北师大九年级数学下册

合集下载

说课稿北师大版初中数学九年级下册《直线和圆的位置关系》

说课稿北师大版初中数学九年级下册《直线和圆的位置关系》

说课稿北师大版初中数学九年级下册《直线和圆的位置关系》一. 教材分析《直线和圆的位置关系》是北师大版初中数学九年级下册的一节课。

本节课主要介绍了直线和圆的位置关系,包括相离、相切和相交三种情况。

通过本节课的学习,学生能够理解直线和圆的位置关系的概念,掌握判断直线和圆位置关系的方法,并能运用到实际问题中。

二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对图形的理解和操作能力也有一定的基础。

但是,对于直线和圆的位置关系的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要结合学生的实际情况,通过适当的例子和练习,帮助学生理解和掌握直线和圆的位置关系。

三. 说教学目标1.知识与技能目标:学生能够理解直线和圆的位置关系的概念,掌握判断直线和圆位置关系的方法。

2.过程与方法目标:学生能够通过观察和操作,探索直线和圆的位置关系,培养学生的观察能力和操作能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养学生的合作意识和探究精神。

四. 说教学重难点1.教学重点:直线和圆的位置关系的概念,判断直线和圆位置关系的方法。

2.教学难点:直线和圆的位置关系的理解和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究学习法,引导学生主动参与课堂活动,培养学生的探究能力和合作意识。

2.教学手段:利用多媒体课件和实物模型,帮助学生直观地理解直线和圆的位置关系。

六. 说教学过程1.导入:通过展示一些生活中的实例,如圆形的桌面、地球仪等,引导学生观察直线和圆的位置关系,激发学生的学习兴趣。

2.新课导入:介绍直线和圆的位置关系的概念,引导学生理解直线和圆的位置关系。

3.探究活动:学生分组进行探究,通过观察和操作,探索直线和圆的位置关系,总结判断直线和圆位置关系的方法。

4.讲解与示范:教师对学生的探究结果进行讲解和示范,帮助学生理解和掌握直线和圆的位置关系。

5.练习与巩固:学生进行相关的练习,巩固对直线和圆的位置关系的理解和掌握。

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2一. 教材分析《直线和圆的位置关系》是北师大版数学九年级下册第3.6节的内容。

本节主要让学生了解直线和圆的位置关系,包括相切和相交两种情况,并掌握判断直线和圆位置关系的方法。

通过本节的学习,学生能够进一步理解直线和圆的性质,为后续解析几何的学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本性质和相互之间的交点性质。

但对于判断直线和圆位置关系的实践操作能力尚待提高,需要通过实例分析和动手操作,进一步理解和掌握。

三. 教学目标1.让学生了解直线和圆的位置关系,包括相切和相交两种情况。

2.让学生掌握判断直线和圆位置关系的方法。

3.培养学生的实践操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:直线和圆的位置关系的判断方法。

2.教学难点:如何运用位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和动手操作法,引导学生主动探究,合作交流,从而提高学生对直线和圆位置关系的理解和应用能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和教学道具。

3.安排学生在课前预习相关内容。

七. 教学过程1.导入(5分钟)通过提问方式复习直线和圆的基本性质,为新课的学习做好铺垫。

例如:“直线和圆有哪些基本的性质?它们之间有什么联系?”2.呈现(15分钟)展示直线和圆的位置关系图片,让学生观察并描述它们之间的位置关系。

接着,通过课件演示直线和圆相切、相交的动态过程,引导学生直观地理解两种位置关系。

3.操练(15分钟)让学生分组讨论,每组选取一个实例,分析直线和圆的位置关系。

学生可以利用直尺、圆规等工具进行实际操作,验证理论。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请学生上台演示刚才的操作,并讲解直线和圆位置关系的判断方法。

其他学生认真听讲,互相交流心得。

5.拓展(10分钟)出示一些实际问题,让学生运用所学知识解决。

北师大版数学九年级下册3.7《切线长定理》说课稿1

北师大版数学九年级下册3.7《切线长定理》说课稿1

北师大版数学九年级下册3.7《切线长定理》说课稿1一. 教材分析北师大版数学九年级下册3.7《切线长定理》是本节课的主要内容。

切线长定理是初中数学中的一个重要定理,它揭示了圆的切线与半径之间的关系。

在本节课中,学生将学习如何运用切线长定理解决实际问题,为后续学习圆的性质和几何问题打下基础。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,具备一定的逻辑思维能力和解决问题的能力。

但是,对于圆的切线性质和切线长定理的理解还需要进一步引导和培养。

因此,在教学过程中,需要关注学生的学习兴趣,激发他们的探究欲望,并通过实例演示和动手操作,让学生更好地理解切线长定理的应用。

三. 说教学目标1.知识与技能目标:学生能够理解和掌握切线长定理,并能够运用切线长定理解决实际问题。

2.过程与方法目标:学生通过观察、操作和思考,培养直观思维和推理能力。

3.情感态度与价值观目标:学生培养对数学的兴趣和自信心,培养合作意识和问题解决能力。

四. 说教学重难点1.教学重点:学生能够理解和掌握切线长定理,并能够运用切线长定理解决实际问题。

2.教学难点:学生对于圆的切线性质和切线长定理的理解,以及如何运用切线长定理解决复杂问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法。

2.教学手段:利用多媒体课件、几何模型和黑板进行教学。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考圆的切线与半径之间的关系,激发学生的学习兴趣。

2.探究:学生分组讨论,观察和操作几何模型,发现切线长定理的规律。

3.讲解:教师引导学生总结切线长定理的定义和证明过程,并解释切线长定理的应用。

4.练习:学生独立完成一些练习题,巩固对切线长定理的理解和运用。

5.拓展:学生分组讨论,探索切线长定理在实际问题中的应用,并进行展示和交流。

七. 说板书设计板书设计要简洁明了,突出切线长定理的主要内容。

可以采用以下板书设计:切线长定理:1.定义:从圆外一点引出的切线与圆的半径垂直。

北师大版数学九年级下册1.1《锐角三角函数》教案

北师大版数学九年级下册1.1《锐角三角函数》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长关系的数学工具。它们在解决实际问题中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的影子长度和角度,我们可以利用锐角三角函数计算出树的高度,展示其在实际中的应用。
其次,学生在小组讨论环节表现积极,但部分学生在分析问题和解决问题时仍显得不够自信。在今后的教学中,我要更加关注这部分学生的需求,多给予鼓励和指导,提高他们的自信心和解决问题的能力。
此外,实践活动环节,学生对实验操作表现出浓厚兴趣,但也有一ቤተ መጻሕፍቲ ባይዱ小组在操作过程中出现了一些错误。我觉得在下次实验操作前,可以提前进行一次简短的模拟演示,让学生更清楚地了解操作步骤和注意事项,从而提高实验的成功率。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数据分析观念:通过解决直角三角形计算问题,引导学生对数据进行整理、分析和处理,培养学生数据分析的思维方式和方法,提高解决实际问题的能力。

数学北师大版九年级下册2.30度,450度,60度角的三角函数值

数学北师大版九年级下册2.30度,450度,60度角的三角函数值
sinA和cosB,有什么关系?
A b
a
C
sinA=cosB,
tanA·tanB=1
想一想P10 2
本领大不大
悟心来当家
2
600 300
如图,观察一副三角板: 它们其中有几个锐角?分别是多少度?
(1)sin300等于多少?
(2)cos300等于多少? (3)tan300等于多少?
2
450
450
b

600

特殊角的三角函数值表
三角函数 正弦sinα 锐角α 300 450 600 余弦 cosα 正切 tanα
1 2
2 2
3 2
3 2 2 2 1 2
3 3
1
3
P13 习题1.3 1,2题
1.计算;(1)tan450-sin300; (2)cos600+sin450-tan300;
∴CA= 3 3 ∴BC=CA-BA=( 3 3 -3)米 答:路况显示牌BC的高度是( 3 3 -3)米
CA AD
小结

拓展
回味无穷
B
直角三角形中的边角关系
c
a ┌ C
300

看图说话(数形结合): 直角三角形三边的关系. 直角三角形两锐角的关系. A 直角三角形边与角之间的关系. 特殊角300,450,600角的三角函数值. 互余两角之间的三角函数关系. 450 同角之间的三角函数关系
2 2 0 2 0 2 0 4 sin 30 cos 60 2 cos 45 . 2
7 便是欣赏P11
真知在实践中诞生
例2 如图:一个小孩荡秋千,秋千链 子的长度为2.5m,当秋千向两边摆动 时,摆角恰好为600,且两边摆动的角 度相同,求它摆至最高位置时与其摆 至最低位置时的高度之差(结果精确 O 到0.01m).

2024北师大版数学九年级下册3.7《切线长定理》教案

2024北师大版数学九年级下册3.7《切线长定理》教案

2024北师大版数学九年级下册3.7《切线长定理》教案一. 教材分析《切线长定理》是北师大版数学九年级下册第3.7节的内容,主要讲述了圆的切线与圆内的点到切线的距离之间的关系。

本节内容是在学生已经掌握了圆的基本概念、切线的定义以及点与圆的位置关系的基础上进行学习的,为后续学习圆的性质和圆的方程打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对圆的概念和性质有一定的了解。

但是,对于圆的切线长定理的理解和运用还需要通过实例进行引导和巩固。

三. 教学目标1.理解切线长定理的内容,能够运用切线长定理解决实际问题。

2.培养学生的空间想象力,提高学生分析问题和解决问题的能力。

3.培养学生的团队协作能力和语言表达能力。

四. 教学重难点1.切线长定理的证明和理解。

2.运用切线长定理解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究切线长定理。

2.运用多媒体课件,直观展示圆的切线和切线长定理。

3.采用小组讨论法,培养学生的团队协作能力和语言表达能力。

4.通过实例讲解,巩固学生对切线长定理的理解。

六. 教学准备1.多媒体课件。

2.圆规、直尺、彩色粉笔。

3.练习题和实例。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一个圆和它的切线,引导学生回顾切线的定义。

然后提出问题:“圆内的点到切线的距离与切线有什么关系?”2.呈现(10分钟)利用多媒体课件呈现切线长定理的证明过程,引导学生直观地理解切线长定理。

同时,解释切线长定理的意义和应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用切线长定理进行解答。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成练习题,巩固对切线长定理的理解。

教师选取部分学生的作业进行讲解和分析。

5.拓展(10分钟)提出一些与切线长定理相关的问题,引导学生进行思考和讨论。

例如:在圆中,到一个定点等距离的点的轨迹是什么?6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调切线长定理的应用。

教案 北师大版 初中 数学 九年级 下册《直线和圆的位置关系》

教案 北师大版 初中 数学 九年级 下册《直线和圆的位置关系》

教案北师大版初中数学九年级下册《直线和圆的位置关系》一. 教材分析北师大版初中数学九年级下册《直线和圆的位置关系》一课,主要让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念,并会运用这些概念解决实际问题。

这一内容是初中数学的重要知识,对学生形成数学思想有重要作用。

二. 学情分析九年级的学生已经掌握了基本的代数知识和几何知识,具备一定的逻辑思维能力。

但是,对于直线与圆的位置关系的理解,需要借助具体的图形和实际问题来帮助学生建立直观的认识。

三. 教学目标1.让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2.培养学生运用直线与圆的位置关系解决实际问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:直线与圆的位置关系,直线与圆相交、相切、相离的概念。

2.教学难点:如何让学生理解并运用直线与圆的位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,以学生为主体,教师为引导,通过具体的图形和实际问题,引导学生探索直线与圆的位置关系。

六. 教学准备1.教学素材:直线与圆的位置关系的图形、实际问题案例。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过展示直线与圆的位置关系的图形,引导学生观察和思考直线与圆的位置关系,激发学生的学习兴趣。

2.呈现(10分钟)呈现直线与圆相交、相切、相离的定义,让学生理解直线与圆的位置关系。

通过具体的图形和实际问题,让学生感受直线与圆的位置关系在实际中的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用直线与圆的位置关系进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生在课堂上展示自己的解题过程和答案,其他学生进行评价和提问。

教师总结学生的解题方法,并进行点评。

5.拓展(10分钟)让学生思考直线与圆的位置关系在生活中的应用,可以提出新的问题,进行讨论和解答。

九年级数学北师大版初三下册--第一单元1.4 解直角三角形 课件

 九年级数学北师大版初三下册--第一单元1.4  解直角三角形 课件

∵AB=1,sin B=
2, 42
2
∴AD=AB·sin B=1×

4
. 4
∴BD=
AB2 AD2
12
2 2 4
14 , 4
CD= AC 2 AD2
2 2 2
30
2
4
. 4
∴BC= CD BD
30
14
30 14 .
44
4
总结
知3-讲
通过作垂线(高),将斜三角形分割成两个直角三角 形,然后利用解直角三角形来解决边或角的问题,这种 “化斜为直”的思想很常见.在作垂线时,要结合已知 条件,充分利用已知条件,如本题若过B点作AC的垂线, 则∠B的正弦值就无法利用.
A.2 3
B.2 2
C. 11
4
D. 5 5
4
(来自《典中点》 )
知2-导
知识点 2 已知一边及一锐角解直角三角形
已知直角三角形的一边和一锐角,解直角三角
形时,若已知一直角边a和一锐角A: ① ∠B=90 °-

A;②c=
a ;③b sin A
a tan
. A
若已知斜边c和一个锐角A: ① ∠ B=90°- ∠ A;
则∠A的度数为( D )
A.90°
B.60°
C.45°
D.30°
(来自《典中点》 )
知1-练
2 在△ABC中,∠C=90°,AB=4,AC=3,欲求 ∠A的值,最适宜的做法是( C ) A.计算tan A的值求出 B.计算sin A的值求出 C.计算cos A的值求出 D.先根据sin B求出∠B,再利用90°-∠B求出
解:在Rt△ABC中,∠B=90°,

北师大版九年级下册数学教案:2.2二次函数的图像和性质

北师大版九年级下册数学教案:2.2二次函数的图像和性质
2.培养学生运用数形结合思想分析二次函数图像,提升几何直观和空间想象能力。
3.培养学生通过探索二次函数图像的规律,培养数据分析观念和推理能力,增强问题解决策略。
4.培养学生在研究二次函数过程中,形成合作交流、勇于探究的学习态度,提高数学学习兴趣和信心。
5.通过对二次函数图像和性质的深入学习,培养学生数学建模素养,为解决实际生活中的问题奠定基础。
三、教学难点与重点
1.教学重点
-函数图像的绘制:重点讲解如何根据二次函数的一般形式准确绘制出函数图像,包括确定顶点、开口方向等。
-二次函数的性质:强调二次函数图像的对称性、开口方向、最值、增减性等核心性质。
-图像与性质的相互关系:通过实例分析图像特征与函数性质之间的关系,如顶点坐标与最值的关系,a的符号与开口方向的关系。
-理解a对图像的影响:学生需要理解a的值不仅影响图像的开口方向,还决定了图像的“胖瘦”,即函数的增长速率。
举例:
-难点1:对于图像y = ax^2 + bx + c,学生可能难以理解为何顶点坐标可以通过方程的系数直接计算得出。教学中需要通过图示和具体例子来解释这一关系。
-难点2:在理解二次函数的对称性时,学生可能难以将对称轴的概念与实际图像联系起来。可以通过绘制具体的图像,并引导学生观察对称轴与图像的关系来突破这一难点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、图像的绘制和性质分析。同时,我们也通过实践活动和小组讨论加深了对二次函数应用的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

【完整版】北师大版九年级下册数学第一章 直角三角形的边角关系含答案

北师大版九年级下册数学第一章直角三角形的边角关系含答案一、单选题(共15题,共计45分)1、如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ,②sinα>sinβ,③cosα>cosβ.正确的结论为()A.①②B.②③C.①③D.①②③2、如果∠A为锐角,sinA=,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60° D.60°<∠A<90°3、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4 米B.6 米C.12 米D.24米4、如图,在▱ABCD中,,,分别切边AB,AD于点E,F,且圆心O恰好落在DE上现将沿AB方向滚动到与边BC相切点O在的内部,则圆心O移动的路径长为A.4B.6C.D.5、如图,在△ABC中,∠C=90o, AC=3,BC=4,则sinB的值是()A. B. C. D.6、勾股定理有着悠久的历史,它曾引起很多人的兴趣.英国佩里加(H.Perigal,1801﹣1898)用“水车翼轮法”(图1)证明了勾股定理.该证法是用线段QX,ST,将正方形BIJC分割成四个全等的四边形,再将这四个四边形和正方形ACYZ拼成大正方形AEFB(图2).若AD=,tan∠AON=,则正方形MNUV的周长为()A. B.18 C.16 D.7、如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标=(x>0)的图象上,顶点B在原点,斜边AB垂直x轴,顶点A在函数y1=(x>0)的图象上,∠ABO=30°,则=()函数y2A.﹣B.﹣C.﹣D.﹣8、如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A. B. C.1600sinα(m 2) D.1600cosα(m 2)9、如图,的顶点都是正方形网格中的格点,则等于()A. B. C. D.10、如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. B. C. D.111、小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. B. C. D.12、sin45°=()A. B. C.1 D.13、如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100 mB.50 mC.50 mD. m14、如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B. C. D.15、如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米.若梯子与地面的夹角为,则梯子顶端到地面的距离BC为()A. 米B. 米C. 米D. 米二、填空题(共10题,共计30分)16、在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是________.17、如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 米,背水坡CD的坡度i=1:(i为DF与FC的比值),则背水坡CD的坡长为________米.18、在Rt△ABC中,,BC=2,,则AB=________19、已知⊙O半径为,AB是⊙O的一条弦,且AB=3,则弦AB所对的圆周角度数是________.20、小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC 上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=________21、在Rt△ABC中,∠C=90°,sinA=,则tanA=________.22、在Rt△ABC中,∠C=90°,2a=c,则∠A=________23、如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA=________24、将矩形纸片ABCD按如图M2-5方式折叠,M,N分别为AB,CD的中点。

三角函数的应用-九年级数学下册课件(北师大版)

三角函数的应用-九年级数学下册课件(北师大版)
【详解】
解:设 = 米,由题意得: ⊥ ,∠ = 30°,∠ = 45°,
∴∠ = ∠ = 90°,∴ =
∵ + = = 100米,∴
3
3
3
3
=
3
3
米, = = 米,
+ = 100,解得: = 150 − 50 3,
参考数据: ≈1.414, ≈1.732
【详解】
解:在Rt△CDE中,


∵sin∠C= ,cos∠C=,
1
3
2
∴DE=sin30°×DC=2×14=7 m ,CE=cos30°×DC= ×14=7 3≈12.124≈12.12 m ,
∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m,
解法2:如图,根据题意知,∠A=30º,∠DBC=60º,AB=50m.
则∠ADC=60º,∠BDC=30º, ∴∠BDA=30º
∴∠A=∠BDA∴BD=AB=50
在Rt△DBC中,∠DBC=60º则sin60º=
∴DC=50×sin60º=25 3 ≈43 m
答:该塔约有43m高

50
30º
50 m
∵直角三角形中30°角所对的边是斜边的一半∴AC=240 m
∴设BD=x,则AB=2x,由勾股定理得2 = 2 + 2
B
α
A β
D
解得x= 40 3 m,同理求得DC= 120 3 m
则BC=BD+DC=160 3≈277 m 答:楼高277米
俯角
C
水平
线
情景引入
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。

北师大数学初三下册课件《哪种运算更合算》

北师大数学初三下册课件《哪种运算更合算》

黄 黄

绿
绿
绿
绿
图1
Hale Waihona Puke 想一想(1)把转盘改成图2的转盘,如果转盘停止后,指 针正好对准红色、黄色、绿色区域,那么顾客仍分 别获得100、50元、20元的购物券.与图1的转盘相比, 用哪个转盘对顾客更合算?
黄 红
黄 绿
黄 黄

绿绿 绿
绿
绿
绿
绿
图1
图2
想一想
(2) 若改成图3的转盘呢?
黄 红
黄 绿
黄 黄绿 绿

某商场为了吸引顾客,设立了一个可以自由转动的转 盘(如图),并规定:顾客每购买100元的商品,就 能获得一次转动转盘的机会 .如果转盘停止后,指针 正好对准红色、黄色、绿色区域,那么顾客就可以分 别获得100元、 50元、 20元的购物券,凭购物券可 以在该商场继续购物.如果顾客不愿意转转盘,那么 可以直接获得购物券10元.转转盘和直接获得购物券, 你认为哪种方式对顾客更合算
3. 爱岗敬业,教书育人。为师者,一言一行都会对学生产生深远的影响,特别是师 范类学生,自己的形象会对他们日后的教学方式、工作态度产生潜移默化的影响。所以, 作为师范要时刻谨记我们面对不是眼前的这一名学生,而是他们背后的几代人。所以对 于自己的爱岗敬业提出了更高的要求,应该以近乎完美的苛刻标准来要求自己,评判自 己的工作,塑造自己形象,要做一个甘于物质清贫而精神富足的人。
九年级数学(下)第四章 统计与概率
4.2 哪种方式更合算
也许你曾被大幅的彩票广告所吸 引,也许你曾经历过各种摇奖促 销活动。你想知道哪种方式对顾 客更合算吗?
让我们一起去研究其中的奥秘 吧!
问题情境:
某商场为了吸引顾客,设立了一个可以自由转动的转盘, 并规定:顾客每购买100元的商品,就能获得一次转动 转盘的机会,如果转盘停止后,指针正好对准黄色区域, 那么顾客就可以获得50元的购物券,凭购物券可以在该 商场继续购物,如果顾客不愿意转转盘,那么可以直接 获得购物券20元,转转盘和直接获得购物券,你认为哪 种方式对顾客更合算?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大九年级数学下册
课题第三章圆
7.弧长及扇形的面积
教学反思
洋县贯溪初中杨小芳
这一课后我意识到自己在教学的道路上要学的太多了,深深的感到:要想上一堂好课,不仅需要教师的教学热情,更需要教师有引导学生自主参与学习活动的教学技巧,在师生的共同努力下,才能使数学教学成为真正的数学活动的教学。

(一)、这节课中,我主要在以下几个方面做了努力
1、创设情境,激发学生兴趣。

利用学生熟悉的“投掷铅球”创设情境,这样就拉近了抽象的数学问题和实际生活的距离,使数学回归生活,在整个教学活动中,从新课的引入到探索公式都是从学生的生活实际选择学习材料。

这些素材,体现了学习内容的趣味性,调动了学生原有的生活经验,使学生觉得生活就在自己身边,利用数学本身的魅力来吸引学生,让学生在生活中体验数学,同时培养了学生的动脑、动口、观察、交流、总结等能力。

2、学生的“自主探究活动”贯穿整节课。

我以“交流探索法”贯穿整节课,让学生自己获得新知,加深学生对所学内容的理解。

让学生在探索中体验,在体验中领悟,由生活中实例,到抽象的几何图形,自然过度、水到渠成。

3、小组合作学习。

小组合作学习的实践活动让学生自然的成了学习的主人,有效地提高了主动探索、解决问题的能力。

而在让他们分组讨论的时候,绝大部分的同学呈现出积极的主动性,教师在适当的时候给予了他们的肯定和鼓励。

4、教师对学生的评介。

在探讨弧长、扇形面积的关系时有学生发现了扇形面积公式与三角形的面积公式之间的相似性,教师在此大大表扬了该同学,同时指出当新知与旧知出现相似性时应要注意产生联想。

(二)、不足之处:
在分组探索的时候,时间把握不够好,教师忽略了学生存在着个别差异,各组学生的
已有学习经验和能力是不同的,这时教师应综合各组解决问题的程度,适时进行调控,然后在反馈环节中让学生进行交流也能达到预期的效果。

(三)、今后努力的方向:
1、教师一定要起到引导者的作用,《新课程标准》指出:数学教学注重“引导”学生动手实践,自主探究,合作交流。

如,在提问长方形和正方形异同点时,不让他们马上起来回答,因为在这么仓促的时间内作答,学生的回答十有八九是零碎而不完整的,而引导小组进行讨论,共同分析,找出长方形与正方形的异同,让学生考虑周全些,语言组织精炼些,这时再做出回答,肯定会很精彩。

2、教师在指导,引导,协助学生学习数学时,要善于调配学生活动的步伐,要善于调控数学活动的时间。

对每个环节所用的时间要心中有数,这样,才能使自己的设计发挥更大的作用。

3、教师要善于使用激励性语言,鼓励那些参与程度不高,操作速度慢的学生,使自己的教学面向全体。

们上体育课掷铅球练习时,要在指定的圆圈内进行,这个圆的直径是2.135m。

这个周长与面积是多少呢?。

相关文档
最新文档