数学人教版七年级下册坐标法求面积
精品解析:人教版数学七年级下册7.2坐标方法的简单应用(解析版)
人教版数学七年级下册 7.2坐标方法的简单应用同步练习一、选择题1. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A. (1,3)B. (3,2)C. (0,3)D. ()3,3【答案】A【解析】【分析】 根据棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),进而得出原点的位置,进而得出答案.【详解】解:如图所示:帅的位置为原点,则棋子“炮”的点的坐标为(1,3).故选:A .【点睛】本题主要考查了坐标确定位置,正确得出原点的位置是解题关键.2. 将△ABC 的三个顶点的横坐标都加上-6,纵坐标都减去5,则所得图形与原图形的关系是( )A. 将原图形向x 轴的正方向平移了6个单位,向y 轴的正方向平移了5个单位B. 将原图形向x 轴的负方向平移了6个单位,向y 轴的正方向平移了5个单位C. 将原图形向x 轴的负方向平移了6个单位,向y 轴的负方向平移了5个单位D. 将原图形向x 轴的正方向平移了6个单位,向y 轴的负方向平移了5个单位【答案】C【解析】【分析】由于将△ABC 的三个顶点的横坐标都加上6,纵坐标都减去5,所以根据此规律即可确定选择项.【详解】解:∵将△ABC 的三个顶点的横坐标都加上-6,纵坐标都减去5,∴所得图形与原图形的位置关系是△ABC 先向左平移6个单位,再向下平移5个单位即可.故选C3. 将点A(-2,3)平移到点B(1,-2)处,正确的移法是()A. 向右平移3个单位长度,向上平移5个单位长度B. 向左平移3个单位长度,向下平移5个单位长度C. 向右平移3个单位长度,向下平移5个单位长度D. 向左平移3个单位长度,向上平移5个单位长度【答案】C【解析】点A(-2,3)平移到点B(1,-2)处,∵-2+3=1,3-5=-2,∴平移方法为向右平移3个单位长度,向下平移5个单位长度.故选C.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4. 生态园位于县城东北方向5千米处,如图中表示准确的是( )A. B. C. D.【答案】B【解析】【分析】根据方向角的定义,东北方向是指北偏东45°解答即可.【详解】∵生态园位于县城东北方向5公里处,∴生态园在县城北偏东45°距离县城5公里.故选B.【点睛】本题考查了坐标确定位置,熟练掌握方向角的定义是解题的关键.5. 将点P(m+2,2m+4)向右平移1个单位得到P′,且P′在Y轴上,那么P′坐标是()A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)【答案】B【解析】本题考查坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:将点P(m+2,2m+4)向右平移1个单位到P′点,且P′Y轴上∴P点的横坐标加1,为0∴m+2+1="0." m=-3∴P′的坐标是(0,-2)故选B6. 在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A. (−4,−2)B. (2,2)C. (−2,2)D. (2,−2)【答案】D【解析】【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D7. 如图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约30°的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是()A. 点AB. 点BC. 点CD. 点D【答案】D【解析】解:通过测量,宿舍楼位置是D.故选D 8. 如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则 a b的值为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,∴a=0+2=2,b=0+1=1,∴a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.9. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)【答案】A【解析】试题分析:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.考点:坐标与图形变化-平移.10. 如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ′,这四个点都在格点上.若线段AB 上有一个点(P a ,)b ,则点P 在A B ''上的对应点P '的坐标为( )A. (2,3)a b -+B. (2,3)a b --C. (2,3)a b ++D. (2,3)a b +-【答案】A【解析】【分析】 根据点A 、B 平移后横纵坐标的变化可得线段AB 向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【详解】由题意可得线段AB 向左平移2个单位,向上平移了3个单位,则P (a−2,b +3)故选A . 【点睛】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减. 二、填空题11. 已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ . 【答案】 4【解析】【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.12. 五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A 所在位置用坐标表示是(-2,2),黑棋B 所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C 的位置就获得胜利,则点C 的坐标是__________.【答案】(3,3)【解析】【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C 的坐标.【详解】由题意可得如图所示的平面直角坐标系,故点C 的坐标为(3,3),故答案为(3,3).【点睛】本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.13. 如图,把图1中的圆A 经过平移得到圆O (如图2),如果图1⊙A 上一点P 的坐标为(m ,n ),那么平移后在图2中的对应点P ′的坐标为____【答案】(m+2,n-1)【解析】【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P 的对应点P ’的坐标.【详解】解:∵⊙A 的圆心坐标为(-2,1),平移后到达O (0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P 的坐标为(m ,n ),∴对应点P ’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.三、计算14. 据某报社报道,某省4艘渔船(如图)在回港途中,遭遇9级强风,岛上边防战士接到命令后立即搜救.你能告诉边防战士这些渔船的位置吗?【答案】见解析【解析】【分析】根据所在方位的角度和距离两个因素确定渔船的位置即可.【详解】解:航标灯在小岛的南偏西60°方向15km 处;渔船A 在小岛的北偏东40°方向25km 处;渔船B 在小岛的正南方向20km 处;渔船C 在小岛的北偏西30°方向30km 处;渔船D 在小岛的南偏东65°方向35km 处.【点睛】此题考查坐标确定位置,确定一个物体的位置,需要两个因素:方向与距离.15. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2222121()()x x y y -+-同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A(2,4),B(-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),你能判断三角形ABC 的形状吗?说明理由.【答案】(1) A ,B 两点间的距离是13;(2) A ,B 两点间的距离是6;(3)三角形ABC 是等腰三角形.理由见解析.【解析】【分析】(1)根据两点间的距离公式P 1P 2来求A 、B 两点间的距离; (2)根据两点间的距离公式|y 2-y 1|来求A 、B 两点间的距离;(3)先将A 、B 、C 三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得AB 、BC 、AC 的长度;最后根据三角形的三条边长来判断该三角形的形状.【详解】(1)∵A(2,4),B(-3,-8),∴AB ,∵132=169,13,即A ,B 两点间的距离是13;(2)∵点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,∴AB =|-1-5|=6,即A ,B 两点间的距离是6;(3)三角形ABC 是等腰三角形,理由:∵一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),∴AB ,BC =6,AC =5, ∴AB =AC ,∴三角形ABC 等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.16. 在直角坐标平面内,已点()A 30,、()B 53-,,将点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D点.()1写出C点、D点的坐标:C ______ ,D ______ ;()2把这些点按A B C D A----顺次连接起来,这个图形的面积是______ .【答案】(1)(-3,0)&(-5,-3);(2)18【解析】【分析】(1)根据平移的性质,结合A、B坐标,点A向左平移6个单位到达C点,横坐标减6,坐标不变;将点B向下平移6个单位到达D点,横坐标不变,纵坐标减6,即可得出;(2)根据各点坐标画出图形,然后,计算可得.【详解】(1)∵点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点,∴得C(−3,0),D(−5,−3);(2)如图,1 2×3×6+12×3×6=18.S四边形ABCD=S△ABC+S△ACD=。
最新人教版七年级数学下册第7章平面直角坐标系复习教学设计
平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。
人教版数学七年级下册7.2《坐标方法的简单应用》教学设计
人教版数学七年级下册7.2《坐标方法的简单应用》教学设计一. 教材分析人教版数学七年级下册7.2《坐标方法的简单应用》这一节主要介绍了坐标方法在实际问题中的应用。
通过本节课的学习,学生能够理解坐标方法在解决几何问题、物理问题等方面的应用,提高解决问题的能力。
教材通过丰富的例题和练习题,引导学生掌握坐标方法的基本步骤,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级上册已经学习了坐标系的相关知识,对坐标系有一定的了解。
但部分学生对坐标方法的运用还不够熟练,对实际问题与坐标方法之间的联系还缺乏认识。
因此,在教学过程中,教师需要关注学生的学习差异,针对不同层次的学生进行教学,引导学生将所学知识运用到实际问题中。
三. 教学目标1.理解坐标方法在实际问题中的应用。
2.掌握坐标方法的基本步骤。
3.提高学生解决问题的能力。
四. 教学重难点1.坐标方法在实际问题中的运用。
2.坐标方法的基本步骤。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生运用坐标方法解决问题。
2.案例分析法:分析典型例题,让学生掌握坐标方法的应用。
3.讨论法:引导学生分组讨论,培养学生的团队协作能力。
4.练习法:布置适量练习题,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示例题和练习题。
2.练习题:准备相关练习题,巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如物体在平面直角坐标系中的运动问题,引出坐标方法在实际问题中的应用。
激发学生兴趣,引导学生思考。
2.呈现(10分钟)展示教材中的例题,引导学生分析问题,探讨坐标方法的基本步骤。
通过讲解和示范,让学生掌握坐标方法在实际问题中的运用。
3.操练(10分钟)布置练习题,让学生独立完成。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)针对练习题进行讲评,分析学生的解题思路,巩固所学知识。
5.拓展(5分钟)引导学生思考坐标方法在其他学科中的应用,如物理学、化学等。
人教版七年级数学下册巧用坐标求涉图形的面积问题的五种方法
5.如图,四边形 OABC 各个顶点的坐标分别是 O(0,0),A(2, 0),B(4,2),C(2,3),过点 C 与 x 轴平行的直线 EF 与 过点 B 与 y 轴平行的直线 EH 交于点 E.
4.如图,已知 A(-2,0),B(4,0),C(2,4), (1)求△ABC 的面积;
解:过 C 作 CD⊥AB 于 D,则 CD=4. 又易知 AB=4-(-2)=6, ∴S(2)设 P 为 x 轴上一点,若 S△APC=12S△PBC,求 P 的坐标.
3.在如图所示的平面直角坐标系中,四边形 OABC 各顶点分别 是 O(0,0),A(-4,10),B(-12,8),C(-14,0).求四边 形 OABC 的面积.
【点拨】本题的解题技巧在于把不规则的四边形 OABC 分割为 几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用 分割法,还可以用补形法.
人教版 七年级下
第七章 平面直角坐标系
阶段核心方法专训 巧用坐标求涉图形的面积问题的五种
方法
1.如图,已知 A(-2,0),B(4,0),C(-4,4),求三角形 ABC 的面积.
解:因为 C 点的坐标为(-4,4), 所以△ABC 的 AB 边上的高为 4. 因为点 A,B 的坐标分别为(-2,0),(4,0),所以 AB=6. 所以 S△ABC=12×6×4=12.
(2)在线段 EH 上是否存在点 P,使得四边形 OAPC 的面积为 7?若不存在,说明理由;若存在,求点 P 的坐标.
七年级数学下册第14讲平面直角坐标系一培优讲义无答案新人教版
01.若是点M(a+b,ab)在第二象限,那么点N(a,b)在第_____________象限.
02.假设点A(6-5a,2a-1).
(1)点A在第二象限,求a的取值范围;
(2)当a为实数时,点A可否在第三象限,试说明理由;
(3)点A可否在座标原点处?什么缘故?
03.点P{- ,-[ -|1- |]}关于y轴对称点的坐标是_____________.
,那么(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).
【变式题组】
01. 如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标别离是_________、_________、____________、____________.
04.已知点A(2a+3b,-2)与点B(8,3a+2b)关于x轴对称,那么a+b=__________.
05.已知a<0,那么点P(-a2-2,2-a)关于原点对称的点在第________象限.
06.已知点P1(a-1,5)在第一、三象限角平分线上,点P2(2,b-8)在第二、四象限角平分线上,那么(-a+b)2020=___________.
【例2】假设点P(a,b)在第四象限,那么点Q(―a,b―1)在()
A.第一∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,应选C.
【变式题组】
01.假设点G(a,2-a)是第二象限的点,那么a的取值范围是()
A.a<0B.a<2C.0<a<2B.a<0或a>2
(2)以A、B为相邻两个极点的正方形的边长为_________;
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
人教版七年级下册数学知识点归纳:第七章平面直角坐标系
精品基础教育教学资料,仅供参考,需要可下载使用!人教版七年级下册数学知识点归纳第七章平面直角坐标系7.1 平面直角坐标系(一) 有序数对1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
(二)平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。
向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
(三)象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取相同的单位长度。
2.象限的特点:1、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
(完整版)初中七年级下册平面坐标系数学附答案解析
一、选择题1.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为( )A .(2018,0)B .(1008,1)C .(1009,1)D .(1009,0) 2.如图所示在平面直角坐标系中,一个动点从原点O 出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点()10,2A ,()21,2A ,()31,0A ,()42,0A ,()52,2A ,则点2019A 的坐标是( )A .()1009,0B .()1009,2C .()1008,2D .()1008,0 3.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点()1A 0,1,()2A 1,1,()3A 1,0,()4A 2,0,⋯那么点4n 1A (n +为自然数)的坐标为( )(用n 表示).A .()2n 1,1-B .()2n 1,1+C .()2n,1D .()4n 1,1+ 4.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为( )A .(504,504)B .(﹣504,504)C .(﹣504,﹣504)D .(﹣505,504) 5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1 6.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .57.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 4的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( ) A .(-3,3) B .(-2,2) C .(3,-1) D .(2,4) 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为()()()1,0,2,0,2,1,()()()1,1,1,2,2,2……根据这个规律,第2021个点的坐标为( )A .()45,4B .()45,5C .()44,4D .()44,5 9.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A.1 B.﹣1010 C.1011 D.202110.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC 的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)二、填空题11.如图,一个点在第一,四象限及x轴上运动,在第1次,它从原点运动到点(1,﹣1),用了1秒,然后按图中箭头所示方向运动,即(0,0)→(1,﹣1)→(2,0)→(3,1)→…,它每运动一次需要1秒,那么第2020秒时点所在的位置的坐标是__.12.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,x k=x k﹣1+1﹣5([15k-]﹣[25k-]),y k=y k﹣1+[15k-]﹣[25k-],[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,则第2019棵树种植点的坐标为_____.13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A,2A,3A,4A…表示,则顶点2018A的坐标是_____.14.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.16.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是_______________.17.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.18.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 19.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.20.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题21.如图,在平面直角坐标系中,O 为坐标原点,点(,)(,0)、A a b B c ,其中,,a b c 满足22(3)40-+-+=a b c ,D 为直线AB 与y 轴的交点,C 为线段AB 上一点,其纵坐标为t .(1)求,,a b c 的值;(2)当t 为何值时,BOC 和AOD 面积的相等;(3)若点C 坐标为(-2,1),点M (m ,-3)在第三象限内,满足MOC 5 S,求m 的取值范围.(注:MOC S 表示MOC 的面积)22.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).23.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD =2,则点D 的坐标为 . (拓展): 我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E (2,0),若F (﹣1,﹣2),则d (E ,F ) ;(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,则t = .(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,则d (P ,Q )= .24.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.25.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由;(3)点P 是直线BD 上一个动点,连接PC 、PO ,当点P 在直线BD 上运动时,请直接写出∠OPC 与∠PCD 、∠POB 的数量关系27.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴).(3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.28.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.29.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.(1)求点B 、点D 的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.①当t =1.5时,S = 平方厘米;②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定A2、A6、A10、414、…的坐标,然后归纳点的坐标的变化规律“A4n+2(1+2n,1)(n 为自然数)”,按此规律解答即可.【详解】解:由题意得:A2(1,1),A6(3,1),A10(5,1),A14 (7,1),…∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504.∵1+2×504=1009,∴A2018(1009,1).故选C.【点睛】本题考查了点坐标的规律,根据点的变化特点、归纳出“A4n+1(2n,1)(n为自然数)”的规律是解答本题的关键.2.A解析:A【分析】根据图形可找出点A3、A7、A11、A15、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(1+2n,0)(n为自然数)”,依此规律即可得出结论.【详解】解:观察图形可知:A3(1,0),A7(3,0),A11(5,0),A15(9,1),…,∴A4n+3(1+2n,0)(n为自然数).∵2019=504×4+3,∴n=504,∵1+2×504=1009,∴A 2018(1009,0).故选:A .【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+3(1+2n ,0)(n 为自然数).”是解题的关键.3.C解析:C【解析】【分析】根据图形分别求出n 1=、2、3时对应的点4n 1A +的坐标,然后根据变化规律写出即可.【详解】由图可知,n 1=时,4115⨯+=,点()5A 21,, n 2=时,4219⨯+=,点()9A 41,, n 3=时,43113⨯+=,点()13A 61,,……所以,点()4n 1A 2n 1+,, 故选C .【点睛】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n 1=、2、3时对应的点4n 1A +的对应的坐标是解题的关键.4.D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论. 本题解析:由规律可得, 2017÷4=504…1 ,∴ 点 P2017 的在第二象限的角平分线上,∵ 点 P5(−2,1), 点 P9(−3,2), 点 P13(−4,3) ,∴ 点 P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.5.D解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵202145051÷=,∴2021A 的坐标是()()5052,11010,1⨯=;故答案选D .【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.6.C解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.7.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(2,4),∴A 2(﹣3,3),A 3(﹣2,﹣2),A 4(3,﹣1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A 2021的坐标与A 1的坐标相同,为(2,4).故选:D .【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.8.A解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0, 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0,······所以第()221n -个点的坐标为:()21,0n -, ∵2452025=,∴第2025个数为:()45,0∴第2021个数为第2025个数向上推4个数,即()45,4故选:A .【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.9.A解析:A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x+++=-,⋯,1220202(20204)1010x x x∴++⋯+=-⨯÷=-,20211011x=,12320211x x x x∴+++⋯+=,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.10.A解析:A【解析】如图,经过6次反弹后动点回到出发点(0,3),周期是6,当点P第3次碰到矩形的边时,点P的坐标为:(8,3),∵2018=6⨯336+2,∴当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,点P2 018的坐标为(7,4).故答案为(7,4).点睛:周期性问题,要先找到最小周期,然后把目标数据写成周期形式,2018=6⨯336+2.二、填空题11.(2020,0).【分析】根据已知得出点的横坐标等于运动秒数,纵坐标从1,0,1,0依次循环,即可得出答案.【详解】解:∵(0,0)→(1,-1)→(2,0)→(3,1)→…,第4秒时点所解析:(2020,0).【分析】根据已知得出点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,即可得出答案.【详解】解:∵(0,0)→(1,-1)→(2,0)→(3,1)→…,第4秒时点所在位置的坐标是:(4,0),∴第5秒运动点的坐标为:(5,-1),第6秒运动点的坐标为:(6,0),第7秒运动点的坐标为:(7,1),第8秒运动点的坐标为:(8,0),∴点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,∴第2020秒时点所在位置的坐标是:横坐标为:2020,∵2020÷4=505,纵坐标为:0,∴第2020秒时点所在位置的坐标是:(2020,0).故答案为:(2020,0).【点睛】此题主要考查了数字变化规律以及坐标性质,根据已知得出点坐标的变化规律是解题关键.12.(4,404)【分析】分别根据所给的xk和yk的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[]+5[]x解析:(4,404)【分析】分别根据所给的x k和y k的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[15]+5[5]x3﹣x2=1﹣5[25]+5[15]x4﹣x3=1﹣5[35]+5[25]…x k﹣x k﹣1=1﹣5[15k-]+[25k-]∴x 1+(x 2﹣x 1)+(x 3﹣x 2)+(x 4﹣x 3)+…+(x k ﹣x k ﹣1)=1+1﹣5[15]+5[05]+1﹣5[25]+5[15]+1﹣5[35]+5[25]+…+1﹣5[15k -]+[25k -] ∴x k =k ﹣5[15k -] 当k =2019时,x 2019=2019﹣5[20185] =2019﹣5×403=4y 1=1y 2﹣y 1=[15]﹣[05] y 3﹣y 2=[25]﹣[15] y 4﹣y 3=[35]﹣[25] …y k ﹣y k ﹣1=[15k -]﹣[25k -] ∴y k =1+[15k -] 当k =2019时,y 2019=1+[20185]=1+403=404 ∴第2019棵树种植点的坐标为(4,404).故答案为:(4,404).【点睛】本题考查了如何根据坐标确定位置,根据题意发现点的横纵坐标的规律是解题的关键. 13.(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限解析:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限和所在的正方形的序号确定点的坐标.详解:由图形可知,每四个所在的象限为一个循环,下标能被4整除的点在第四象限,下标被4除余1的点在第三象限,下标被4除余2的点在第二象限,下标被4除余3的点在24;第68;…,依此类推,第n =2n .2018=4×504+2,则点2018A 在第二象限,所在正方形的边长为2×504,所以点2018A 的坐标为(-505,505).故答案为(-505,505).点睛:从图形的变体中找出点所在的象限随点的下标变化的规律,再找出每一正方形的边长随正方形的序列变化的规律.14.(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解. 详解:根据题意得,P 1(2,0),P 2(1,4),P 3(-3,3),P 4(-2,-1),P 5(2,0),P 6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P 2017与P 1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.15.(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.16.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:(45,43)【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.17.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.18.(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.19.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.20.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A 2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题21.(1)2,3,4a b c ===-;(2)当1t =时,BOC 和AOD △面积的相等;(3)m 的取值范围是4m ≤-【分析】(1)利用非负数的性质求出a ,b ,c 即可.(2)设点D 的坐标为(0,y ),根据面积关系,构建方程求出y ,再根据△BOC 和△AOD 面积的相等,构建方程求出t 即可.(3)分两种情形:①当-2<m <0时,如图1中,②当m ≤-2时,如图2中,根据S △MOC ≥5,构建不等式求解即可.【详解】解:(1)∵|a -2|+(b -3)2=0,又∵|a -2|≥0,(b -3)2≥0≥0,∴203040a b c -=⎧⎪-=⎨⎪+=⎩, ∴a =2,b =3,c =-4;(2)设点D 的坐标为(0,y ),则S △BOD =12×BO ×OD =12×4×y =2y , S △AOD =12x A •OD =12×2y =y , S △AOB =12×OB •y A =12×4×3=6, ∵S △BOD +S △AOD =S △AOB ,即2y +y =6,解得y =2,即点D 的坐标为(0,2),∴S△BOC=12BO•y c=12×4t=2t,S△AOD=12x A•OD=12×2×2=2,∵△BOC和△AOD面积的相等,即2t=2,解得t=1,∴当t=1时,△BOC和△AOD面积的相等;(3)①当-2<m<0时,如图1中,过点C作CF⊥y轴于点F,过点M作GE⊥y轴于点E,过点C作CG⊥x轴交GE于点G,则四边形CGEF为矩形,∵S CGEF=2×4=8,S△CFO=12×2×1=1,S△EMO=12×(0−m)×3=−32m,S△CMG=12×(m+2)×4=2(m+2),∴S△MOC=S CGEF-S△CFO-S△EMO-S△CMG=8−1−(−32m)−2(m+2)=3−12m,∵S△MOC≥5,即3−12m≥5,解得m≤-4,这与-2<m<0矛盾.②当m≤-2时,如图2中,过点C作GF⊥y轴于点F,过点M作ME⊥y轴于点E,过点M作MG⊥x轴交GF于点G,则四边形MEFG为矩形,∵S GMEF=(0-m)×4=-4m,S△CFO=12×2×1=1,S△EMO=12×(0−m)×3=−32m,S△CMG=12×(−2−m)×4=−2(m+2),∴S△MOC=S CGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−32m)−[−2(m+2)]=3−12m,∵S△MOC≥5,即3−12m≥5,解得m≤-4,综上所述,m的取值范围是m≤-4.【点睛】本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题.22.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.23.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(应用)(1)根据若y1=y2,则AB∥x轴,且线段AB的长度为|x1−x2|,代入数据即可得出结论;(2)由CD∥y轴,可设点D的坐标为(1,m),根据CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).故答案为:(1,2)或(1,﹣2).(拓展):(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案为:2或﹣2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2.当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4;当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8.故答案为:4或8.【点睛】本题是三角形综合题目,考查了新定义、两点间的距离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.24.(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论. 【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3);(2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y ,∵DM ∥x 轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,。
人教版七年级数学下册第七章《平面直角坐标系》知识梳理、考点精讲精练、课堂小测、课后作业第9讲有答案
第9讲平面直角坐标系1、有序数对:有顺序的两个数a与b组成的数对。
(1)记作(a ,b);(2)注意:a、b的先后顺序对位置的影响。
a,)(3)、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b 一一对应;其中,a为横坐标,b为纵坐标坐标;(4)、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;2、平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
构成坐标系的各种名称:水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;四个象限的特点:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负)横坐标轴上的点:(x ,0)纵坐标轴上的点:(0,y )1、平行于x 轴(或横轴)的直线上的点的纵坐标相同;2、平行于y 轴(或纵轴)的直线上的点的横坐标相同。
3、第一、三象限角平分线上的点的横纵坐标相同;4、第二、四象限角平分线上的点的横纵坐标相反。
(1)在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ;(2)在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ;(3)各象限的角平分线上的点的坐标特点:若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)
教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。
第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.
(新人教版)七年级下册数学:《坐标》教案
有序数对[导学目标]1.理解有序数对的应用意义,了解平面上确定点的常用方法2.培养学生用数学的意识,激发学生的学习兴趣.[导学重点与难点]重点:有序数对及平面内确定点的方法.难点:利用有序数对表示平面内的点.学习方法:先读书,再独立完成导学案中的要求,对学习中遇到的不理解的地方或有独到见解的地方和同学交流讨论。
也可以和老师讨论。
学习过程一、仔细阅读39页第一段和第二段内容并观察教材第39页的插图,说说“7排9号”和“9排7号”的位置有什么区别?二、中期考试后我们班要开家长会,家长的座位如果安排到你的座位上,你如何让你的家长找到你的座位。
(假如教室的座位按以前的摆放)三、教材第39页图6. 1-1中的(1,5),(2,4),(4,2),(5,6),(3,3),(6,2).的同学你能找到吗?(请在书上标出来)四、40页思考中的问题你能解决吗,解决完思考中的问题后,请回答什么叫“有序数对”,“有序”是什么意思?“数对”呢?五、请举出生活中利用有序数对的例子。
六、布置作业1、完成练习,(做到书上)2、必做题:教材第49页习题6. 1第1题(口答题改为笔答题);第46页变换甲乙的位置后,要求既在图上画出从甲到乙的路线,又用教材的方法表示出从甲到乙的路线.3、选做题:在下图中,甲从(4,2)的位置出发,按(2,2)->(2,6)->(5,6) ->(5,1)->(8,1)->(8,4)->(2,4)的路线行走,请你在图2中画出这条路线.谈谈这节课后的收获:坐标方法的简单应用学习目标:用坐标表示地理位置。
能在方格纸中建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;结合实例,了解可以用不同的方式确定物体的位置。
课前练习1、(1)请说出以下列各个序数对为坐标的点分别在哪一个象限?A(-4,-2)、B(2,-3)、C(4,3)、D(-5,2)、E(0,-4)、F(-2,0)、G(0,0)新课探索1.某学校利用平面直角坐标系画出的平面图,如果教学楼和实验楼的坐标分别为(1,2),(7,3),图书馆的地点是(6,6),请你在图中标出图书馆的位置.2.小杰与同学去游乐城游玩,他们准备根据游乐城平面示意图安排游玩顺序. (1)如果用(8,5)表示入口处的位置,(6,1)表示高空缆车的位置,那么攀岩的位置如何表示?(4,6)表示哪个地点?(2)你能找出哪个游乐设施离入口最近,哪个游乐设施离入口最远吗?(3)请你帮小杰设计一条游玩路线,与同学交流,看谁设计的路线最短?请归纳利用平面直角坐标系绘制区域内一些地点分布情况图的过程。
新人教版七年级下册数学教材配题-第7章平面直角坐标系
新人教版七年级上册数学教材配题第七章 平面直角坐标系在建国60周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?7.1.1有序数对P65--思考:怎样确定教室里座位的位置?排数和列数的先后顺序对位置有影响吗?假设我们约定“列数在前,排数在后”,请你在图7.1-1上标出被邀请参加讨论的同学的座位。
练习:如图,甲处表示2街与5巷的十字路口,乙处表示5街与2巷的十字路口。
如果用(2,5)表示甲处的位置,那么“()()()()()()()2,53,54,55,55,45,35,2→→→→→→”表示从甲处到乙处的一种路线。
请你用这种形式写出几种从甲处到乙处的路线。
7.1.2平面直角坐标系P66--思考:类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢(例如图7.1-3中A,B,C,D各点)?P67--思考:原点O的坐标是什么?X轴与y轴上的点的坐标有什么特点?例在平面直角坐标系(图7.1-6)中描述下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4)。
P68--探究:如图7.1-7,正方形ABCD的边长为6,如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,那么y轴是哪条线?写出正方形的顶点A,B,C,D的坐标。
请另建一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?与同学们交流一下。
练习1、写出图中点A,B,C,D,E,F的坐标。
2、在图中描出下列各点:L(-5,-3),M(4,0),N(-6,2),P(5,-3,5),Q(0,5),R(6,2)。
习题7.1复习巩固1、如图,写出表示下列各点的有序数对:2、根据点所在的位置,用“+”“-”填表。
点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限3、如图,写出其中标有字母的各点的坐标,并指出它们的横坐标和纵坐标。
4、在平面直角坐标系中,标出下列各点:点A在y轴上,位于原点上方,距离原点2个单位长度;点B在x轴上,位于原点右侧,距离原点1个单位长度;点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;点D在x轴上,位于原点右侧,距离原点3个单位长度;点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
人教版七年级下册数学课本知识点归纳完整版(最新最全)
人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
人教版数学七年级下册知识重点与单元测-第七章7-2坐标方法的简单应用(基础巩固)
第七章平面直角坐标系7.2 坐标方法的简单应用(基础巩固)【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x +a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置例1.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.例2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是1 5,2⎛⎫--⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫--⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫--⎪⎝⎭,动物园(0,0).类型二、用坐标表示平移例3.在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.【思路点拨】首先设点A的坐标是(x,y),根据平移方法可得A的对应点坐标为(x ﹣1,y﹣4),进而可得x﹣1=2,y﹣4=﹣2,然后可得x、y的值,从而可得答案.【答案】(3,2).【解析】解:设点A的坐标是(x,y),∵将点A向左平移1个单位长度,再向下平移4个单位长度得点B,可得B的对应点坐标为(x﹣1,y﹣4),∵得到点B的坐标是(2,﹣2),∴x﹣1=2,y﹣4=﹣2,∴x=3,y=2,∴A的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).例4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E 的坐标为.【答案】D(2,2),E(3,-2).【巩固练习】一、选择题1.已知A、B两地相距10km,在地图上相距10cm,则这张地图的比例尺是( ). A.100000:1 B.1000:1 C.1:100000 D.1:10002.能确定某学生在教室中的具体位置的是()A.第3排B.第2排以后C.第2列D.第3排第2列3.如图,△COB是由△AOB经过某种变换后得到的图形,请同学们观察A与C两点的坐标之间的关系,若△AOB内任意一点P的坐标是(a,b),则它的对应点Q的坐标是( ).A.(a,b) B.(-a,b) C.(-a,-b) D.(a,-b)4.若把P(3,-1)沿y轴正方向平移2个单位长度,再沿x轴负方向平移6个单位长度得到P′,则P′的坐标为( ).A.(-3,2) B.(9,1) C.(-3,1) D.(3,-1)5.在平面直角坐标系中,将某个图象上各点的横坐标都加上3,得到一个新图形,那么新图形与原图形相比( ).A.向右平移3个单位 B.向左平移3个单位C.向上平移3个单位 D.向下平移3个单位6. 若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)二、填空题7.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在位置就获得胜利了.8.如果仅知道建筑物A在建筑物B的北偏东30°,且相距50km处,能根据A的位置确定B的位置吗? (填“能”或“不能”)9.小明从家里出发向正北方向走200m就到了学校,如果以小明家为原点,正东、正北方向分别为x轴、y轴的正方向,那么学校的位置可表示为_______;如果以学校为原点,那么小明家的位置可表示为__________.10. 通过平移把点A(1,-3)移到点A1(3,0),按同样的平移方式把点P(2,3)移到点P1,则点P1的坐标是______.11.将点P1(x,y)向右平移3个单位,得到点P2的坐标为______;将点P2再向上平移2个单位,得到点P3的坐标为________.12.某人乘坐电梯,刚进入电梯时,他的头部的坐标是(1,2),脚的坐标为(0,3),过了几秒钟后,他的头部坐标是(5,6),这时脚的坐标是________.三、解答题13.如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)14.如图,一条船从点O向北偏东37°方向航行2小时,走了50海里到达点A(30,40),然后以同样的速度向正东方向行进3小时,则船在什么位置?15.如图,在平面直角坐标系中,任意一点M(a,b)经过平移后对应点为M′(a-3,b+4),若将图中的△ABC做同样的平移,得到△A′B′C′,求A′、B′、C′的坐标.【答案与解析】一、选择题1. 【答案】C;【解析】比例尺=图上距离:实际距离,代入数据得比例尺为10:10 000 00=1:100000.2. 【答案】D.3. 【答案】D;【解析】观察图形可得,△COB与△AOB关于x轴对称,则 P (a,b)关于x轴对称点坐标为(a,-b).4. 【答案】C;【解析】沿y轴正方向平移2个单位长度则纵坐标增加2,再沿x轴负方向平移6个则横坐标减小6.5. 【答案】A.6. 【答案】A;【解析】点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣1﹣1=﹣2,故D(0,﹣2).二、填空题7. 【答案】(2,0)或(7,﹣5);8. 【答案】能;【解析】B的位置在A的位置的南偏西30°,且与A距离50km处.9. 【答案】 (0,200),(0,-200);【解析】根据题意,建立适当坐标系,从而确定要求点的位置.10.【答案】(4,6);【解析】从点A到A1点的横坐标从1到3,说明是向右移动了3-1=2,纵坐标从-3到0,说明是向上移动了0-(-3)=3,那点P的横坐标加2,纵坐标加3即可得到点P1.则点P1的坐标是(4,6).11.【答案】(x+3,y),(x+3,y+2);12.【答案】(4,7);【解析】电梯的运动相当于平移运动,头部坐标由(1,2)变为(5,6),可得平移过程:向右平移4个单位,向上平移4个单位,相应的脚的坐标 (0,3)也变为(4,7).三、解答题13.【解析】解:(1)如图可得△A′B′C′.(2)如上图,以点A为坐标原点建立平面直角坐标系,则B(1,2);B′(3,5).14.【解析】解:船3小时后距A点为502×3=75(海里),故A′(30+75,40),即A′(105,40).所以船行进3小时后的位置是(105,40).15.【解析】解: A′(2,6) B′(-6,3) C′(-2,2) .。
数学人教版七年级下册直角坐标系综合应用之: 根据三角形的面积求点的坐标
直角坐标系综合应用之:根据三角形的面积求点的坐标珠海市三灶中学梁敏珠教材分析:本章的主要内容包括平面直角坐标系有关的概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移的内容。
引出有序数对的概念,指出利用有序数对可以确定物体的位置,由此联想到是否可以用有序数对表示平面内点的位置的问题,结合数轴上确定点的位置的方法,引出平面直角坐标系,学习平面直角坐标系的有关概念,如横轴、纵轴、原点、象限,建立点与坐标的一一对应关系等,在此基础上学习平面直角坐标系在确定地理位置和表示平移变换中的应用。
在数学科学中,由于平面直角坐标系的引入,架起了数与形之间的桥梁,使得我们可以用几何的方法研究代数问题,又可以用代数的方法研究几何问题,体现了平面直角坐标系在数学中的作用。
本节课内容是在学习完整章内容的基础上引入点坐标的应用,从而提升学生对点坐标的理解与应用。
教学目标:1、通过几个已知面积求点的坐标问题引起学生对已学知识的回顾与思考;2、引导学生通过独立思考、讨论与交流掌握根据已知条件求出点坐标的方法与技巧;3、引导学生进行系统的数学活动,感受获得成功的体验,形成科学的学习习惯。
教学重点:掌握求点坐标的方法与技巧教学难点:学会分类讨论和应用方程思想教学辅助:PPT动画、平板电脑、电脑教学流程设计意图教学环节教学内容教师活动学生活动设计意图一、复习引入预计时间3分钟在平面直角坐标系中A(-2,0),B(3,0),C(-1,2)(1)点A(-2,0),B(3,0)之间的距离是5(2)点C到x轴的距离是2 ,到y轴的距离是1(3)ABC∆的面积是5思考:1、同一坐标轴上两点的距离与它们的坐标有什么关系?2、点到坐标轴的距离与它的坐标有什么关系?1、教师利用一组练习引导学生回顾知识。
2、引导学生思考已学知识的拓展。
学生跟着老师的指引回顾和思考已学知识。
1、让学生回顾巩固已学知识,加强理解记忆。
2、铺垫这节课的前奏,也为新旧知识对比迁移埋好伏笔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标法求面积教案
教学目标
知识目标:
1.掌握基本的坐标应用
2.利用坐标法求几何图形的面积
能力目标:
1.在直观的学习中发展想象能力
2.在割补法探索中拓展思维能力
情感价值观:
利用几何画板的学习体会到科技与数学的美妙结合
重点:坐标法求几何面积的方法
难点:割补法的掌握与应用
教学过程:
一、设疑引入:
本节内容与两点间距离及线段长度有密切关系,所以开始设疑,要求学生回忆绝对值的相关概念。
并会求坐标系内容易求得的线段长的基本求法。
二、出示学习目标,引出新知
三、师生共同探究一边在坐标轴上的三角形面积求法,教师引导,学生互动,并初步的学习书写步骤的规范性。
四、学生自主探究
探究内容是当三角形一边与坐标轴平行时三角形面积的求法,在本环节中,重点发挥小组合作的能力,要求学生互相探究,探究后展示汇报。
然后针对性练习与归纳。
五、小组合作交流
本环节重点研究当三角形三边都不与坐标轴平行的时候,如何求面积。
要激发小组学生互动探究的能力,让学生们在探究中体会到解题的乐趣。
教师的任务就是各小组巡回引导,适时点拨。
六、拓展提高
学生在以上活动中找到了三角形面积的求法规律,在本题中引导学生利用割补法求四边形面积,化复杂为简单。
教师让各小组中成绩好的学生起到榜样引导作用,以此帮助其他学生理解并掌握方法。
七、小结归纳:
学生们畅谈本节课所掌握的学习要点,并把割补法会应用到以后的拓展题中。