全国高中数学联赛模拟试题6
历年全国高中数学联赛试题及答案76套题
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
高中数学竞赛模拟试题(含详细答案)
高中数学竞赛试题(模拟)一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知函数f(x)是R 上的奇函数,g(x)是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( )A .1292-+-x x B .1292-+x xC .1292+--x xD . 1292+-x x2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=x x cos sin ⋅ ④ xxy cos sin = 其中在)2,0(π上为单调增函数的是 ( )A .①B .②C .①和③D .②和④3.方程x xx x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素的平方和等于 ( ) A .0 B .1C .2D .44.已知点P(x,y)满足)(4)sin 4()cos 4(22R y x ∈=-+-θθθ,则点P(x,y)所在区域的面积为 A .36π B .32π C .20π D .16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为 ( ) A .9 B .12 C .15 D .186.已知数列{n a }为等差数列,且S 5=28,S 10=36,则S 15等于 ( ) A .80B .40C .24D .-487.已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是 ( )A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-8.过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 9.设7log ,1sin ,82.035.0===z y x ,则x 、y 、z 的大小关系为 ( )A .x<y<zB .y<z<xC .z<x<yD . z<y<x10.如果一元二次方程09)3(222=+---b x a x 中,a 、b 分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( )A .181 B .91 C .61 D .1813 二、填空题(本大题共4个小题,每小题8分,共32分)11.设P 是椭圆191622=+y x 上异于长轴端点的任意一点,F 1、F 2分别是其左、右焦点,O 为中心,则=+⋅221||||||OP PF PF ___________.12.已知△ABC 中,==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC = ____________________.13.从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3534,则n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分) 15.对于函数f(x),若f(x)=x,则称x 为f(x)的“不动点”,若x x f f =))((,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即x x f x A ==)(|{}})]([|{x x f f x B ==.(1). 求证:A ⊆B(2).若),(1)(2R x R a ax x f ∈∈-=,且φ≠=B A ,求实数a 的取值范围.16.某制衣车间有A 、B 、C 、D 共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?17.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 nnn n a a 111+≥+18.在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为257. (1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A 作直线与(1)中的曲线交于M 、N 两点,求||||BN BM ⋅的最小值的集合.19.已知三棱锥O-ABC 的三条侧棱OA 、OB 、OC 两两垂直,P 是底面△ABC 内的任一点,OP 与三侧面所成的角分别为α、β、γ. 求证:33arcsin32≤++<γβαπ参考答案一、选择题: ADCBC CCCBA 二、填空题:11. 25 12.13. 4 14. 1 三、解答题:15.证明(1).若A=φ,则A ⊆B 显然成立;若A ≠φ,设t ∈A ,则f(t)=t,f(f(t))=f(t)=t,即t ∈B,从而 A ⊆B. 解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠φ,知 a=0 或 ⎩⎨⎧≥+=∆≠0410a a 即 41-≥aB 中元素是方程 x ax a =--1)1(22 即 0122243=-+--a x x a x a 的实根 由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为 0)1)(1(222=+-+--a ax x a x ax因此,要A=B ,即要方程 0122=+-+a ax x a ① 要么没有实根,要么实根是方程 012=--x ax ② 的根. 若①没有实根,则0)1(4222<--=∆a a a ,由此解得 43<a 若①有实根且①的实根是②的实根,则由②有 a ax x a +=22,代入①有 2ax+1=0.由此解得 a x 21-=,再代入②得,012141=-+a a 由此解得 43=a . 故 a 的取值范围是 ]43,41[-16.解:A 、B 、C 、D 四个组每天生产上衣与裤子的数量比分别是:76,117,129,108,且11712910876>>> ① 只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多.由①知D 组做上衣效率最高,C 组做裤子效率最高,于是,设A 组做x 天上衣,其余(7-x)天做裤子;B 组做y 天上衣,其余(7-y)天做裤子;D 组做7天上衣,C 组做7天裤子.则四个组7天共生产上衣 6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条)依题意,有 42+8x+9y=77+10(7-x)+12(7-y),即 769x y -=. 令 μ= 42+8x+9y=42+8x+9(769x -)=123+x 72 因为 0≤x ≤7,所以,当x=7时,此时y=3, μ取得最大值,即μmax =125.因此,安排A 、D 组都做7天上衣,C 组做7天裤子,B 组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111 =+=+-+k a aa a k k k k 于是 ∑∑=+-=++=nk k k nk k k a aa a n 11111由算术-几何平均值不等式,可得nn n a a a a a a 132211+⋅⋅⋅≥ +n n n a aa a a a 113120+-⋅⋅⋅ 注意到 110==a a ,可知nn n nn a a a 11111+++≥,即 nnn n a a 111+≥+18.解:(1) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 |CA|+|CB|=2a(a>3)为定值,所以C 点的轨迹是以A 、B 为焦点的椭圆,所以焦距 2c=|AB|=6.因为 1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥,由题意得 25,25718122==-a a. 此时,|PA|=|PB|,P 点坐标为 P(0,±4).所以C 点的轨迹方程为)0(1162522≠=+y y x (2) 不妨设A 点坐标为A(-3,0),M(x 1,y 1),N(x 2,y 2).当直线MN 的倾斜角不为900时,设其方程为y=k(x+3) 代入椭圆方程化简,得 0)1169(83)16251(2222=-+++k x k x k 显然有 △≥0, 所以 222122212516400225,2516150k k x x k k x x +-=+-=+而由椭圆第二定义可得25165311442553125251614453125251614481251645025259)(325)535)(535(||||22222222212121+-⋅+=+-+=+-+++=++-=--=⋅k k kk k k k k x x x x x x BN BM只要考虑251653114422+-k k 的最小值,即考虑2516531144251612++-k 取最小值,显然. 当k=0时,||||⋅取最小值16.当直线MN 的倾斜角为900时,x 1=x 2=-3,得 16)534(||||2>=⋅BN BM 但)0(1162522≠=+y y x ,故0≠k ,这样的M 、N 不存在,即||||⋅的最小值的集合为空集.19.证明:由 题意可得 1sin sin sin 222=++γβα,且α、β、 )2,0(πγ∈所以 )cos()cos()2cos 2(cos 21sin sin 1sin 222γβγβγβγβα-+=+=--= 因为 )cos()cos(γβγβ+>-,所以 )](2[sin )(cos sin 222γβπγβα+-=+>当2πγβ≥+时,2πγβα>++.当2πγβ<+时,)(2γβπα+->,同样有 2πγβα>++故 2πγβα>++另一方面,不妨设 γβα≥≥,则 33sin ,33sin ≤≥γα 令 βγα2211sin )33(1sin ,33sin --==, 则 1sin sin sin12212=++γβα)cos()cos()cos()cos(sin 11112γαγαγαγαβ-+=-+=因为 γαγα-≤-11,所以 )cos()cos(11γαγα-≥- 所以 )cos()cos(11γαγα+≥+ 所以 11γαγα+≤+如果运用调整法,只要α、β、γ不全相等,总可通过调整,使111γβα++增大. 所以,当α=β=γ=33arcsin时,α+β+γ取最大值 333arcsin . 综上可知,33arcsin32≤++<γβαπ。
全国高中数学联赛模拟试06
全国高中数学联赛模拟试题(六)第一试一、 选择题:(每小题6分;共36分)1、在复平面上;非零复数z 1、z 2在以i 对应的点为圆心;1为半径的圆上;21z z ⋅的实部为零;arg z 1=6π;则z 2= (A )i 2323+-(B )i 2323- (C )i 2323+- (D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正;则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫ ⎝⎛+∞,23(C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,2385,21(D )⎪⎭⎫ ⎝⎛+∞,213、已知双曲线过点M (-2,4);N (4,4);它的一个焦点为F 1(1,0);则另一个焦点F 2的轨迹方程是(A )()()116425122=-+-y x (y ≠0)或x =1(y ≠0)(B )()()125416122=-+-y x (x ≠0)或x =1(y ≠0)(C )()()116125422=-+-y x (y ≠0)或y =1(x ≠0)(D )()()125116422=-+-y x (x ≠0)或y =1(x ≠0)4、已知正实数a 、b 满足a +b =1;则b a M 2112+++=的整数部分是(A )1(B )2(C )3(D )45、一条笔直的大街宽是40米;一条人行道穿过这条大街;并与大街成某一角度;人行道的宽度是15米;长度是50米;则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米6、一条铁路原有m 个车站;为适应客运需要新增加n 个车站(n >1);则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票);那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分;共36分)1、长方形ABCD 的长AB 是宽BC 的32倍;把它折成无底的正三棱柱;使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ;则折后截面AMN 与底面AFH 所成的角是 .2、在△ABC 中;a 、b 、c 是角A 、B 、C 的对边;且满足a 2+b 2=2c 2;则角C 的最大值是 .3、从盛满a 升(a >1)纯酒精的容器里倒出1升;然后填满水;再倒出1升混合溶液后又用水填满;如此继续下去.则第n 次操作后溶液的浓度是 .4、已知函数f (x )与g (x )的定义域均为非负实数集;对任意x ≥0;规定f (x )*g (x )=min{f (x ),g (x )}.若f (x )=3-x ;g (x )=52+x ;则f (x )*g (x )的最大值为 .5、从1到100的自然数中;每次取出不同的两个数;使它们的和大于100;则可有不同的取法.6、若实数a >0;则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是 .三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q 两点;O 为坐标原点;且OP ⊥OQ .求证:2222222BA b a C b a ++=.五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部;共有190名售货员;计划全商场日营业额(指每日卖出商品的总金额)为60万元;根据经验;各部商品每1万元营业额所需售货员人数如表1;每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部;同时适当安排各部的营业员人数;若商场预计每日的总利润为c (万元)且满足19≤c ≤19.7;又已知商场分配给经营部的日营业额均为正整数万元;问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4 家电部 2 表2 各部每1万元营业额所得利润表部门 利润 百货部 服装部 家电部第二试一、 (50分)矩形ABCD 的边AD =·AB ;以AB 为直径在矩形之外作半圆;在半圆上任取不同于A 、B 的一点P ;连PC 、PD 交AB 于E 、F ;若AE 2+BF 2=AB 2;试求正实数的值.二、 (50分)若a i ∈R +(i =1,2,…,n );∑==ni iaS 1;且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211.三、 (50分)无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||;而0≤c 1≤1. (1)证明:仅当c 1是有理数时;数列自某一项开始成为周期数列.(2)存在多少个不同的c 1值;使得数列自某项之后以T 为周期(对于每个T =2,3,…)?参考答案 第一试二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④.三、证略.四、证略.五、8;23;29或10;20;30(万元);对应40;92;58或50;80;60(人).第二试 一、22=λ;二、证略.三、 (1)证略. (2)无穷个.。
全国高中数学联赛省级预赛模拟试题
全国高中数学联赛省级预赛模拟试题第一卷〔选择题 共60分〕 参考公式1.三角函数的积化与差公式sin α•cos β=21[sin(α+β)+sin(α-β)],cos α•sin β=21[sin(α+β)-sin(α-β)],cos α•cos β=21[cos(α+β)+cos(α-β)],sin α•sin β=21[cos(α+β)-cos(α-β)].2.球的体积公式V 球=34πR 3〔R 为球的半径〕。
一、选择题〔每题5分,共60分〕1.设在xOy 平面上,0<y ≤x 2,0≤x ≤1所围成图形的面积为31。
那么集合M={(x,y)|x ≤|y|}, N={(x,y)|x ≥y 2| 的交集M ∩N 所表示的图形面积为 A .32B .31 C .1 D .61 2.在四面体ABCD 中,设AB=1,CD=3,直线AB 及直线CD 的距离为2,夹角为3。
那么四面体ABCD 的体积等于 A .23 B .31 C .21D .33 3.有10个不同的球,其中,2个红球、5个黄球、3个白球。
假设取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A .90B .100C .110D .1204.在ΔABC 中,假设(sinA+sinB)(cosA+cosB)=2sinC ,那么 A .ΔABC 是等腰三角形,但不一定是直角三角形 B .ΔABC 是直角三角形,但不一定是等腰三角形 C .ΔABC 既不是等腰三角形,也不是直角三角形 D .ΔABC 既是等腰三角形,也是直角三角形5.f(x)=3x 2-x+4, f(g(x))=3x 4+18x 3+50x 2+69x+48.那么,整系数多项式函数g(x)的各项系数与为A .8B .9C .10D .116.设0<x<1, a,b 为正常数。
那么的最小值是A .4abB .(a+b)2C .(a-b)2D .2(a 2+b 2)7.设a,b>0,且a 2021+b 2021=a 2006+b 2006。
全国高中数学联赛模拟试卷试题.doc
全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。
全国高中数学联赛预赛试题及答案
2012年全国高中数学联合竞赛(四川初赛)一、单项选择题(本大题共6个小题,每小题5分,共30分)1、设集合{}2|560S x x x =--<,{}|2|3T x x =+≤,则S T ⋂=( ) A 、{|51}x x -≤<- B 、{|55}x x -≤< C 、{|11}x x -<≤ D 、{|15}x x ≤< 2、正方体1111ABCD A B C D -中1BC 与截面11BB D D 所成的角是( ) A 、6π B 、4π C 、3π D 、2π3、已知2()23f x x x =-+,()1g x kx =-,则“||2k ≤”是“()()f x g x ≥在R 上恒成立”的( )A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件 4、设正三角形1∆的面积为1S ,作1∆的内切圆,再作内切圆的内接正三角形,设为2∆,面积为2S ,如此下去作一系列的正三角形34,,∆∆,其面积相应为34,,S S ,设11S =,12n n T S S S =+++,则lim n n T →+∞=( )A 、65 B 、43 C 、32D 、2 5、设抛物线24y x =的焦点为F ,顶点为O ,M 是抛物线上的动点,则||||MO MF 的最大值为( )ABC 、43D6、设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为( )A 、rB 、r 2C 、r 312D 、r 315二、填空题(本大题共6个小题,每小题5分,共30分)7、如图,正方形ABCD 的边长为3,E 为DC 的 中点,AE 与BD 相交于F ,则FD DE ⋅的值是 .8、261()x x x+-的展开式中的常数项是 .(用具体数字作答)9、设等比数列{}n a 的前n 项和为n S ,满足2(1)4n n a S +=,则20S 的值为 .10、不超过2012的只有三个正因数的正整数个数为 .11、已知锐角,A B 满足tan()2tan A B A +=,则tan B 的最大值是 . 12、从1,2,3,4,5组成的数字不重复的五位数中,任取一个五位数abcde ,满足条件“a b c d e <><>”的概率是 .三、解答题(本大题共4个小题,每小题20分,共80分)13、设函数()sin 1f x x x =++, (I )求函数()f x 在[0,]2π上的最大值与最小值;(II )若实数c b a ,,使得1)()(=-+c x bf x af 对任意R x ∈恒成立,求acb cos 的值.14、已知,,a b c R +∈,满足()1abc a b c ++=,(I )求()()S a c b c =++的最小值; (II )当S 取最小值时,求c 的最大值.15、直线1y kx =+与双曲线221x y -=的左支交于A 、B 两点,直线l 经过点(2,0)-和AB 的中点,求直线l 在y 轴的截距b 的取值范围.16、设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,3,n =).(I )求数列{}n a 的通项公式;(II )求证:对任何正整数(2)n n ≥,都有21(2)n a n ≤+成立; (III )设数列{}n a 的前n 项和为n S ,求证:对任意正整数n ,都有716n S <成立.2012年全国高中数学联合竞赛(四川初赛)参考解答一、选择题(本大题共6个小题,每小题5分,共30分)1、C2、A3、A4、B5、B6、D 二、填空题(本大题共6个小题,每小题5分,共30分)7、32-8、5- 9、0 10、14 1112、215三、解答题(本大题共4个小题,每小题20分,共80分) 13、解:(I )由条件知()2sin()13f x x π=++, (5分)由02x π≤≤知,5336x πππ≤+≤,于是1sin()123x π≤+≤所以2x π=时,()f x 有最小值12122⨯+=;当6x π=时,()f x 有最大值2113⨯+=. (10分)(II )由条件可知2sin()2sin()133a xb xc a b ππ+++-++=对任意的x R ∈恒成立, ∴2sin()2sin()cos 2cos()sin (1)0333a xb xc b x c a b πππ+++⋅-+⋅++-= ∴2(cos )sin()2sin cos()(1)033a b c x b c x a b ππ+⋅+-⋅+++-=∴ cos 0sin 010a b c b c a b +=⎧⎪=⎨⎪+-=⎩, (15分)由sin 0b c =知0b =或sin 0c =。
解析版-2024年全国高中数学联赛福建赛区预赛试卷
2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。
2023年全国高中数学联赛江西省预赛数学试题及参考答案
.
解:由边长为1正六面体被一个平面所截的面积最大的平面是边长为
6⋅ ⋅
√
⋅
√
=
√
的正六边形,故最大面积为
.
6、若锐角, , 满足 + + = 2,则
是
√
.
1 / 5
+
+的最小值解:由111
+
+
填空题(每小题 7 分,共 56 分)
一、
1、用 12 种不同的动物图案制作成一些动物卡片,使得每张卡片上都有其中的 4 种不同的动物图案,
且制作过程中要求任取的两张卡片有且仅有一种动物是相同的,则最多能制作的卡片数量为
.
解:将 12 种不同的动物图案编号为 1,2,…,12,如果考虑相同的一种动物是 1 号,最多有 3 种,
2023 年全国高中数学联赛江西省预赛试题
一、
(考试时间:2023 年 5 月 21 日上午 9 : 30 12 : 00 )
填空题(每小题 7 分,共 56 分)
1 、用 12 种不同的动物图案制作成一些动物卡片,使得每张卡片上都有其中的 4 种不同的动物图案,
且制作过程中要求任取的两张卡片有且仅有一种动物是相同的,则最多能制作的卡片数量为
2
2
4
4
sin A cos B sin B cos C sin C cos 4 A
2
.
7 、设 A, B 为双曲线 W :
x2 y2
1 与实轴的交点, P (0,1) 为双曲线外一点, PA, PB 分别交双曲线于另
2023_年全国高中数学联赛(四川预赛)试题及解析
2023年全国高中数学联赛(四川预赛)试题及解析张㊀君(四川省温江中学ꎬ四川成都611130)摘㊀要:文章给出2023年全国高中数学联赛(四川预赛)试题及解析ꎬ部分试题给出一题多解ꎬ解答题给出了有别于参考答案的精彩解法.关键词:高中数学联赛ꎻ四川预赛ꎻ数学竞赛试题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0088-05收稿日期:2023-07-05作者简介:张君(1978.10-)ꎬ男ꎬ四川省宣汉人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2023年全国高中数学联赛(四川预赛)试题ꎬ全卷共11道题(满分120分)ꎬ其中8道填空题(每小题8分)ꎬ3道解答题(第9题16分ꎬ第11㊁12题各20分).笔者参考2022年四川预赛试题及其解析[1]ꎬ对2023年四川预赛每道题都进行了分析和研究ꎬ逐个给出解析.1试题内容简析该试题涉及函数性质(第1题)ꎬ平面向量(第2题)ꎬ二项式定理(第3题)ꎬ函数与导数(第4题)ꎬ数论(第5题)ꎬ立体几何(第6题)ꎬ平面解析几何(第9题)ꎬ三角函数与三角变换(第7ꎬ8题)ꎬ函数与数列(第5ꎬ10题)ꎬ函数与不等式(第8ꎬ11题).2试题及其解析题1㊀已知f(x)是定义在R上的函数ꎬ且对任意实数xꎬ均有2f(x)+fx2-1()=1ꎬ则f(2)的值为.解析㊀令x=1ꎬ得2f(1)+f0()=1.①令x=-1ꎬ得2f(-1)+f0()=1.②令x=0ꎬ得2f(0)+f-1()=1.③由①②③解得f(1)=13.令x=2ꎬ得2f(2)+f1()=1.解得f(2)=13.题2㊀设平面向量aꎬb满足:|a|=1ꎬ|b|=2ꎬaʅb.点OꎬAꎬB为平面上的三点ꎬ满足OAң=2a+bꎬOBң=-3a+2bꎬ则ΔAOB的面积为.解析㊀由aʅb建立以O为原点ꎬ分别以向量aꎬb的方向为正方向建立平面直角坐标系ꎬ因为|a|=1ꎬ|b|=2ꎬ所以a=(1ꎬ0)ꎬb=(0ꎬ2).所以OAң=2a+b=(2ꎬ2)ꎬOBң=-3a+2ba=(-3ꎬ4).即A(2ꎬ2)ꎬB(-3ꎬ4).从而求得SΔAOB=7.题3㊀在(-xy+2x+3y-6)6的展开式中ꎬx4y3的系数为.(用具体数字作答)解析㊀因为(-xy+2x+3y-6)6=(y-2)6(x+3)6ꎬ所以x4y3的系数为C36(-2)3 C26 32=-21600.题4㊀设P(0ꎬa)是y轴上异于原点的任意一点ꎬ过点P且平行于x轴的直线与曲线y=1alnx交于点Qꎬ曲线y=1alnx在点Q处的切线交y轴于点Rꎬ则ΔPQR的面积的最小值为.解析㊀由题意知ꎬa=1alnxꎬ解得x=ea2.所以Q(ea2ꎬa).因为yᶄ=1axꎬ所以切线RQ的方程为y-a=1aea2(x-ea2).令x=0ꎬ得R(0ꎬa-1a).所以SΔPRQ=12PQ PR=12aea2.令f(a)=12aea2(a>0)ꎬ所以fᶄ(a)=12ea2(2-a-2).当aɪ0ꎬ22æèçöø÷时ꎬfᶄ(a)<0ꎬf(a)单调递减ꎻ当aɪ22ꎬ+ɕæèçöø÷时ꎬfᶄ(a)>0ꎬf(a)单调递增[2].㊀所以f(a)min=f(22)=2e2.题5㊀㊀设集合I={0ꎬ1ꎬ2ꎬ ꎬ22}ꎬA={(aꎬbꎬcꎬd)|aꎬbꎬcꎬdɪIꎬa+dʉ1(mod23)ꎬ且ad-bcʉ0(mod23)}ꎬ则集合A中元素的个数为.解析㊀若aꎬd中有0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有0ꎬ1()和1ꎬ0()两种情况.此时ad=0ꎬ且ad-bcʉ0(mod23)ꎬ则bꎬc中有0ꎬbꎬc()有45种情况.所以ꎬ此类共有2ˑ45=90种情况.若aꎬd中无0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有2ꎬ22()ꎬ3ꎬ21()ꎬ ꎬ22ꎬ2()共21种情况.因为ad-bcʉ0(mod23)ꎬ注意到km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})对每一个确定的kꎬkm(mɪ1ꎬ2ꎬ ꎬ22{})的每两个值对于mod23不同余ꎬ即与1ꎬ2ꎬ ꎬ22关于mod23同余的值各有一个ꎬ则km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})的值与1ꎬ2ꎬ ꎬ22关于mod23同余的各有22个.则对于每一个aꎬd()ꎬbꎬc()有22种情况.故此类共有21ˑ22=462种情况.㊀所以ꎬ集合A中元素的个数为90+462=552.题6㊀在直三棱柱ABC-A1B1C1中ꎬAB=1ꎬBC=CC1=3ꎬøABC=90ʎꎬ点P是平面ABC上一动点ꎬ则A1P+12PC的最小值为.解析㊀易知ꎬ点P在线段AC上时ꎬA1P+12PC才可能最小.由已知可求得AC=2ꎬAA1=3.设øAA1P=αꎬ则αɪ0ꎬarctan23æèçöø÷ꎬA1P=3cosαꎬAP=3tanα.则A1P+12PC=3cosα+2-3tanα2=1+32-sinα()2cosα.设t=2-sinαcosαꎬ则tcosα+sinα=2.于是t2+1ȡ2ꎬtȡ3.则A1P+12PCȡ52.当t=3时ꎬ3cosα+sinα=2ꎬ则sinα+π3æèçöø÷=1ꎬ解得α=π6.故当α=π6时ꎬA1P+12PC取最小值52.题7㊀如图1ꎬ将函数y=cosx+1(0ɤxɤ2π)的图象Γ画在矩形OABC内ꎬ将AB与OC重合围成一个圆柱ꎬ则曲线Γ在圆柱表面形成的曲线的离心率为.解析㊀如图2ꎬ设图1中OAꎬCB的中点分别为EꎬDꎬ则围成圆柱后AEꎬBD分别为上㊁下底面的直径ꎬ易知AE=2.设AE的中点为GꎬP为曲线上一点ꎬ作PQʅ底面ꎬ垂足为点QꎬQMʅAE于点MꎬMNʊAB交BE于点N.㊀图1㊀函数y=cosx+1图象㊀㊀㊀㊀㊀图2㊀圆柱设AQ(=xꎬ则PQ=1+cosxꎬøAGQ=xꎬøAEQ=x2.所以EQ=AEcosøAEQ=2cosx2ꎬME=QEcosøAEQ=2cos2x2.易知әNME为等腰直角三角形ꎬ则MN=ME=2cos2x2=1+cosx.所以PQ=NMꎬ则四边形PQMN为矩形.所以PNʅNMꎬ则PNʅ平面ABDEꎬ于是点P在平面ABDE内的投影为点N.所以曲线在平面ABDE内的投影为线段BEꎬ于是曲线为过直线BE且垂直于平面ABDE的平面截圆柱侧面所得曲线[3].该曲线为椭圆ꎬ长轴为BE=22ꎬ短轴长等于底面直径2ꎬ所以离心率为22.题8㊀设AꎬBꎬC是ΔABC的三个内角ꎬ则3cosA+2cos2B+cos3C的取值范围为.解析㊀设M=3cosA+2cos2B+cos3C.易知M<6ꎬ当Aң0ꎬBңπꎬCң0时ꎬMң6.当Cң0时ꎬM=-3cosB+C()+2cos2B+cos3Cң-3cosB+2cos2B+1ꎬ又-3cosB+2cos2B+1=4cos2B-3cosB-1=4cosB-38æèçöø÷2-2516ꎬ所以ꎬ当Cң0ꎬB=arccos38πꎬAңπ-arccos38时ꎬMң-2516.下面证明M>-2516.当Aɤπ3时ꎬMȡ3cosπ3-3=-32>-2516.当A>π3时ꎬ0<B<2π3ꎬ0<C<2π3ꎬ0<B+C<2π3.此时ꎬA不是AꎬBꎬC中最小的.(1)若C最小ꎬ则C<AꎬCɤB.此时cosA+cosB-cosC+cos2Cȡ0ꎬ证明如下:cosA+cosB-cosC+cos2C=-cosB+C()-cosC+cosB+cos2C=-2cosB+2C2cosB2+2cosB+2C2cosB-2C2=4cosB+2C2sinB-C2sinC2.因为B+2C2ꎬB-C2ꎬC2ɪ0ꎬπ2[öø÷ꎬ所以cosA+cosB-cosC+cos2Cȡ0成立.所以3cosA+2cos2B+cos3Cȡ3-cosB+cosC-cos2C()+2cos2B+cos3C=-3cosB+2cos2B+3cosC-3cos2C+cos3C=4cos2B-3cosB+4cos3C-6cos2C+1=4cosB-38æèçöø÷2+2cosC-1()22cosC+1()-2516.因为0<C<2π3ꎬ-12<cosC<1ꎬ所以3cosA+2cos2B+cos3C>-2516.(2)若B最小ꎬ则BɤCꎬB<Aꎬ3B+C2ɪ0ꎬπ()ꎬC-B2ɪ0ꎬπ2[öø÷.于是cosA+cos2B=-cosB+C()+cos2B=2sin3B+C2sinC-B2ȡ0ꎮ所以3cosA+2cos2B+cos3CȡcosA+cos3C=-cosB+C()+cos3C>-cosC+cos3C=4cos3C-4cosC.设t=cosCꎬ由于0<C<2π3ꎬ-12<cosC<1ꎬ则-12<t<1.令4cos3C-4cosC=4t3-4t=ft()ꎬ则fᶄt()=12t2-4=43t2-1()ꎬ则ft()的极值点为ʃ13.则ft()在-12ꎬ-13æèçöø÷上单调递增ꎬ在-13ꎬ13æèçöø÷上单调递减ꎬ在13ꎬ1æèçöø÷上单调递增.计算知f-12æèçöø÷=32>-2516ꎬf13æèçöø÷=-833>-2516ꎬ所以ft()>-2516.所以3cosA+2cos2B+cos3C>-2516.综上所述ꎬ3cosA+2cos2B+cos3C的取值范围是-2516ꎬ6æèçöø÷.题9㊀已知抛物线Γ的顶点是原点Oꎬ焦点是F(0ꎬ1).过直线y=-2上任意一点A作抛物线Γ的两条切线ꎬ切点分别为PꎬQꎬ求证:(1)直线PQ过定点ꎻ(2)øPFQ=2øPAQ.证明㊀(1)易得拋物线Γ的方程为x2=4y.设点A(tꎬ-2)ꎬPx1ꎬy1()ꎬQx2ꎬy2()ꎬ则过点P的抛物线Γ的切线l1的方程为y-y1=x12x-x1().即x1x-2y-2y1=0.同理ꎬ过点Q的抛物线Γ的切线l2的方程为x2x-2y-2y2=0.由l1ꎬl2过点Aꎬ可得x1t+4-2y1=0ꎬx2t+4-2y2=0ꎬ这表明ꎬ点Px1ꎬy1()ꎬQx2ꎬy2()的坐标满足方程tx-2y+4=0.所以直线PQ的方程为tx-2y+4=0.所以易得直线PQ过定点(0ꎬ2).(2)不妨设点P在点Q的左边ꎬ则x1<x2.因为tanøPAQ=x1/2-x2/21+(x1/2) (x2/2)=2x1-x2()x1x2+4ꎬ所以tan2øPAQ=2tanøPAQ1-tan2øPAQ=4x1-x2()/x1x2+4()1-4x1-x2()2/x1x2+4()2=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2.又因为tanøPFQ=(y1-1)/x1-(y2-1)/x21+[(y1-1)/x1] [(y2-1)/x2]=x2x21/4-1()-x1x22/4-1()x1x2+x21/4-1()x22/4-1()=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2ꎬ所以tan2øPAQ=tanøPFQ.易知0ʎ<øPAQ<90ʎ<øPFQ<180ʎ.所以øPFQ=2øPAQ.题10㊀给定正整数n(nȡ2).已知2n个正实数a1ꎬa2ꎬ ꎬa2nꎬ满足:ðnk=1a2k-1 ðnk=1a2k=ᵑnk=1a2k-1+ᵑnk=1a2k.求S=ð2nk=1an-1kak+1的最小值ꎬ其中a2n+1=a1.解析㊀一方面ꎬ记A=ᵑ2nk=1ak()1nꎬ则S=ðnk=1an-12ka2k+1+ðnk=1an-12k-1a2kȡnᵑnk=1an-12ka2k+1æèçöø÷1n+nᵑnk=1an-12k-1a2kæèçöø÷1n=nAᵑnk=1a2k-1+ᵑnk=1a2k()=nAðnk=1a2k-1 ðnk=1a2k()ȡnAnᵑnk=1a2k-1()1n nᵑnk=1a2k()1n=n3.另一方面ꎬ易知n=2时ꎬ取a1=a3=1ꎬa2=a4=2+3时可满足条件ꎬ且S=n3.nȡ3时ꎬ取a1=a2= =a2n=n22æèçöø÷1n-2时可满足条件ꎬ且S=n3.综上所述ꎬ所求的最小值是n3.题11㊀给定正整数aꎬb(aɤb).数列fn{}满足:f1=aꎬf2=bꎬfn+2=fn+1+fn(n=1ꎬ2ꎬ ).若对任意的正整数nꎬ都ðnk=1fk()2ɤλ fnfn+1ꎬ求实数λ的最小值.解析㊀先证以下3个引理:引理1㊀对任意nɪN∗ꎬ有fn+2=ðnk=1fk+f2.证明㊀fn+2=ðn+1k=2fk+1-fk()+f2=ðn+1k=2fk-1+f2=ðnk=1fk+f2.引理2㊀记T=a2+ab-b2ꎬ则对任意nɪN∗ꎬ有fnfn+2+(-1)nT=f2n+1.证明㊀由条件知f3=a+b.从而f1f3+(-1)1T=a(a+b)-a2+ab-b2()=b2=f22ꎬ故结论对n=1成立.假设n=k(kȡ1)时ꎬ结论成立ꎬ即fkfk+2+(-1)kT=f2k+1.当n=k+1时ꎬfk+1fk+3+(-1)k+1T=fk+1fk+1+fk+2()+fkfk+2-f2k+1=fk+1fk+2+fkfk+2=f2k+2ꎬ故当n=k+1时ꎬ结论也成立.由归纳原理知ꎬ对任意的正整数nꎬ都有fnfn+2+(-1)nT=f2n+1.引理3㊀limnң+ɕfnfn+1=5-12.证明㊀首先ꎬ由fnfn+1-fn+1fn+2=fnfn+2-f2n+1fn+1fn+2=(-1)nTfn+1fn+2ң0知limnң+ɕfnfn+1存在ꎬ设其值为aꎬ其中0ɤaɤ1.其次ꎬ将fn+2=fn+1+fn同时除以fn+1ꎬ再令nң+ɕꎬ得1a=1+aꎬ解得a=5-12.回到原题:记Tn=ðnk=1fk()2fnfn+1ꎬn=1ꎬ2ꎬ3ꎬ ꎬ则Tn+1-Tn=ðn+1k=1fk()2fn+1fn+2-ðnk=1fk()2fnfn+1=fnðnk=1fk+fn+1()2-fn+2ðnk=1fk()2fnfn+1fn+2=fn-fn+2()ðnk=1fk()2+2fnfn+1ðnk=1fk()+fnf2n+1fnfn+1fn+2=-fn+1fn+2-f2()2+2fnfn+1fn+2-f2()+fnf2n+1fnfn+1fn+2=2fn+1f2-f22+fnfn+2-f2n+1fnfn+2=2bfn+1-b2-(-1)nTfnfn+2.注意到fn+1ȡbꎬ且(-1)nT=(-1)na2+ab-b2()ɤb2ꎬ所以2bfn+1-b2-(-1)nTȡ2b2-b2-b2=0.因此ꎬTn+1ȡTn对任意的正整数n均成立.由Tn{}单调递减可知:若limnң+ɕTn存在ꎬ则其值为λ的最小值.又limnң+ɕTn=limnң+ɕðnk=1fk()2fnfn+1=limnң+ɕfn+2-f2()2fnfn+1=limnң+ɕfn+1+fn-f2()2fnfn+1=limnң+ɕfn+1+fn()2fnfn+1=limnң+ɕfnfn+1+fn+1fn+2æèçöø÷=5-12+5+12+2=2+5.综上可知ꎬλ的最小值为2+5.参考文献:[1]张君.2022年全国高中数学联赛(四川预赛)试题及解析[J].数理化解题研究ꎬ2022(25):84-88.[2]李鸿昌.我这样做奥数[M].成都:四川省教育电子音像出版社ꎬ2021.[3]甘志国.圆锥曲线光学性质的证明及其应用[J].数学教学ꎬ2017(09):16-18ꎬ37.[责任编辑:李㊀璟]。
2022_年全国高中数学联赛山东赛区预赛试题与解析
2022年全国高中数学联赛山东赛区预赛试题与解析张志刚(山东省宁阳县复圣中学ꎬ山东泰安271400)摘㊀要:文章给出2022年全国高中数学联赛山东赛区预赛试题及其解析ꎬ部分试题从多个视角尝试解答ꎬ启迪学生敏锐捕捉解题灵感ꎬ多方位搭建解题思路ꎬ从而提高解题效益.关键词:竞赛数学ꎻ试题解析ꎻ极值问题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)16-0049-04收稿日期:2023-03-05作者简介:张志刚(1983-)ꎬ男ꎬ山东省宁阳人ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀2022年全国高中数学联赛山东赛区预赛试题共14道题目ꎬ包括10道填空题和4道解答题.考查内容主要有代数运算(第1㊁2题)㊁数列(第4㊁9题)㊁函数与不等式(第3㊁6㊁11㊁13题)㊁三角函数(第10题)㊁平面解析几何(第8㊁12题)㊁概率(第8题)㊁平面几何图形(第5题)㊁立体几何(第7题)㊁组合数学(第14题)等.该套试卷设计简洁清新ꎬ构思别具匠心ꎬ解法灵活多变ꎬ饱含数学思想ꎬ凝聚教学智慧ꎬ富有较高的研究价值.与高考试题相比ꎬ竞赛试题综合性更强ꎬ思维跨度更大ꎬ需要考生具备较高的数学抽象㊁逻辑推理㊁数学运算等核心素养ꎬ以及转化与化归㊁函数与方程㊁分类讨论㊁换元法㊁配方法等数学思想方法ꎬ颇具挑战性和选拔性.命题组只给出了填空题的结果ꎬ未给出具体的解答过程ꎬ解答题也只提供了一种解法供阅卷参考.为此ꎬ笔者尝试对每道试题剖析解答ꎬ部分试题给出了有别于参考答案的精彩解法.题1㊀用x[]表示不超过x的最大整数ꎬ则方程22x-1[]2+2x-1[]-1=0的解集是.解析㊀解方程22x-1[]2+2x-1[]-1=0ꎬ得2x-1[]=-1(2x-1[]=12舍)ꎬ则-1ɤ2x-1<0ꎬ解得0ɤx<12ꎬ故解集是0ꎬ12[öø÷.题2㊀设aꎬbꎬcɪRꎬa㊁cʂ0ꎬ方程ax2+bx+c=0的两个虚根x1ꎬx2满足x21x2ɪRꎬ则ð2022k=0x1x2æèçöø÷k=.解析㊀由于x1ꎬx2是方程ax2+bx+c=0的两个虚根ꎬ所以x2=x-1ꎬx21x2=x21x-1ɪRꎬx21x1-=x-21x1ꎬ即x31-x-31=0ꎬ从而x21+x1x-1+x-21=0ꎬ即x1x-1=ωꎬ故ð2022k=0x1x2æèçöø÷k=ð2022k=0ωk=1-ω20231-ω=1.题3㊀已知fx()是-ɕꎬ+ɕ()上单调递增的奇函数ꎬ满足对一切实数θ恒有fa-cos2θ()+fa+sinθ()ȡ0.则实数a的取值范围是.解析㊀对一切实数θ恒有fa+sinθ()ȡfcos2θ-a()ꎬ则a+sinθȡcos2θ-a.从而2aȡ-2sin2θ-sinθ+1=-2sinθ+14æèçöø÷2+98.从而2aȡ98ꎬ解得aȡ916.题4㊀数列an{}共100项ꎬa1=0ꎬa100=475ꎬ且ak+1-ak=5ꎬk=1ꎬ2ꎬ ꎬ99.则满足这种条件的不同数列的个数为.解析㊀由题意得ak+1-ak=ʃ5ꎬa100=a100-a99()+a99-a98()+ +a2-a1()=475ꎬ设99个差ak+1-ak中有x个5和y个-5ꎬ则有5x-y()=475ꎬx+y=99ꎬ{解得x=97ꎬy=2.{所以99个差ak+1-ak中ꎬ有97个取5和2个取-5.这97个5和2个-5的每一个排列都唯一对应一个满足条件的数列ꎬ故满足这种条件的不同数列的个数为99!97!ˑ2!=99ˑ49=4851个.题5㊀单位圆内接四边形对角线互相垂直ꎬ则该四边形四条边平方和是.解析㊀如图1示ꎬ设四边形ABCD的边aꎬbꎬcꎬdꎬ对角线ACꎬBD的中点分别是O1ꎬO2ꎬ交点为Iꎬ记IA=xꎬIB=yꎬIC=zꎬID=wꎬOO1=fꎬOO2=eꎬ则a2+b2+c2+d2=2x2+y2+z2+w2()=2[(O1A+e)2+(O2B-f)2+(O1A-e)2+(O2B+f)2]=4O1A2+O2B2+e2+f2()=4ˑ1+1()=8.所以该四边形四条边平方和是8.图1题6㊀已知0<a<b<1eꎬ则aaꎬbbꎬabꎬba从小到大排列为.解析㊀易知ab<aaꎬbb<baꎬaa<baꎬab<bbꎬ即有ab<aa<baꎬab<bb<ba.下面比较aa与bb的大小.设fx()=xlnx0<x<1eæèçöø÷ꎬ则fᶄx()=lnx+1<0ꎬ所以fx()在0ꎬ1eæèçöø÷上单调递减.又0<a<b<1eꎬ所以fa()>fb().即alna>blnb.即lnaa>lnbb.从而aa>bb.综上ꎬab<bb<aa<ba.题7㊀将3个12ˑ12的正方形沿邻边的中点剪开分成两部分(如图2)ꎻ将这6部分接于一个边长为62的正六边形上(图3)ꎬ若拼接后的图形是一个多面体的表面展开图ꎬ则该多面体的体积是.图2㊀㊀㊀㊀㊀㊀㊀㊀㊀图3解析㊀折成的多面体如图4所示ꎬ将其补形为正方体(如图5)ꎬ所求多面体体积为正方体体积的一半ꎬ即V=12ˑ123=864.图4㊀㊀㊀㊀㊀㊀㊀㊀㊀图5题8㊀设aꎬb是从集合1ꎬ2ꎬ3ꎬ4ꎬ5{}中随机选取的数ꎬ则直线y=ax+b与圆x2+y2=2有公共点的概率是.解析㊀易知y=ax+bꎬx2+y2=2{即a2+1()x2+2abx+b2-2=0有实根ꎬ则Δ=2ab()2-4a2+1()b2-2()ȡ0ꎬ解得b2ɤ2a2+1().当b=1ꎬ2时ꎬa=1ꎬ2ꎬ3ꎬ4ꎬ5ꎻ当b=3时ꎬa=2ꎬ3ꎬ4ꎬ5ꎻ当b=4时ꎬa=3ꎬ4ꎬ5ꎻ当b=5时ꎬa=4ꎬ5.所以使得b2ɤ2a2+1()的aꎬb()共有19个ꎬ所求概率为1925.题9㊀已知正数列an{}满足对∀nɪN∗ꎬðni=1a3i=ðni=1ai()2ꎬ则an=.解析㊀由a31=a21得a1=1.由1+a32=1+a2()2得a2=2.设当nɤk时ꎬak=kꎬ则当n=k+1时ꎬðk+1i=1a3i=ðk+1i=1ai()2ꎬa3k+1+ðki=1a3i=ak+1+ðki=1ai()2ꎬa3k+1=a2k+1+2ak+1ðki=1aiꎬ从而a2k+1=ak+1+kk+1()ꎬ解得ak+1=k+1ꎬ故an=n.题10㊀已知0<xꎬy<π2ꎬ则f=1cosxcos2ysin2y+9sin2x的最小值是.解法1㊀(柯西不等式法)f=9sin2x+sin2y+cos2ycosxcos2ysin2y=9sin2x+1cosxcos2y+1cosxsin2yꎬ解析式f中三个分式分母之和sin2x+cosxcos2y+cosxsin2y=1-cos2x+cosx=-cosx-12æèçöø÷2+54ɤ54.由柯西不等式ꎬ得54fȡ(sin2x+cosxcos2y+cosxsin2y)[9sin2x+1cosxcos2y+1cosxsin2y]ȡ3+1+1()2=25ꎬ当x=π3ꎬy=π4时取等号.所以f的最小值是20.解法2㊀(基本不等式+柯西不等式法)f=9sin2x+1cosxcos2ysin2yȡ9sin2x+1cosx[(cos2y+sin2y)/2]2ȡ9sin2x+4cosxȡ3+2()2sin2x+cosx=251-cos2x+cosx=25-cosx-1/2()2+5/4ȡ255/4=20ꎬ当且仅当x=π3时取等号ꎬ所以f的最小值是20.题11㊀已知函数fx()满足对任意实数xꎬy有fxy()+fy-x()ȡfx+y().求证:对于任意实数x均有fx()ȡ0.证明㊀取实数xꎬy满足xy=x+yꎬ即x-1()y-1()=1.令y-1=ttʂ0()ꎬ则y=t+1ꎬx=1t+1ꎬ则ft-1tæèçöø÷ȡ0ꎬ对于任意uɪRꎬ令u=t-1tꎬ则t2-ut-1=0.由Δ=u2+4>0得ꎬ存在实数tꎬ使得u=t-1tꎬfu()ȡ0ꎬ即对于任意实数xꎬ均有fx()ȡ0.题12㊀已知椭圆C:x2a2+y2b2=1a>b>0()ꎬ证明:存在圆心在原点的定圆ꎬ使该圆上任一点的切线与椭圆C恒有两个交点AꎬB且OAң OBң=0.证法1㊀(命题组提供)当AꎬB分别为椭圆C的长㊁短轴端点时ꎬ原点到直线AB的距离为aba2+b2.下面证明圆x2+y2=r2(其中r=aba2+b2)上任意一点处的切线与椭圆C恒交于两点ꎬ且满足OAң OBң=0.由r=aba2+b2<b知圆x2+y2=r2在椭圆C内部ꎬ故该圆上任意一点处的切线与椭圆C恒交于两点.易得该圆上任意一点x0ꎬy0()处的切线为x0x+y0y=r2ꎬ代入x2a2+y2b2=1ꎬ得b2x20+a2y20()x2-2a2r2x0x+a2r4-b2y20()=0ꎬ消去xꎬ得b2x20+a2y20()y2-2b2r2y0y+b2r4-a2x20()=0.设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬ则x1x2+y1y2=r4a2+b2()-a2b2x20+y20()b2x20+a2y20=r4a2+b2()-a2b2r2b2x20+a2y20=ab()4-ab()4b2x20+a2y20()a2+b2()=0.即OAң OBң=0.故圆x2+y2=ab()2a2+b2满足条件.证法2㊀(极坐标法)设Aρ1cosθꎬρ1sinθ()ꎬBρ2cosθ+π2æèçöø÷ꎬρ2sinθ+π2æèçöø÷æèçöø÷ꎬ即B-ρ2sinθꎬρ2cosθ().代入x2a2+y2b2=1ꎬ得ρ21cos2θa2+ρ21sin2θb2=1ꎬρ22sin2θa2+ρ22cos2θb2=1.故1ρ21+1ρ22=1a2+1b2=a2+b2a2b2.在RtәAOB中ꎬOMʅABꎬ故AB OM=OA OBꎬ1OM2=AB2OA2 OB2=OA2+OB2OA2 OB2=1OA2+1OB2=1ρ21+1ρ22=a2+b2a2b2.所以r2=a2b2a2+b2是定值ꎬ即存在圆x2+y2=ab()2a2+b2满足条件.题13㊀设aꎬbꎬc>0且a2+b+c=53ꎬabc=28.求f=a+b+2b+c+c+a的最小值.解析㊀设a=7xꎬb=2yꎬc=2zꎬ则xyz=1ꎬ49x2+2y+2z=53ꎬ即2y+z()=53-49x2.①由1=xyzɤx+y+z3æèçöø÷3得x+y+zȡ3ꎬ即2x+53-49x2ȡ6ꎬ即0<xɤ1.由1=xyzɤyzɤy+z2æèçöø÷2ꎬ得y+zȡ2ꎬyzȡ1.②故b+c=2y+2zȡ2.由①②ꎬ得a+b+c+a=7x+2y+2z+7x=7x+2y+2z+7x()2=14x+2y+z()+249x2+14xy+z()+4yzȡ14x+53-49x2+249x2+28x+4=-49x2+28x+57.因为y=-49x2+28x+570<xɤ1()的图象的对称轴为x=27ꎬ所以当x=1时ꎬy取得最小值36ꎬ从而a+b+c+aȡ6ꎬfȡ10ꎬ显然ꎬ当且仅当x=y=z=1ꎬa=7ꎬb=c=2时等号成立ꎬ故f的最小值为10.题14㊀把集合A=1011ꎬ1012ꎬ ꎬ2022{}任意划分为两个不交的非空子集.证明:至少有一个子集中包含两个数ꎬ这两个数之和为完全平方数.证明㊀先找三个正整数x<y<z使得两两之和为完全平方数ꎬ令x+y=m2ꎬx+z=m+1()2ꎬy+z=m+2()2ꎬ则m为奇数(否则ꎬx㊁y同奇偶ꎬy㊁z同奇偶ꎬ得x㊁y㊁z同奇偶ꎬ故x+z=m+1()2为偶数ꎬ矛盾).令m=2k-1kɪN∗()ꎬ解x+y=2k-1()2ꎬx+z=4k2y+z=2k+1()2ìîíïïïï得x=2k2-4kꎬy=2k2+1ꎬz=2k2+4k.{由x=2k2-4kȡ1011ꎬ得kȡ24.当k=24时ꎬx=1056ꎬz=1248<2022.由x=2k2-4kɤ2022得kɤ30ꎬ故当24ɤkɤ30时ꎬ1011ɤx<y<zɤ2022.将A中1012个数任意划分成两不交的非空子集时ꎬ对24ɤkɤ30中的任一整数k对应的xꎬyꎬz中必有两个属于同一子集ꎬ这两个数之和为完全平方数.参考文献:[1]张志刚.一道联考试题命制背景与破解研究[J].数理化学习(高中版)ꎬ2022(03):3-6.[责任编辑:李㊀璟]。
一题多解,多解同道——以2022年全国高中数学联赛四川预赛第6题为例
一题多解,多解同道——以2022年全国高中数学联赛四川预
赛第6题为例
张君;李武学
【期刊名称】《中学数学:高中版》
【年(卷),期】2023()1
【摘要】1 预赛试题2022年全国高中数学联赛四川预赛第6题如下:若△ABC的三边a,b,c满足a^(2)+b^(2)+3c^(2)=7,则△ABC面积的最大值为_____.这是只有一个条件的求三角形面积的最值问题,属于中档题.注意到已知等式中a,b,c均带平方,且a与b是对称的,所以在选择面积的表示方法时,要充分考虑到这些因素,为下一步求最大值做好铺垫.2 解法探究设△ABC面积为S.解法1:因为当且仅当时,上式等号成立.
【总页数】3页(P86-88)
【作者】张君;李武学
【作者单位】四川省温江中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.择一题而变通,求多解而善思——刍议高中数学"一题多解"类题目的重要作用
2.发散思维一题多解提升能力
——以2020年全国高考理科数学Ⅱ卷第21题为例3.发散思维一题多解提升能
力——以2020年全国高考理科数学Ⅱ卷第21题为例4.一道动力学竞赛试题的多解赏析--以第38届全国中学生物理竞赛预赛第8题为例5.一题多解悟“三会”,思维发散提“素养”--2021全国新高考数学II卷第20题一题多解
因版权原因,仅展示原文概要,查看原文内容请购买。
(整理)全国高中数学联赛模拟试题目
全国高中数学联赛模拟试题(一)(命题人:吴伟朝)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a 2+b 2)=5c 2满足c ≤20的正整数解(a ,b ,c )的个数是(A )1 (B )3 (C )4 (D )52、函数12-=x x y (x ∈R ,x ≠1)的递增区间是(A )x ≥2 (B )x ≤0或x ≥2 (C )x ≤0(D )x ≤21-或x ≥23、过定点P (2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是 (A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5中,满足条件a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x ]表示不大于x 的最大整数,则方程21×[x 2+x ]=19x +99的实数解x 是 .2、设a 1=1,a n +1=2a n +n 2,则通项公式a n = .3、数799被2550除所得的余数是 .4、在△ABC 中,∠A =3π,sin B =135,则cos C = .5、设k 、θ是实数,使得关于x 的方程x 2-(2k +1)x +k 2-1=0的两个根为sin θ和cos θ,则θ的取值范围是 . 6、数()n2245+(n ∈N )的个位数字是 .三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x (1-2x )(1-3x )+y (1-2y )(1-3y )+z (1-2z )(1-3z )≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x 2+(a +2002)x +a =0的两根皆为整数.(2) 试求出所有的实数a ,使得关于x 的方程x 3+(-a 2+2a +2)x -2a 2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x ,y )|x 、y ∈R ,且x 2+(y -7)2≤r 2}一定被包含于另一个点集S ={(x ,y )|x 、y ∈R ,且对任何θ∈R ,都有cos2θ+x cos θ+y ≥0}之中.第一试一、选择题:题号 1 23 4 5 6 答案 C CDABD二、填空题:1、38181-或381587;2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{θ|θ=2n π+π或2n π-2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、(50分)设a、b、c∈R,b≠ac,a≠-c,z是复数,且z2-(a-c)z-b=0.求证:()12=-+-+baczcaba的充分必要条件是(a-c)2+4b≤0.二、(50分)如图,在△ABC中,∠ABC和∠ACB均是锐角,D是BC边上的内点,且AD平分∠BAC,过点D 分别向两条直线AB、AC作垂线DP、DQ,其垂足是P、Q,两条直线CP与BQ相交与点K.求证:(1)AK⊥BC;AC B DQKP(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a 1,a 2,…,a n 满足下列n 个方程:∑==+=+ni i n j j ji a 1),,3,2,1(124.确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子).参考答案第一试一、选择题:题号1 23456答案 CC D A B D二、填空题:1、38181-或381587;2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{θ|θ=2n π+π或2n π-2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ).三、()11212++-=n S .。
2023全国高中数学联赛模拟试题6及参考答案
2023全国高中数学联赛模拟试题6及参考答案题目1某校3个年级的学生数量比例为5:4:3,其中一年级学生的平均身高为160cm,二年级学生的平均身高为165cm,三年级学生的平均身高为170cm。
求该校学生总体平均身高。
解答1我们可以先计算出每个年级学生的数量占总体的比例:一年级学生数量比例 = 5 /(5 + 4 + 3)= 5 / 12二年级学生数量比例 = 4 /(5 + 4 + 3)= 4 / 12三年级学生数量比例 = 3 /(5 + 4 + 3)= 3 / 12然后,根据每个年级学生的数量比例和平均身高,计算出每个年级学生身高的总和:一年级学生身高总和 = 5 / 12 × 160cm二年级学生身高总和 = 4 / 12 × 165cm三年级学生身高总和 = 3 / 12 × 170cm最后,将三个年级学生身高的总和相加,除以总体学生数量,即可得到该校学生总体平均身高。
计算过程如下:总体平均身高 = (一年级学生身高总和 + 二年级学生身高总和 + 三年级学生身高总和) / (5 + 4 + 3)总体平均身高 = (5 / 12 × 160 + 4 / 12 × 165 + 3 / 12 × 170) / (5 + 4 + 3)计算结果为:166.25cm所以,该校学生总体平均身高为166.25cm。
题目2已知函数f(f)=2f2+3f+1,求f(2)的值。
解答2将 x 的值代入函数f(f)=2f2+3f+1中,计算出f(2)的值。
f(2) = 2 × 2^2 + 3 × 2 + 1计算过程如下:f(2) = 2 × 4 + 6 + 1= 8 + 6 + 1= 15所以,f(2)的值为15。
题目3某圆的周长为10π,求该圆的面积。
解答3已知圆的周长为10π,可以根据周长计算出圆的半径。
圆的周长公式为f=2ff,其中 C 为周长,r 为半径。
2018全国高中数学联赛模拟试题6及参考答案
第一试
2018年全国高中数学联赛模拟试题(六)第1页(共4页)
2018年全国高中数学联赛模拟试题(六)第2页(共4页)
第二试
2018年全国高中数学联赛模拟试题(六)第3页(共4页)
2018年全国高中数学联8年全国高中数学联赛模拟试题(六)参考答案第1页(共5页)
2018年全国高中数学联赛模拟试题(六)参考答案第2页(共5页)
2018年全国高中数学联赛模拟试题(六)参考答案第3页(共5页)
2018年全国高中数学联赛模拟试题(六)参考答案第4页(共5页)
2018年全国高中数学联赛模拟试题(六)参考答案第5页(共5页)
新人版2018全国高中数学联赛模拟试题6及参考答案
第 4 页(共 5 页)
2
2 2018 年全国高中数学联赛模拟试题(六)参考答案
第 5 页(共 5 页)
2
2
2018 年全国高中数学联赛模拟试题(六)
第一试
2018 年全国高中数学联赛模拟试题(六) 第 1 页(共 4 页) 2
2 2018 年全国高中数学联赛模拟试题(六)
第 2 页(共 4 页)
2
2
第二试
2018 年全国高中数学联赛模拟试题(六) 18 年全国高中数学联赛模拟试题(六)参考答案
第一试
2018 年全国高中数学联赛模拟试题(六)参考答案 第 1 页(共 5 页) 2
2 2018 年全国高中数学联赛模拟试题(六)参考答案
第 2 页(共 5 页)
2
2 2018 年全国高中数学联赛模拟试题(六)参考答案
第 3 页(共 5 页)
2
2 2018 年全国高中数学联赛模拟试题(六)参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛模拟试题(六)
(命题人:秦永 苟春鹏)
第一试
一、 选择题:(每小题6分,共36分)
1、在复平面上,非零复数z 1、z 2在以i 对应的点为圆心,1为半径的圆上,
21z z ⋅的实部为零,arg z 1=6
π
,则z 2=
(A )i 2323+-
(B )
i 2323- (C )i 2
323+- (D )
i 2
323- 2、已知函数()⎪⎭⎫ ⎝
⎛
+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是
(A )⎪⎭
⎫
⎝⎛85,21
(B )⎪⎭⎫ ⎝⎛+∞,23
(C )⎪⎭
⎫
⎝⎛+∞⎪⎭⎫ ⎝⎛,2385,21
(D )⎪⎭
⎫ ⎝⎛+∞,21
3、已知双曲线过点M (-2,4),N (4,4),它的一个焦点为F 1(1,0),则另一个焦点F 2的轨迹方程是
(A )()()116
42512
2=-+
-y x (y ≠0)或x =1(y ≠0)
(B )()()125
416122=-+
-y x (x ≠0)或x =1(y ≠0)
(C )()()116
125422=-+
-y x (y ≠0)或y =1(x ≠0)
(D )
()()125
116422=-+-y x (x ≠0)或y =1(x ≠0)
4、已知正实数a 、b 满足a +b =1,则b a M 2112+++=的整数部分是 (A )1 (B )2 (C )3 (D )4
5、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一
角度,人行道的宽度是15米,长度是50米,则人行道间的距离是
(A )9米 (B )10米 (C )12米 (D )15米
6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客
运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15
二、 填空题:(每小题6分,共36分)
1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截
面AMN 与底面AFH 所成的角是 .
2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a 2+b 2=2c 2,则角C
的最大值是 .
3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1
升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是 .
4、已知函数f (x )与g (x )的定义域均为非负实数集,对任意x ≥0,规定
f (x )*
g (x )=min{f (x ),g (x )}.若f (x )=3-x ,g (x )=52+x ,则f (x )*g (x )的最大值为 .
5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,
则可有 不同的取法. 6、若实数a >0,则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②
(
)
66
3,2;
③
()+∞,36
;④()3
2,0.其中正确的是 .
三、 (20分)
求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面
的面积
四、 (20分)
直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q
两点,O 为坐标原点,且OP ⊥OQ .求证:2
22
2222B
A b a C b a ++=.
五、 (20分)
某新建商场建有百货部、服装部和家电部三个经营部,共有190名
售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c(万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?
表
第二试
一、 (50分)
矩形ABCD 的边AD =λ·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE 2+BF 2=AB 2,试求正实数λ的值.
二、 (50分)
若a i ∈R +
(i =1,2,…,n ),∑==n
i i a S 1,且2≤n ∈N .
求证:∑=-n
k k
k a S a 13
≥∑=-n k k a n 12
11.
三、 (50分)
无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||,而0≤c 1≤1. (1)证明:仅当c 1是有理数时,数列自某一项开始成为周期数列. (2)存在多少个不同的c 1值,使得数列自某项之后以T 为周期(对于每个T =2,3,…)?
参考答案
第一试
二、填空题:
1、6
π
;
2、
3
π;
3、n
a ⎪⎭
⎫
⎝⎛-11;
4、132-;
5、2500;
6、③④.
三、证略.
四、证略.
五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).
第二试
一、2
2
=
λ;
二、证略.
三、 (1)证略. (2)无穷个.。