型设计中起到了至关重要的作用。
灯光设计不仅仅是为了照明和安全,还可以成为整个汽车造型的点睛之笔。
优秀的灯光设计可以为汽车增添个性和辨识度,不同的灯光形状和排列方式可以打造出不同风格的汽车外观。
四、色彩运用色彩是汽车外观设计中不可忽视的要素之一。
色彩的运用可以影响人们的情感和感知,不同的颜色可以传递不同的感觉和信息。
汽车外观颜色的选择应与车型的定位和品牌形象相匹配,同时也需要考虑适应当地的文化和市场需求。
五、人机工程学人机工程学是指将人体工程学原理应用到汽车设计中,以提升汽车的人机交互性和使用便捷性。
合理的人机工程学设计可以让驾驶员更舒适安全地操作汽车,并提供更好的使用体验。
例如,操控杆、按钮和仪表盘的布局,座椅的舒适度以及方向盘和座椅的调整功能等都需要充分考虑人体工程学原理。
六、空气动力学空气动力学是指对空气流动的研究,并将其应用到汽车的造型设计中。
通过对汽车外形的优化设计,可以降低气动阻力,提高燃油经济性和行驶稳定性。
空气动力学设计通常包括车头、车身和尾部的形状以及风阻系数的优化等。
总结:汽车造型设计涉及到多个知识点,并且需要将这些知识点有机地结合起来,以创造出独特、美观且实用的汽车外观。
第六讲汽车造型设计与空气动力学
•一、汽车的空气动力学性能
阻力名称 形状阻力
摩擦阻力 诱导阻力 干扰阻力 内部阻力
产生原因
汽车前后压 差
空气与车身 摩擦 空气升力的 纵向分力 扰动
内循环阻力
影响因素
车身表面形状 及其交接处的 转折方式 车身表面的面 积和光顺程度
气动升力
表面突起和各 种附件
冷却气流和车 内通风
一般轿车 CD=0.45
•一、汽车的空气动力学性能
PPT文档演模板
第六讲汽车造型设计与空气动力学
•一、汽车的空气动力学性能
•Audi100 C3整体优化设 计•1.设计基本形体
•多种缩比模型风洞试验。 •2.改造为基本汽车外形
•按空气动力学原理处理局部细节,如车身底部部 件、冷却系前端保险杠的缝隙等 。 •3.精制基本模型
•(4)汽车造型的整体优化阶段 •首先确定一个符合总布置要求的理想的低阻形体,在其发展 成实用化汽车的每一设计步骤中,都应严格地保证形体的光顺 性,在不改变其整体流场的条件下,使其逐步形成具有低气动 阻力系数的实车 ,称之为形体最佳化(Shape Optimization)。
PPT文档演模板
第六讲汽车造型设计与空气动力学
•(3)造型构思草图
•(4)造型彩色效果图
PPT文档演模板
第六讲汽车造型设计与空气动力学
•一、汽车的空气动力学性能
•(5)油泥模型制作或数字化构造模型-三维数字化过程 •手工缩比模型制作、全尺寸油泥模型
•(6)数控加工模型
•(7)测量与曲面光顺-数字化 •反求:Surface •曲面、结构:UG、Proe、Catia
PPT文档演模板
第六讲汽车造型设计与空气动力学
•一、汽车的空气动力学性能
空气动力学总结
汽车空气动力学总结第一章绪言一、何谓汽车空气动力学:以流体力学和空气动力学的基本原理、基本方法,分析汽车绕流汽车时的速度场、压强场,来研究作用在汽车上的气动力、气动力矩及其对汽车造型和性能影响的一门学科。
二、研究内容:1•气动力和气动力矩2.流场3.内部设备的冷却4. 散热通风和空调三、促使汽车空气动力学迅速发展的几个重要原因1.实用车速的提高2.石油危机价格暴涨3.市场竞争日趋激烈,促使各汽车厂家注重汽车性能。
四、汽车设计外形的要素1.机械工程要素:满足构件的布局,易于制造,方便维修。
2.人体工程要素:保证乘员乘坐舒适,上下方便,视野广阔,安全。
3.流体力学要素:满足流体力学方面的要求。
4.商品学要素。
五、小轿车外形的演变1、箱型汽车2、甲虫型汽车3、船型汽车4、鱼型汽车5、楔型汽车6 、未来型汽车各种型号汽车的特点六、货车和客车的造型问题第二章空气动力学基本原理大多数问题在流体力学中都有所设计,不在作详细论述,重要问题:从空气动力学的观点考察作用在汽车上的气动力和气动力矩1、摩擦阻力以边界层反映出的摩擦阻力2、压差阻力形成的原因3、诱导阻力分析诱导阻力形成的原因4、汽车坐标系的建立第三章空气动力对汽车性能的影响一、牵引力必须克服的各种阻力1、气动阻力X二C x 1W2A22、滚动阻力X R=(G -Y)f R忽略Y则X R=Gf3、爬行阻力X c G sin -4、加速阻力X A」ag汽车在水平无风的路面上等速行驶时,总阻力只有滚动阻力和气动阻力12A Gf由前述知,气动阻力系数下降,燃油消耗率下降。
第四章小轿车的气动造型一、 小轿车表面气流的流动情况1、 以阶梯背为例进行分析各部位的流动情况阻力总阻力气动阻力滚动阻力― vN e总阻力气动阻力二、 功率和车速的关系1、 气动阻力消耗的功率和车速的三次方成正比2、滚动阻力近似和速度的一次方成正比 三、气动力和最大车速的关系r T max 一Gf R 行 書 ]TA(C x -C y f R )由上式知:气动阻力系数下降,最大速度增大。
汽车空气动力学研究
汽车空气动力学研究汽车是现代工业中不可或缺的交通工具,每年全球汽车产量都在稳步增长。
在汽车发展的漫长历程中,科技不断深入,汽车空气动力学成为汽车工程领域重要的研究方向之一。
空气动力学研究通过优化汽车的空气动力特性,实现汽车的工程优化,提高汽车性能、安全性、耐久性等方面的指标。
汽车气动力学的研究内容汽车气动力学是研究汽车行驶时,车辆与空气相互作用的力学学科。
汽车气动力学主要涉及以下内容:1. 静态外观。
汽车设计外观时不能只考虑外观美观,还应当考虑各个零部件装配后形成的flow field,避免影响车辆稳定性。
2. 内部空气动力。
驾驶员通风以及气流对座椅、前挡风玻璃表面的影响也应当纳入研究范围之内。
3. 车辆纵向平衡。
车辆纵向平衡主要涉及车辆的气动力分布,主要考虑空气动力的平衡特性,减少纵向风阻能提高汽车行驶的稳定性。
4. 车辆横向控制。
包括汽车侧翻、车身倾斜等因素对车辆安全性的影响。
5. 车辆安全保护。
以人为本,消除风噪、震动等因素,为人车安全提供保障。
汽车气动力学的意义汽车气动力学研究的意义主要体现在以下三个方面。
1. 提高汽车性能。
气动性能的优化可以减小汽车的风阻,提高汽车行驶时的速度、操控性、平稳性等指标。
2. 提高汽车安全性。
汽车在行驶时受到的气动力和侧风力的影响较大,优化汽车造型和气动表面,可以降低车辆因风阻、偏移而失控的风险。
3. 降低汽车油耗。
优化汽车气动性能可以减小汽车的风阻,从而减少汽车总的能耗,达到降低油耗的目的。
汽车气动力学研究的方法几何模型流程与其他物体不同,汽车具有相当复杂的结构,其中零部件的形状和安排都不同,而零部件的尺寸和角度对于气流的影响也不同,这就为汽车气动力学研究带来了很大的挑战。
传统的汽车空气动力学研究一般是使用流体模拟软件对汽车进行零部件建模,并用实验一次次验证模拟结果的准确性,使车辆专业人员更优秀的预测分析车辆的气动性能。
通过三维CAD模型建立一套完整的汽车外形模型,并分析不同结构条件下的汽车流场分布。
汽车造型与空气动力学
汽车造型与空气动力学汽车造型设计2010-03-28 16:23:52 阅读11 评论0 字号:大中小前言:受辽宁省自然科学基金的资助,本人正在主持“汽车轻量化虚拟样机关键技术研究”项目,该项目以国内某著名汽车制造有限公司正在设计制造中的汽车为应用对象,包括汽车碰撞安全性、汽车外形的计算流体力学仿真(CFD)、面向日本用户的日系车汽车音响轻量化设计、汽车关键部件轻量化设计等若干核心子课题。
合作单位包括:大连奥托汽车、日本独资大连阿尔派汽车音响制造有限公司、大连理工大学、一汽奥迪等。
计算流体力学(CFD)是一门研究液体和气体和它周围的固体如何相互作用的学问:考虑高速气体流过形状复杂的汽车的情况。
近年来CFD的发展可以让计算机在计算机中模拟虚拟汽车--而汽车制造商不再只能依靠简单的风洞去了解气流是如何影响汽车的!制造商可以在制造金属部件之前先研究模拟数据,这会大大节省时间和资金。
从事此项研究时,所需要学习及应用到的软件:CATIA(或I-DEAS或UG或PRO/E或SOLIDWORKS)、FLUENT。
汽车的CFD仿真汽车造型与空气动力学的关系一、轿车前部车头造型对气动阻力影响因素很多,主要有:车头边角、车头形状、车头高度、发动机罩与前风窗造型、前凸起唇及前保险杠的形状与位置、进气口大小、格栅形状等。
" 车头边角的影响:车头边角主要是车头上缘边角和横向两侧边角。
" 对于非流线型车头,存在一定程度的尖锐边角会产生有利于减少气动阻力的车头负压区。
" 车头横向边角倒圆角,也有利于产生减小气动阻力的车头负压区。
" 车头形状的影响" 整体弧面车头比车头边角倒圆气动阻力小。
" 车头高度的影响" 头缘位置较低的下凸型车头气动阻力系数最小。
但不是越低越好,因为低到一定程度后,车头阻力系数不再变化。
" 车头头缘的最大离地间隙越小,则引起的气动升力越小,甚至可以产生负升力。
第四章_汽车外形设计与空气动力学
• 压差阻力(pressure drag )
在物体背流面,流束的扩展受到尾流区的限制,使流束截面较比迎流面 小,其压力较迎流面低。而尾流区的压力与相邻流体压力接近。这就使物体 在主气流方向上受到一个称为“压差阻力”的作用。 • 影响气流分离的因素 • 压力梯度
西华大学汽车与交通学院
第五章—汽车造型与空气动力学
1.空气动力学基础知识
如果我们把空气想象成薄层的话,当气流经过车身时保持流线状态, 说明空气阻力对车身的影响较小。一旦这种流线气流被打破并与车 身轮廓分离便会产生乱流,从而产生空气阻力。其实最理想的低风 阻形状是类似泪滴的圆滑造型,头部圆滑而尾部尖细。理论上,这 种泪滴造型的Cd风阻系数只有0.05。
)
V 2
2
A
令
CL X C Cd ZC lCMY
则
MY
CMY
V 2 2
Al
一般取汽车的轴距作为特征长度l 。
类似地,侧倾力矩MX、横摆力矩MZ也表示为
V 2
M X CMX
Al 2
MZ
CMZ
V 2 2
Al
汽车空气动力学
3.空气阻力
3.1 空气阻力的分类
• 形状阻力(Form Drag) • 干扰阻力(Interference Drag) • 内部阻力(Internal Flow Drag) • 诱导阻力(Induced Drag) • 摩擦阻力(Skin Friction)
压力系数定义: CP =
P-P∞
ρV ∞2/2
;
可整理为: CP
=
1-
(
V V∞
)2
CP≤1。CP=1处,V=0,是驻点。
汽车造型设计的知识点
汽车造型设计的知识点汽车造型设计是汽车设计领域中至关重要的一环,它不仅关系到汽车外观的美观与吸引力,还直接影响到驾驶体验、安全性和品牌形象等方面。
本文将介绍汽车造型设计的几个关键知识点。
1. 比例与比例感在汽车造型设计中,比例是一个非常重要的因素。
合理的比例可以使汽车外观更加协调和美观,给人以舒适和稳定的感觉。
汽车的整体比例通常由车身长度、宽度、高度以及轴距等要素确定。
此外,细节的比例感也需要被重视,例如车灯、轮毂等部件的大小和位置,都需要与整车比例相协调。
2. 流线型与空气动力学流线型外观是现代汽车设计中常见的风格之一,它不仅具有美观性,还可以提高汽车的空气动力学性能。
通过流线型设计,可以减小汽车行驶时的空气阻力,提升燃油经济性和行驶稳定性。
因此,在汽车造型设计中,合理运用流线型元素可以达到美观与功能性的双重效果。
3. 图形元素与品牌识别每个汽车品牌都希望能够通过独特的汽车外观设计来展示自己的品牌特色和个性。
在汽车造型设计中,图形元素的运用非常重要。
例如,标志性的前脸设计、车灯造型、车身线条等都可以成为品牌的识别特征。
通过图形元素的独特运用,可以使不同品牌的汽车在市场中有更好的辨识度。
4. 材料与质感汽车造型设计不仅仅关注外观形状,还需要考虑材料的选择和运用,以及质感的呈现。
不同材质的运用会给人不同的触感和视觉感受,进而影响到整体的外观品质。
例如,金属材质可以赋予汽车更高级的质感,而塑料材料则更加轻巧和经济实用。
合理选择和运用材料,可以为汽车外观设计增添新的元素和层次感。
5. 人机工程学与人性化设计汽车作为一种交通工具,其外观设计也需要考虑到驾驶员和乘客的舒适度和便利性。
人机工程学是一门研究人类与机械设备之间的协调关系的学科,它在汽车设计中有着重要的应用。
人性化的设计可以提高驾驶员的操控感和操作便利性,增加乘客的舒适感,从而提升整体的驾驶体验。
总结:汽车造型设计涉及到多个知识点,包括比例与比例感、流线型与空气动力学、图形元素与品牌识别、材料与质感以及人机工程学与人性化设计。
汽车空气动力学
重庆大学汽车系汽车空气动力学汽车空气动力学前言车身的空气动力学设计是车身设计的重要内容。
的能量克服空气阻力;的能量克服空气阻力;轿车空气动力性的差异可使空气阻力相差别30%,燃油消耗相差达12%以上。
前言三、空气动力学对汽车性能的影响Land Speed VehicleLand Speed Vehicle Land Speed VehicleLand Speed Vehicle Land Speed Vehicle Land Speed Vehicle Land Speed Vehicle Land Speed Vehicle Land Speed VehicleLand Speed Vehicle Land Speed VehicleLand Speed Vehicle前言汽车空气动力学第一章空气动力学基础知识第一章空气动力学基础知识常数),有第二节流体力学基础第二节流体力学基础吹纸条:球浮气流:发动机化油器喉管第二节流体力学基础第一章空气动力学基础知识在无粘性气流中,所受合力为零。
在粘性气流中,所受合力不为零。
第三节空气的粘滞性和气流分离现象的气流先停止流动,进而反向流动,形成涡流区,将继续流动的气流与第三节空气的粘滞性和气流分离现象三、气流分离现象在物体背流面,流束的扩展受到尾流区的限制,使流束截面较比迎流面小,其压力较迎流面低。
而尾流区的压力与相邻流体压力接近。
这就使物体压差阻力”的作用。
只有在逆压梯度条件下才会产生分离。
逆压梯度越大,越易分离。
三、气流分离现象第一章空气动力学基础知识表示为与动压力、迎风面积成正比的形式:是表征汽车空气动力特性的重要指标,它主要取决于汽车外形,也与第一章空气动力学基础知识第五节汽车空气动力与空气动力矩Al Al2汽车空气动力学C d 总值:0.45A—形状阻力(C d =0.262);B—干扰阻力(C d =0.064);C—形状阻力(C d =0.053);D—形状阻力(C d =0.031);E—形状阻力(C d =0.040)。
汽车的车身造型和空气动力学性能
汽车的车身造型和空气动力学性能汽车作为现代社会中最主要的交通工具之一,车身造型和空气动力学性能在其设计和制造中起着至关重要的作用。
本文将从汽车的车身造型和空气动力学性能两个方面论述其对汽车性能和品质的影响。
一、车身造型1.1 外观设计汽车的外观设计是一种艺术和科学的结合。
通过创新的车身造型设计,汽车制造商可以塑造出独特而吸引人的外观,使消费者在购买时产生情感认同。
同时,优秀的外观设计还能增强汽车的品牌形象和市场竞争力。
1.2 内在空间布局除了外观设计,车身造型还直接影响汽车的内在空间布局。
科学合理的车身造型能够提供更宽敞舒适的乘坐空间,并最大程度地提升乘客的舒适感。
同时,合理的车身布局还可以提供更多的储物空间和便利的操作性,从而增加汽车的实用性和便捷性。
1.3 安全性能车身造型对汽车的安全性能也有直接影响。
优秀的车身设计可以最大程度地吸收和分散碰撞能量,保护车内乘客免受损伤。
此外,合理的车身造型还能减少气动力学产生的风阻,提高车辆行驶的稳定性和操控性。
二、空气动力学性能2.1 空气阻力汽车在行驶时,与空气之间的相互作用会产生空气阻力。
合理的空气动力学设计可以减小车辆与空气的摩擦力,从而提高汽车的燃油效率。
减小空气阻力还能降低汽车的噪音和振动,提升行驶的平顺性和舒适度。
2.2 车辆稳定性空气动力学性能还与汽车的稳定性密切相关。
合理的空气动力学设计可以减小车辆在高速行驶时产生的升力,降低翻滚和侧倾的风险,从而提高汽车的稳定性和安全性。
2.3 空气动力学改进为了提高空气动力学性能,汽车制造商可以采用一系列的改进措施。
例如,优化车身曲线和倾角,减小车身的前后过渡曲线,以及增加底部护板和后扰流板等空气动力学设计元素。
这些改进措施可以降低气流阻碍和分离,减小气流湍流,提高汽车的空气动力学性能。
综上所述,汽车的车身造型和空气动力学性能是决定汽车性能和品质的重要因素。
良好的车身设计可以提升汽车的外观吸引力、内在空间布局和安全性能。
汽车空气动力学复习笔记
1、汽车空气动力学经历了哪四个阶段?它们的特点分别就是什么?答:(1)基本形状化造型阶段:直接将水流与气流中的合理外形应用到汽车上,采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。
已经开始从完整的车身来考虑空气动力学问题,但限于条件不可能更深入地考虑汽车空气动力学问题。
(2)流线形化造型阶段:提出“最小阻力的外形就是以流线形的一半构成的车身”,考虑到了地面效应,尾部气流的分离也就是气动阻力系数增加的原因。
减少气动阻力不再就是唯一目标,而就是同时综合考虑气动升力与侧风稳定性,追求更全面的气动性能。
(3)车身细部优化阶段:着重从已有汽车产品上来改进车身细部气动造型,通过各个细部造型的优化与相互动协调来优化汽车整车的气动性能。
(4)汽车造型的整体优化阶段:从一开始就十分重视汽车外形的整体气动性能,因而开发的实用车型具有优秀的空气动力学特性,整体造型更为流畅,形体更为生动,美学造型与气动造型相得益彰。
2、按基本型设计为什么得不到良好的性能呢?答:早期的汽车外形在考虑了流线形化后,气动阻力系数明显地改善了。
但当时没有认识到气流流经这种旋转体时已不再就是轴对称,因为把旋转体靠近地面,又加上了车轮及行驶系统,与单纯水滴形的流场已不再相同,造型实用性不强;没有实现“一体化”,气动阻力很大;气流在前端与翼子板处分离后,不能再附着;所以得不到良好的性能。
3、汽车行驶时,除了受到来自地面的力外,还受到其周围气流的气动力与力矩的作用。
来自地面的力取决于汽车的总重、滚动阻力与重心位置。
气动力与力矩则由行驶速度、车身外形与横摆角决定。
4、什么就是气动六分力?如何产生?对汽车动力特性有何影响?答:气动六分力分别为:气动阻力、气动升力、纵倾力矩、侧向力、横摆力矩及侧倾力矩。
(1)气动阻力:就是与汽车运动方向相反的空气力。
减小气动阻力就就是减小气动阻力系数,气动阻力系数越小,汽车动力特性越好;(2)气动升力及纵倾力矩:由于汽车车身上部与下部气流的流速不同,使车身上部与下部形成压力差,从而产生升力。
商用车汽车车身
商用车汽车车身商用车是指专门用于商业运输活动的车辆,包括货车、客车、商务车等。
而车身是商用车的重要组成部分,它决定了商用车的外观造型、载货能力以及乘客舒适性等方面。
本文将从商用车汽车车身的设计、材料选择以及创新技术等方面进行讨论。
一、商用车汽车车身的设计商用车汽车车身的设计旨在满足不同运输需求的同时,也要考虑外观美观、空气动力学、车身结构强度等因素。
设计师需要在实现商用车功能性的前提下,尽可能使车身更加符合人体工程学原理,提高驾驶员和乘客的舒适性和安全性。
1.1 外观造型设计商用车的外观造型设计需要考虑到其使用环境和品牌形象。
货车车身一般以方正为主,注重空间利用率和载货能力,而客车和商务车则更注重外观的流线型设计,以提高车辆的空气动力性能,减少燃料消耗。
1.2 空气动力学设计商用车车身的空气动力学设计可以减少空气阻力,提高燃油经济性。
一些商用车制造商会采用流线型设计,通过细致的车身线条和气流导流装置,减少车身对空气的阻力,提高车辆的行驶稳定性。
1.3 结构强度设计商用车需要具备足够的结构强度,以保证在运输过程中的安全性。
设计师会采用高强度钢材或者更先进的材料,如碳纤维复合材料,来增加车身的刚性和抗碰撞能力。
二、商用车汽车车身的材料选择商用车汽车车身的材料选择直接影响着车身的质量、强度以及成本。
常用的商用车车身材料包括钢材、铝合金、玻璃纤维增强塑料等。
2.1 钢材钢材作为一种传统的材料,具有良好的强度和刚性,能够满足商用车的载货和承载需求。
同时,钢材价格相对较低,使用成本较为可控,因此在商用车车身中得到广泛应用。
2.2 铝合金铝合金具有较低的密度和良好的抗腐蚀性能,相比于钢材更轻便耐用。
商用车采用铝合金车身可有效降低整车重量,提高燃油经济性,同时还可减少车辆磨损。
2.3 玻璃纤维增强塑料玻璃纤维增强塑料具有优异的耐腐蚀性、轻质高强度和制作灵活性。
商用车使用玻璃纤维增强塑料车身可以降低整车重量,提高燃油经济性,并且具备较好的抗腐蚀性能,延长车身的使用寿命。
空气动力学与汽车造型
20 0 2年 9 , 目
S p.2 O2 e 0
文章 编 号 :0 6—3 9 (0 2 0 10 2 3 2 0 )3一O 4 O 6—0 4
空气 动 力 学 与 汽 车 造 型 ‘
李 军 ,邓 晓 刚
( . 庆工 商 大学 机 械 系 , 1重 重庆 4 0 3 ; . 庆 大学 机 械学 院 , 庆 4O 4 ) 003 2重 重 O O4
摘
要 : 过 分 析 空 气 动 力 学对 汽 车造 型 的 影 响 , 明 空 气 动 力 学 与 汽 车 的 造 型 有 着 十 分 密 通 说
切 的 关 系。 空 气 动 力 学 的发 展 推 动 了汽 车 造 型 的 发 展 , 汽 车 造 型 的 发 展 , 过 来 又 促 进 空 气 动 而 反
究 了侧 风 的稳 定 性 。4 o年代 , 另一 位 法 国 人 L R m n 在 诱 导 阻 力 方 面 作 了 大 量 的研 究 工 作 并 提 出 了许 . o ai
多独到 的见解 。6 0年代初 , 国人 R G. . i 在进 行 了风洞 实验之 后 , 出 了轿 车外形 特征 于 阻力 系 英 . S t e 找 数之 间的关 系 , 出了一 整套估算气动阻力 系数 的方 法。7 年代 ,.e o —R l i 提 0 JSi r y k 总结 了前人 的成果 , b s 为 汽车 空气动力学 成为- f独立学科 奠定 了基础 。我 国是在 8 年代 才较 为系统地研究 汽 车空 气动力学 。 - q 0
( 1的时代 是汽 车发展 的初期 阶段 , 图 ) 技术 尚未成熟 , 在车身造 型上 没有引进空气 动力学 的原理 。
收 稿 日期 :0 2—0 20 5—1 5
空气动力学在车身造型设计中的应用及发展趋势
空气动力学在车身造型设计中的应用及发展趋势摘要随着汽车行业的高速发展,汽车的性能也随之提高,高速导致行驶中汽车的燃油消耗大大提高,也提高了驾驶中的安全隐患。
通过将空气动力学应用在汽车造型中是节能减排的重要手段。
本文主要分析国内外空气动力学在汽车造型上应用的现状,并且论述了汽车空气动力学中的主要问题,最后对汽车空气动力学未来的发展趋势进行了展望。
引言汽车行业作为我国制造业未来发展的重要趋势,现今汽车的发展,空气动力学性能成为汽车设计的首要标准。
随着人们对环境保护的愈加重视和经济的高速发展导致高昂的油价,推动着研究人员开发更加低油耗的汽车。
一个优秀空气动力学的设计,不仅可以实现超低风阻大幅度减少油耗,而且利用提高了车身的稳定性。
但是由于车辆的燃油问题,整个汽车的行业的发展正面临着窘境,我国汽车使用的内燃机热效率只能达到35%~40%。
较低的热效率导致汽油更加的短缺,所以一个符合空气动力学的造型设计已成为车企主要考虑的因素。
国内应用现状自上世纪七十年代的燃油危机,导致国内整个汽车行业开始重视汽车空气动力学的研究。
大批的车企开始投入资金进行风洞试验、数值模拟和道路试验,以通过优化汽车外形来降低燃油消耗。
虽然国内的汽车空气动力学发展较晚,但是现在的技术丝毫不逊色与国外, 汽车空气动力学已成为我国车企主要发展方向。
在国内汽车空气动力学主要应用在提高燃油经济性、侧风稳定性、发动机冷却性能和驱动性。
[1]在汽车驾驶中,驾驶员在车内会有各种各样的噪声,虽然车外的噪声经过车门的过滤会大大降低,但是发生在汽车内部的噪音,比如来自发动机怠速噪音、轮胎与地面的摩擦声、汽车高速行驶与空气的摩擦声——风噪。
其中风噪主要是由于在高速行驶时车外空气流速快速增高而产生的负压所导致的,也就是空气的挤压效应。
这时使用导流板可以有效地减少了车辆在高速行驶时产生的空气阻力,从而大大降低噪音。
汽车造型的发展和仿生学密不可分。
例如甲壳虫、鸟类,鲨鱼等,这些动物都因有独特的身体造型可以在快速的行动时受到的空气阻力较小。
汽车造型与空气动力学
汽车造型与空气动力学空气阻力众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比.如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能.据测试,一辆以每小时100公里速度行驶的汽车,发动机输出功率的百分之八十将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性,因此汽车的设计师是非常重视空气动力学.在介绍汽车性能的文章上经常出现的“空气阻力系数”就是空气动力学的专用名词之一,也是衡量现代汽车性能的参数之一.空气阻力系数汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的百分之八十以上.它的系数值是由风洞测试得出来的,与汽车上的合成气流速度形成的动压力有密切关系.当车身投影尺寸相同,车身外形的不同或车身表面处理的不同而造成空气动压值不同,其空气阻力系数也会不同.由于空气阻力与空气阻力系数成正比关系,现代汽车为了减少空气阻力就必须要考虑降低空气阻力系数.从50年代到70年代初,汽车的空气阻力系数维持在0.4至0.6之间.70年代能源危机后,各国为了进一步节约能源,降低油耗,都致力于降低空气阻力系数,现在的汽车空气阻力系数一般在0.28至0.4之间.汽车外形设计为了减少空气阻力系数,现代汽车的外形一般用圆滑流畅的曲线去消隐车身上的转折线.前围与侧围、前围、侧围与发动机罩,后围与侧围等地方均采用圆滑过渡,发动机罩向前下倾,车尾后箱盖短而高翘,后冀子板向后收缩,挡风玻璃采用大曲面玻璃,且与车顶园滑过渡,前风窗与水平面的夹角一般在25度-33度之间,侧窗与车身相平,前后灯具、门手把嵌入车体内,车身表面尽量光洁平滑,车底用平整的盖板盖住,降低整车高度等等,这些措施有助于减少空气阻力系数.在80年代初问世的德国奥迪100C型汽车就是最突出的例子,它采用了上述种种措施,其空气阻力系数只有0.3,成为当时商业代汽车外形设计的最佳典范.据试验表明,空气阻力系数每降低百分之十,燃油节省百分之七左右.曾有人对两种相同质量,相同尺寸,但具有不同空气阻力系数(分别是0.44和0.25)的汽车进行比较,以每小时88公里的时速行驶了100公里,燃油消耗后者比前者节约了1.7公升.考察汽车车形的发展史,从本世纪初的福特T型箱式车身到30年代中型的甲虫型车身,从甲虫型车身到50年代的船型车身,从船型车身到80年代的楔型车身,直到今天的汽车车身模式,每一种车身外形的出现,都不是某一时期单纯的工业设计的产物,而是伴随着现代空气动力学技术的进步而发展的.空气阻力系数在过去的汽车手册中从未出现过,今天则是介绍汽车的常用术语之一,成为人们十分关注的一种参数了.。
汽车空气动力学复习笔记
汽车空气动力学复习笔记1、汽车空气动力学经历了哪四个阶段?它们的特点分别就是什么?答:(1)基本形状化造型阶段:直接将水流与气流中的合理外形应用到汽车上,采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。
已经开始从完整的车身来考虑空气动力学问题,但限于条件不可能更深入地考虑汽车空气动力学问题。
(2)流线形化造型阶段:提出“最小阻力的外形就是以流线形的一半构成的车身”,考虑到了地面效应,尾部气流的分离也就是气动阻力系数增加的原因。
减少气动阻力不再就是唯一目标,而就是同时综合考虑气动升力与侧风稳定性,追求更全面的气动性能。
(3)车身细部优化阶段:着重从已有汽车产品上来改进车身细部气动造型,通过各个细部造型的优化与相互动协调来优化汽车整车的气动性能。
(4)汽车造型的整体优化阶段:从一开始就十分重视汽车外形的整体气动性能,因而开发的实用车型具有优秀的空气动力学特性,整体造型更为流畅,形体更为生动,美学造型与气动造型相得益彰。
2、按基本型设计为什么得不到良好的性能呢?答:早期的汽车外形在考虑了流线形化后,气动阻力系数明显地改善了。
但当时没有认识到气流流经这种旋转体时已不再就是轴对称,因为把旋转体靠近地面,又加上了车轮及行驶系统,与单纯水滴形的流场已不再相同,造型实用性不强;没有实现“一体化”,气动阻力很大;气流在前端与翼子板处分离后,不能再附着;所以得不到良好的性能。
3、汽车行驶时,除了受到来自地面的力外,还受到其周围气流的气动力与力矩的作用。
来自地面的力取决于汽车的总重、滚动阻力与重心位置。
气动力与力矩则由行驶速度、车身外形与横摆角决定。
4、什么就是气动六分力?如何产生?对汽车动力特性有何影响?答:气动六分力分别为:气动阻力、气动升力、纵倾力矩、侧向力、横摆力矩及侧倾力矩。
(1)气动阻力:就是与汽车运动方向相反的空气力。
减小气动阻力就就是减小气动阻力系数,气动阻力系数越小,汽车动力特性越好;(2)气动升力及纵倾力矩:由于汽车车身上部与下部气流的流速不同,使车身上部与下部形成压力差,从而产生升力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车造型与空气动力学汽车造型设计2010-03-28 16:23:52 阅读11 评论0 字号:大中小前言:受辽宁省自然科学基金的资助,本人正在主持“汽车轻量化虚拟样机关键技术研究”项目,该项目以国内某著名汽车制造有限公司正在设计制造中的汽车为应用对象,包括汽车碰撞安全性、汽车外形的计算流体力学仿真(CFD)、面向日本用户的日系车汽车音响轻量化设计、汽车关键部件轻量化设计等若干核心子课题。
合作单位包括:大连奥托汽车、日本独资大连阿尔派汽车音响制造有限公司、大连理工大学、一汽奥迪等。
计算流体力学(CFD)是一门研究液体和气体和它周围的固体如何相互作用的学问:考虑高速气体流过形状复杂的汽车的情况。
近年来CFD的发展可以让计算机在计算机中模拟虚拟汽车--而汽车制造商不再只能依靠简单的风洞去了解气流是如何影响汽车的!制造商可以在制造金属部件之前先研究模拟数据,这会大大节省时间和资金。
从事此项研究时,所需要学习及应用到的软件:CATIA(或I-DEAS或UG或PRO/E或SOLIDWORKS)、FLUENT。
汽车的CFD仿真汽车造型与空气动力学的关系一、轿车前部车头造型对气动阻力影响因素很多,主要有:车头边角、车头形状、车头高度、发动机罩与前风窗造型、前凸起唇及前保险杠的形状与位置、进气口大小、格栅形状等。
" 车头边角的影响:车头边角主要是车头上缘边角和横向两侧边角。
" 对于非流线型车头,存在一定程度的尖锐边角会产生有利于减少气动阻力的车头负压区。
" 车头横向边角倒圆角,也有利于产生减小气动阻力的车头负压区。
" 车头形状的影响" 整体弧面车头比车头边角倒圆气动阻力小。
" 车头高度的影响" 头缘位置较低的下凸型车头气动阻力系数最小。
但不是越低越好,因为低到一定程度后,车头阻力系数不再变化。
" 车头头缘的最大离地间隙越小,则引起的气动升力越小,甚至可以产生负升力。
" 车头下缘凸起唇的影响" 增加下缘凸起唇后,气动阻力变小。
减小的程度与唇的位置有关。
" 发动机罩与前风窗的影响" 发动机罩的三维曲率与斜度。
( 1 )曲率:发动机罩的纵向曲率越小(目前大多数采用的纵向曲率为0.02m -1 ),气动阻力越小;发动机罩的横向曲率均有利于减小气动阻力。
( 2 )斜度:发动机罩有适当的斜度(与水平面的夹角)对降低气动阻力有利,但如果斜度进一步加大对将阻效果不明显。
( 3 )发动机罩的长度与轴距之比对气动升力系数影响不大。
" 风窗的三维曲率与斜度。
( 1 )曲率:风窗玻璃纵向曲率越大越好,但不宜过大,否则导致工艺难实现、视觉视真、刮雨器的刮扫效果。
前风窗玻璃的横向曲率均有利于减小气动阻力。
( 2 )斜度:前风窗玻璃的斜度(与垂直面的夹角)<=30 0 时,降阻效果不明显,但过大的斜度,使视觉效果和舒适性降低。
前风窗斜度=48 0 时,发动机罩与前风窗凹处会出现一个明显的压力降,因而造型时应避免这个角度。
(3) 前风挡玻璃的倾斜角度(与垂直面的夹角)越大,气动升力系数略有增加。
" 发动机罩与前风窗的夹角与结合部位的细部结构。
6. 汽车前端形状" 前凸且高不仅会产生较大的阻力而且还将会在车头上部形成较大的局部负升力区。
" 具有较大倾斜角度的车头可以达到减小气动升力乃至产生负升力的效果。
二、轿车客舱" A 柱" 前立柱上的凹槽、小台面和细棱角,处理不当,将导致较大的气动阻力和较严重的气动噪声和测窗污染。
应设计成圆滑过渡的外形。
" 侧壁" 轿车侧壁略有外鼓,将增加气动阻力,但有利于降低气动阻力系数。
但外鼓系数(外鼓尺寸与跨度之比)应避免在0.02~0.04 之间。
" 顶盖" 综合气动阻力系数、气动阻力、工艺、刚度、强度等方面的因素,顶盖的上扰系数(上鼓尺寸与跨度之比)应在0.06 以下。
4. 客舱长度" 对阶背式轿车而言,客舱长度与轴距之比由0.93 增至1.17 ,会较大程度的减小气动升力系数。
三、轿车尾部车身尾部造型对气动阻力的影响主要因素有:后风窗的斜度与三维曲率、尾部造型式样、车尾高度、尾部横向收缩。
" 后风窗斜度" 后风窗斜度(后风窗弦线与水平线的夹角)对气动阻力影响较大,对斜背式轿车,斜度等于30 0 时,阻力系数最大;斜度小于30 0 时,阻力系数较小。
" 后挡风玻璃的倾斜角控制在25 度之内。
" 尾窗与车顶的夹角介于28 至32 度时,车尾将介于稳定和不稳定的边缘。
2. 尾部造型式样" 典型的尾部造型有斜背式、阶背式、方(平)背式。
由于具体后部造型与气流状态的复杂性,一般很难确切的断言或部造型式样的优劣。
但从理论上说,小斜背(角度小于30 0 )具有较小的气动阻力系数。
3. 车尾高度" 流线型车尾的轿车存在最佳车尾高度,此状态下,气动阻力系数最小。
此高度需要根据具体车型以及结构要求而定。
" 后车体的横向收缩" 一定程度的后车体的横向收缩对降低气动阻力系数有益,但过多的收缩会引起气动阻力系数的增加。
收缩程度受具体车型而定。
5. 车尾形状" 车尾最大离地间隙越大,车尾底部的流线越不明显,则气动升力越小,甚至可以产生负升力。
四、轿车底部" 车身底部离地高度" 一般虽车身底部离地高度的增加气动阻力系数上升,但高度过小,将增加气动升力,影响操作稳定性及制动性。
另外离地高度的确定还要考虑汽车的通过性与汽车中心高度。
" 车身底部纵倾角" 车身底部纵倾角对气动阻力影响较大,纵倾角越大,气动阻力系数越大,故底板应尽量具有负的纵倾角。
" 将汽车底板做成前底后高的形状对减小气动升力有用。
" 车身底板的曲率" 纵向曲率:适度的纵向曲率可以减小压差阻力。
" 横向曲率:适度的横向曲率可以减小气动升力。
最佳曲率视具体车型而定。
" 扰流器对气动阻力的影响富康是典型的半水滴造型,这样的造型符合当今汽车设计的最新潮流,充分运用了空气动力学的最新成果。
经过严格的风洞试验,富康的风阻系数仅为0.31。
风阻系数在过去的轿车手册中从未出现过,今天则是介绍轿车的常用术语之一,在国外已经成为人们十分关注的一种参数了,它是指汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生的纵向,侧向和垂直等三个方向的空气动力量,它的系数值是由风洞测试得出来的。
汽车行驶速度越快其所受到的空气阻力越大,空气阻力与汽车速度的平方成正比。
如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。
据测试,一辆以每小时100公里速度行驶的汽车,发动机输出功率的百分之八十将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。
雪铁龙ZX系列的风阻系数只有0.305,是普及型汽车里面最优秀的,而如今的帕萨特B5德国版已达到0.28。
据试验表明,空气阻力系数每降低百分之十,燃油节省百分之七左右。
曾有人对两种相同质量,相同尺寸,但具有不同空气阻力系数(分别是0.44和0.25)的轿车进行比较,以每小时88公里的时速行驶了100公里,燃油消耗后者比前者节约了1.7公升。
因此,当你决定选择一种经济实用的私家车时,这也是不可或缺的考量因素。
当然,并不是所有的轿车都会公布自身的风阻系数,除非它在这方面很优秀。
汽车空气动力学知识阻力和升力阻力一辆轿车的气动效率是由其阻力系数(Cd)所决定的。
而阻力系数与面积无关,它仅仅是反映出物体的形状对于气动阻力的影响。
理论上来讲,一个圆形的平板的阻力系数为1. 0,但是如果考虑到其边缘周围的湍流效应,它的阻力系数将会变为1.2左右。
气动效率最高的形状是水滴,它的阻力系数只有0.05。
不过,我们不可能制造出一辆水滴形状的轿车。
一辆典型的轿车的阻力系数大致为0.30。
阻力的大小是与阻力系数(也叫牵引系数、风阻系数)、正面接触面积和车速的平方成比例的。
你会发现一辆时速120英里的轿车所遇到的阻力是一辆时速60英里的轿车的四倍。
你还可以发现阻力对于最高时速的影响。
如果我们不改变一辆Testarossa的形状,而将其最高时速从180英里提高到Diablo的 200英里的话,我们需要将其最大输出功率从390马力提升到535马力。
如果我们宁愿把时间和资金花在风洞的研究上,只要将其阻力系数从0.36降低到0.29就能够达到同样的效果。
斜背式车身在20世纪60年代,赛车工程师们开始认真对待空气动力学。
他们发现如果他们将轿车后背的斜度减小到20度或更小的话,气流就会非常平稳地流过车顶线,从而大大减小了阻力。
他们将这种设计命名为“斜背式车身”。
这种关注的结果是很多赛车都增加了一个比较夸张的长长的尾翼,并把后背的高度降低了,比如这里展示的1978年的935 Moby Dick。
对于一辆三厢式轿车,气流会直接从车顶线的尾部离开轿车。
而后挡风玻璃的突然下降会在周围的区域形成低压,这就吸引了一些气流重新流入该区域进行补充,并因此形成了湍流。
而湍流总是会损害到阻力系数。
然而,这依然比可能出现在三厢式车身和斜背式车身之间的一些情况要好。
如果后挡风玻璃的斜度为30~35度的话,气流就会变得非常不稳定,而这将很损害到高速行驶时车辆的稳定性。
在过去,轿车厂商对此知之甚少,所以生产了很多类似的轿车。
升力另一个重要的空气动力学因素是升力。
由于轿车顶部的气流移动的距离要长于轿车底部的气流,所以前者的速度会比后者快。
根据柏努利(瑞士物理学家)原理,速度差会在上层表面产生一个净负压,我们将其称为“升力”。
像阻力一样,升力也是与面积(不过是表面积而不是正面面积)、车速的平方和升力系数(Cl)成比例的,而升力系数是由形状决定的。
在高速行驶时,升力可能会被提升到一个足够高的程度,从而让轿车变得很不稳定。
升力对于车尾的影响更为重要,这一点很好理解,因为后挡风玻璃的周围存在一个低压。
如果升力没有被充分抵消,后轮就很容易发生滑移,这对于一辆以时速160英里飞驰的轿车是很危险的。
就这个方面来讲,斜背式车身是非常不利的,因为它与气流接触的表面积非常大。
看起来良好的阻力和良好的升力是互相排斥的,你好像不可能同时拥有它们。
不过,由于过去我们对空气动力学进行了更多的研究,所以我们还是发现了一些办法,可以解决同时拥有两者的问题……空气动力学辅助设备尾翼(后扰流器)在20世纪60年代早期,的工程师们发现通过在轿车的尾部增加一个气翼(我们简单地将其称为“尾翼”),可以大幅度减小升力甚至产生一个完全向下的压力。