圆锥曲线关于面积的最大值
高中数学-圆锥曲线中的定点、定值与最值问题
[例 2] 如图,在平面直角
坐标系 xOy 中,椭圆xa22+by22=1(a>b>0)的左、
右焦点分别为 F1(-c,0),F2(c,0).已知点(1,e)
和e,
23都在椭圆上,其中
e
为椭圆的离心率.
(1)求椭圆的方程;
(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直
线 BF2 平行,AF2 与 BF1 交于点 P,
法二:同(2)法一假设前内容. 假设平面内存在定点M满足条件,由图形对称性知,点M 必在x轴上. 取k=0,m= 3,此时P(0, 3),Q(4, 3), 以PQ为直径的圆为(x-2)2+(y- 3)2=4, 交x轴于点M1(1,0),M2(3,0); 取k=-12,m=2,此时P1,32,Q(4,0), 以PQ为直径的圆为x-522+y-342=4156, 交x轴于点M3(1,0),M4(4,0).
因为 MP =-4mk-x1,m3 , MQ =(4-x1,4k+m), 由 MP ·MQ =0,得-1m6k+4kmx1-4x1+x12+1m2k+3=0, 整理,得(4x1-4)mk +x12-4x1+3=0.(**) 由于(**)式对满足(*)式的m,k恒成立, 所以4x1x2-1-4x41=+03,=0, 解得x1=1. 故存在定点M(1,0),使得以PQ为直径的圆恒过点M.
圆锥曲线中的最值问题
[例3] 如图,在直角坐标系xOy中,点 P1,12到抛物线C:y2=2px(p>0)的准线的距 离为54.点M(t,1)是C上的定点,A,B是C上的 两动点,且线段AB被直线OM平分.
(1)求p,t的值; (2)求△ABP面积的最大值.
[思路点拨] (1)利用点M(t,1)在曲线上及点P 1,12 到准线的距 离为54求p与t的值;
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
圆锥曲线中的最值问题
面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。
圆锥曲线大题专题及答案
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题
(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)
圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件
当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
微专题-圆锥曲线中的最值问题(解析版)
专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。
圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,2x 2-),B (x 0,-20x 2-),OAO B ⋅ =2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥, 当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x20)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。
圆锥曲线经典题型总结(含答案)
圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。
2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。
2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)
圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。
圆锥曲线 基础知识 技巧套路 题型结论 极点极线
圆锥曲线基础知识技巧套路题型结论极点极线圆锥曲线是解析几何中的重要组成部分,它包括椭圆、双曲线和抛物线。
掌握圆锥曲线的基本知识和解题技巧,对提高数学素养和解题能力具有重要意义。
本文将为您详细介绍圆锥曲线的基础知识、技巧套路、题型结论以及极点极线的应用。
一、基础知识1.定义:圆锥曲线是平面与圆锥面的交线。
根据平面与圆锥面的相对位置关系,可分为椭圆、双曲线和抛物线三种类型。
2.标准方程:- 椭圆:x^2/a^2 + y^2/b^2 = 1(a > b > 0)- 双曲线:x^2/a^2 - y^2/b^2 = 1(a > 0, b > 0)- 抛物线:y^2 = 2px(p > 0)或x^2 = 2py(p > 0)3.基本性质:- 椭圆:对称性、有界性、顶点、焦点、准线等;- 双曲线:对称性、无界性、顶点、焦点、准线等;- 抛物线:对称性、有界性、顶点、焦点、准线等。
二、技巧套路1.椭圆:- 求解椭圆上的点P(x, y)到焦点F1、F2的距离之和:|PF1| + |PF2| = 2a(椭圆的长轴)- 椭圆的切线方程:y = kx + m,代入椭圆方程,求解k和m。
2.双曲线:- 求解双曲线上的点P(x, y)到焦点F1、F2的距离之差:|PF1| - |PF2| = 2a(双曲线的实轴)- 双曲线的切线方程:y = kx + m,代入双曲线方程,求解k和m。
3.抛物线:- 抛物线的焦点:F(p/2, 0)(对于y^2 = 2px)或F(0, p/2)(对于x^2 = 2py)- 抛物线的切线方程:y = kx + m,代入抛物线方程,求解k和m。
三、题型结论1.椭圆:- 线段长度的最大值和最小值:与椭圆的长轴和短轴有关;- 面积的最大值和最小值:与椭圆的长轴和短轴有关。
2.双曲线:- 线段长度的最大值和最小值:与双曲线的实轴和虚轴有关;- 面积的最大值和最小值:与双曲线的实轴和虚轴有关。
圆锥曲线面积公式
圆锥曲线面积公式圆锥是一种三维曲面,它具有非常独特的性质,是许多几何结构中常见的几何形状之一。
它是由一个圆和一条接近它的直线组成的,其特性可以用一种称为“圆锥曲线面积公式”的公式来描述。
圆锥曲线面积公式是描述圆锥形状及其面积的一种经典几何公式。
其中,圆锥体的表面积可以用以下公式表示:S =r(h + r)其中,r表示圆锥底部圆的半径,h表示圆锥高度,π表示3.1415926。
圆锥曲线面积公式是世界上最常用的一个几何公式,它可以用来解决圆锥的表面积、体积和对称性等相关问题。
在建筑设计、医学技术和其他多种应用领域,圆锥曲线面积公式在图形绘制和几何处理方面都被广泛使用。
在高等数学中,圆锥曲线面积公式也被广泛应用,它可以帮助数学家们求解许多复杂的几何问题。
举个例子,假设有一个圆锥体,它底部半径为5,高度为10,则根据圆锥曲线面积公式,它的表面积为π5(10+5),也就是785.398163。
圆锥曲线面积公式也可以用来解决另一种复杂的几何问题,那就是求解圆锥体的体积。
圆锥体的体积是由底面圆和圆锥面积之积所得,因此,圆锥体的体积公式可以用以下公式表示:V=rh/3,其中,r表示圆锥底部圆的半径,h表示圆锥高度,π表示3.1415926。
举个例子,假设有一个圆锥体,其底部半径为5,高度为10,则根据圆锥体的体积公式,它的体积为π510/3,即261.7990512。
圆锥曲线面积公式不仅可以用于解决圆锥底部半径、高度和面积、体积等问题,还可以用于解决其他一些几何问题,比如计算圆锥面积的分段函数,以及计算平面内的圆锥的平行于底面的线段的长度。
圆锥曲线面积公式可以让数学家们知道如何去计算几何图形,为科学家们在多个学科领域工作提供了极大的帮助。
总之,圆锥曲线面积公式是一种经典的几何公式,用于描述圆锥曲线的面积及其相关特性,它可以用来解决圆锥表面积、体积、分段函数等多种复杂的几何问题,并且在建筑设计、医学技术和其他多种应用领域中被广泛使用,为科学家们工作提供了极大的帮助。
圆锥曲线面积最值秒杀解法_概述及解释说明
圆锥曲线面积最值秒杀解法概述及解释说明1. 引言1.1 概述在数学中,圆锥曲线是一类由一个平面和一个点来确定的曲线。
它包括了圆、椭圆、双曲线和抛物线等不同的类型。
这些曲线在科学、工程和经济等领域中广泛应用。
本文将重点讨论圆锥曲线面积最值问题的解法。
通过寻找圆锥曲线在特定条件下的最大或最小面积,我们可以得到很多有用的结论和应用。
1.2 文章结构本文分为五个主要部分。
首先是引言部分,简要介绍了文章的背景和目标。
接下来,我们将概述并说明解决圆锥曲线面积最值问题的传统方法,包括定义和性质以及最值问题的背景和意义。
然后,我们将详细介绍一种名为“秒杀解法”的新方法,该方法可以快速有效地求解圆锥曲线面积最值问题。
我们将阐述其基本思路、原理,并提供完整演算步骤及示例证明。
在第四部分中,我们将通过实际应用案例研究来验证该秒杀解法的可行性和效果。
这些案例包括工程设计领域的成功实践、经济学模型中的应用和地理信息系统中的空间分析优化。
最后,在结论与展望部分,我们将对整篇文章进行总结,并提出未来研究的方向和展望。
1.3 目的本文的主要目的是介绍一种针对圆锥曲线面积最值问题的新方法——秒杀解法。
通过探讨传统方法和秒杀解法,我们可以深入了解圆锥曲线在不同领域中的应用和意义。
通过具体案例研究,我们将证明秒杀解法在实际问题中的可行性和有效性。
同时,本文也希望能够激发更多关于圆锥曲线面积最值问题求解方法的研究,为相关学科提供更多应用价值和理论支持。
2. 圆锥曲线面积最值秒杀解法概述和说明2.1 圆锥曲线的定义和性质圆锥曲线是指在三维空间中,由一个点(焦点)和一条直线(准线)决定的一类曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
每种圆锥曲线有其独特的性质,如焦点与准线之间的距离关系、离心率等。
2.2 最值问题的背景和意义在数学中,最值问题是指求解函数在某个区间内取得最大或最小值的问题。
对于圆锥曲线而言,我们希望找到使其面积达到最大或最小值的条件和方法。
圆锥曲线中的最值、范围、证明问题
第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。
圆锥曲线中求三角形面积取值范围问题
圆锥曲线中求三角形面积取值范围问题1、已知为坐标原点,定点,点分别在,轴上运动且.动点满足.设点的轨迹为曲线.直线交曲线于另外一点.(1)求曲线的方程, (2)求面积的最大值.解:的轨迹方程即为曲线整理可得:,相关点法求解析式、、设点C y x y x AB y n x m y n y x m x y n x PB y m x AP y x P n B m A 19256496425648)(3858)(5353),(),,(),(),0()0,()1(2222=+=+∴=⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧-=-=-∴--=-=∴ )37116195.72418024169211619(1161911801161991180259190225910081368164812259)259(814722)1(25981,2597208172)259(19254)1(2)(4214),,(),,()2(222222222222222222221221222221212211”成立时“即当且仅当,式可得:带入联立的面积方程为:设直线设点=±=+=+=≤=⨯≥++++++⨯=++++⨯=++⨯⨯=+⨯+⨯+⨯⨯=++⨯⨯+⨯=+-=⋅+-=+∴=-++⇒⎪⎩⎪⎨⎧=++=-=+⨯⨯=∆∴+=k k k k k k k k k k k k k k k k k k S k y y k k y y ky y k y x ky x y y y y S OPQ ky x PM y x Q y x P求面积最值问题,需要先把面积表示出来,之后就可以看出如何计算更加简洁。
此题列出式子后可以看出直线反设O )0,4(M B A ,x y 8=AB P →→=PB AP 53PC PM C Q C OPQ ∆会更加简单,另外计算时数字比较大,但是找出公因数再计算就会非常简单,切忌硬来。
2、在平直角坐标系中,已知椭圆的离心率,且椭圆过点(1)求椭圆的方程;(2)直线的斜率为,直线与椭圆交于两点,求面积的最大值。
【高考数学经典习题】圆锥曲线压轴题(含答案)8
【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。
圆锥曲线中三角形面积的最值求法探析
置关 系 , 有较 大 的计 算 量 , 须 具 备 足 够 的数 学 素 养 和
计 算 功底 才 能解答 完 整. 变 式练 习 已知 F 、 F 2 分别 是 椭 圆 c: + 一1
合思 想 、 化 归与转 化 思想 , 符 合考 试 大纲 中 “ 对数 学能
力 的 考 查 要 以数 学 基 础 知 识 、 数 学 思 想 和 方 法 为 基 础” 的要 求 . 下 面 以椭 圆 为 载 体 例 析 圆 锥 曲线 中三 角 形 面积 的最 值求 法 , 帮 助 同学们 归纳 总结 .
( 1
) [
一
] 一
3 ( 忌 +1 ) ( 9 k + 1 ) ( 3 k2 +1 ) 0 ‘
当k : / : o时 , 式① 等 价于 3 +
则式 ① ≤3 +
,
②
过定点 D( 1 2 / 5 , 0 ) , 从而选择 s △ 仙 一÷ f D C f f y 一
f 一 √ 2 时, 等式成立 , 故( S △ P F F 2 ) 一√ 2 . 此时 , 椭z + 代 入椭 圆方 程 , 整理 得
( 3 k 十 1 ) z +6 k m x+ 3 m 一3 —0 .
由根 与 系数 的关 系得
1 ) 、
z
) . 联立 方程
消去 z得
当 时 若 不 登 高 望 , 谁 知 东 流 海 样 深
吖I . . 数 2 3
一
( 3 ) 当 n - - 2 时 , S △ P F F 。 一 1 l F F 1 . 譬 6 一 譬 c b ,
走 z 由 已 知
一 , 得 m 一导 + 1 ) .
所 以 S A P F 1 F 2 ≤ 譬 × 一 n z 一 , 当 且 仅 当 6 一
圆锥曲线的最值问题常见类型及解法
例1: 在圆x2+y2=4上求一点P,使它到直线L:3x-2y-16=0的距离最短。
略解:
圆心到直线L的距离d1=
所以圆上的点到直线的最短距离为 d=d1-r
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
16 32 22
16 13 13
16 13 2 13
思考: 例1是否还有其他解题方法?
∵ |AF’|=
[1(4) ]2 1 26
∴ |MF|+|MA| 的最大值为 问题:本题解题到此结束了吗?
10 26
最小值为
10 26
变式训练:
1 . 已知P点为抛物线
上的点,那么P点到点Q(2,-1)的距离与P点到抛物线焦点的距
离之和的最小值为 _ __,此时P点坐标为
y_. 2 4 x
y
x Q
3
,面积为
的等腰梯形. (1)求椭圆的方程; (2)过点F1的直线和椭圆交于两点A、B,求
33
F2AB面积的最大值.
练习、设椭圆中心在坐标原点A(2,0)、B(0,1)是它的两个顶点,直线 两点,求四边形AEBF面积的最大值.
ykx (k0)
y
与椭圆交于E、F
思维导图: 用k表示四边形的面积
B F
yx2 3
解:设椭圆与
平y行的切x线方程2为 3
y xb
y xb
x2 2
y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2) 0
b 3
1)当b
3时,代入(1)得dmin
6; 2
2)当b
3时,代入(1)得dmax
3 6. 2
变式训练:
圆锥曲线面积最值问题
面积最值问题1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。
这样可以使函数解析式较为简单,便于分析例1已知椭圆()的一个顶点为,离心率为,直线()与椭圆交于,两点,若存在关于过点的直线,使得点与点关于该直线对称. (I )求椭圆的方程; (II )求实数的取值范围;(III )用表示的面积,并判断是否存在最大值.若存在,求出最大值;若不存在,说明理由.,可得:C:22221x y a b+=0a b >>()0,1M-3:l y kx m =+0k ≠C A B M AB C m m ∆MAB SS ()()()()()()2121212121212020x x x x y y y y x x k y y +-+++-=⇔++++=,则有:(),故(III )法一(面积转化为弦长):,到的距离,2262203131km m k k k ⎛⎫-++= ⎪++⎝⎭22311m k =+>0k ≠()1122022m m m ∆=->⇔<<()()()22212122122131m m x x y y kk -AB =-+-=++A :l y kx m =+d =1122S d ∆MAB=AB =,设,,则,所以在上是减函数,所以面积无最大值.法二(面积坐标化公式):易得向量,,则有,因,在上均为减函数,则在上均为减函数,所以面积无最大值.可得的面积的取值范围为.点评:(1)第二小问分为两个操作程序:①据对称性得到直线斜率与截距之间的关系;②据位置关系构建直线斜率与截距之间的不等关系.点关于直线对称的转化为对称轴为垂直平分线,法一进一步转化为等腰三角形,从而线段相等,利用两点距离公式进行坐标化,化简后得到交点坐标纵横坐标之和及弦的斜率,故可以使用韦达定理整体代入.实际上所有使用韦达定理整体代入这个处理方式的标准是题意韦达定理化:①条件与目标均能化为交点坐标和与积的形式;②横坐标纵坐标;法二则点差法处理弦中点问题.均可得到直线的斜率与截距之间的关系.构建不等式的方式:法一根据直线与椭圆的位置关系,利用判别式构建参数的不等式;法二根据点与椭圆的位置关系,利用中点在椭圆内构建参数的的不等式;故直线与椭圆相交可与点在椭圆内等价转化;(2)第三小问分成两个操作程序:①构建面积的函数关系;②求函数的值域.法一利用底与高表示三角形面积,三角形的底则为弦长,三角形高则为点线距离.法二利用三角形面积的坐标公式,不管哪种面积公式,均会出现交点坐标之差,故从整道题223234S m m ⎛⎫=+- ⎪⎝⎭()223f m m m =+-122m <<()2220f m m m '=--<()f m 1,22⎛⎫ ⎪⎝⎭S ()11,1x y MA =+()22,1x y MB =+()()()12121212122112111222m x x S x y x x y x x kx m x kx m x x ∆MAB +-=+--=+-++-=223234S m m ⎛⎫=⇒=+- ⎪⎝⎭122m <<2m 2m -1,22⎛⎫ ⎪⎝⎭223234S m m ⎛⎫⇒=+- ⎪⎝⎭1,22⎛⎫ ⎪⎝⎭S ∆MAB S 810,16⎛⎫⎪⎝⎭AB k m AB k m AB ←−−→交点在直线上AB k m m m 122112S x y x y =-全局来说,第二问使用韦达定理显得更流畅,时分比更高,所以要注意方法的选择与整合.关于分式型函数求最值,常见思路为:以分母为整体,分子常数化,往往化简为反比例函数、对勾函数及二次函数的复合函数,本题这个函数形式并不常见.特别要注意基本函数的和与差这种结构的函数,特殊情况可以直接判断单调性,这样可以避免导数过程. 变式与引申:若过点的直线交椭圆于,求四边形的面积的取值范围.例2、已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.(1)求椭圆的方程;(2)点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点, 的延长线与椭圆交于点,求面积的最大值. 【思路引导】M D D MAB ()222210x y a b a b+=>>12,F F 22e =A 2AF B AO C ABC ∆(1) 由题意得,再由, 标准方程为;(2)①当的斜率不存在时,不妨取 ; ②当的斜率存在时,设的方程为,联立方程组,又直线的距离点到直线的距离为.解析:(1) 由题意得,解得,1b =2222c e a b c a a ===+=1c =⇒2212x y +=AB ,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭122ABC S ∆=⨯=AB AB ()1y k x =-()221{ 12y k x x y =-+=⇒()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++⇒AB =0kx y k --=d ==⇒C AB2d =⇒2211122221ABCk S AB d ABCk ∆⎛⎫+=⋅=⋅=≤ ⎪+⎝⎭22b =1b =化简得,设点到直线的距离因为是线段的中点,所以点到直线的距离为,∴()2222214220k x k x k +-+-=()()221122121222422,,,,,2121k k A x y Bx y x x x x k k-+=⋅=++AB ===O 0kx y k --=d ==O AC C AB 2d =2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭综上,.【点评】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为;(2)利用分类与整合思想分当的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得 ,再求得点到直线的距离为.例3、已知点A (﹣4,4)、B (4,4),直线AM 与BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C . (1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D 、E ,求△QDE 的面积S 的最小值. 【思路引导】(Ⅰ)设,由题意得,化简可得曲线的方程为 ; (Ⅱ)设,切线方程为,与抛物线方程联立互为,由于直线与抛物线相切可得,解得,可切点==ABC ∆22x y 12+=AB 2121224k x x ,x x 2k 1+=⋅=⇒+22k 1AB 222k 1+=+C AB 22k 2d k 1=+⇒()2ΔABC22222k 11k 111S AB 2d 22222ΔABC222k 14k 142k 1⎛⎫+=⋅=⋅=- ⎪++⎝⎭+2(),M x y 44244y y x x ---=-+-C 24x y =()4x ≠±().1Q m -()1y k x m +=-()24410x kx km -++=0∆=2x k =,由,利用韦达定理,得到,得到为直角三角形,得出三角形面积的表达式,即可求解三角形的最小值.考点:直线与圆锥曲线的综合问题;轨迹方程的求解.【点评】本题主要考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点间的距离公式、三角形的面积公式、二次函数的性质等知识点的综合应用,着重考查了分析问题和解答问题的能力、推理与运算能力,试题有一定的难度,属于难题,本题的解答中把切线的方程代入抛物线的方程,利用根与系数的关系,表示出三角形的面积是解答问题的关键.例4、已知椭圆的焦距为2,离心率为.(Ⅰ)求椭圆的标准方程;()22,k k QD QE ⊥QDE∆2222:1(0)x y C a b a b+=>>e 12C(Ⅱ)过点作圆的切线,切点分别为,直线与轴交于点,过点作直线交椭圆于两点,点关于轴的对称点为,求面积的最大值. 【思路引导】(Ⅰ)由椭圆的焦点为,离心率为,求出,由此能求出椭圆的标准方程;(Ⅱ) 由题意,得、 、、 四点共圆,该圆的方程为,得的方程为,直线的方程为,设,则,从而最大, 就最大,可设直线的方程为,由,得,由此利用根的判别式、韦达定理、弦长公式,能求出的面积的最大值. 试题解析:(Ⅰ)由题意, ,解得,由,解得; 所以椭圆的标准方程为. 1,12P ⎛⎫⎪⎝⎭2212x y +=M N 、MN x E E l C A B 、E y G ΔGAB 2e 12,a b O M P n 221154216x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭O2212x y +=MN 210x y +-=()()1122,,,A x y B x y 121212GAB S GE y y y y ∆=-=-GAB S ∆12y y -l 1x my =+221{ 143x my x y =++=()2234690m y my ++-=GAB ∆22c =1c =12c e a ==2a =22143x y +=又直线与椭圆交于不同的两点,则,即,,令,则,令,则函数在上单调递增, 即当时, 在上单调递增,因此有; 所以,当时取等号. 故面积的最大值为3.【点评】本题主要考查待定系数法求椭圆的方程、韦达定理和三角形面积公式及单调性求最值,属于难题. 解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函l C 0∆>()()22636340,m m m ++>∈R 121212GABS GF y y y y ∆=⋅-=-==t =221241,134313GABt t S m t t t∆≥===+++()13f t t t =+()f t 3,3⎫+∞⎪⎢⎪⎣⎭1t ≥()f t [)1,+∞()()413f t f ≥=3GAB S ∆≤0m =GAB ∆数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、以及均值不等式法,本题(2)就是用的这种思路,利用函数单调法面积的最大值的.已知椭圆()22211x y a a+=>,(),P m n 为圆2216x y +=上任意一点,过P作椭圆的切线,PA PB ,设切点分别为()()1122,,,A x y B x y . (1)证明:切线PA 的方程为1114x xy y +=; (2)设O 为坐标原点,求OAB ∆面积的最大值.解:(1)由题,c e a ===,解得2a =.................2分 ①当10y =时,12x =± ,直线2x =±,∴24x =,代入椭圆方程得到0y =, ∴切线PA 的方程是2x =±.②当10y ≠时,联立2211440440x y x x y y ⎧+-=⎨+-=⎩,消y ,得到2211114404xx x y y ⎛⎫+--= ⎪⎝⎭,即2211222111241404x x x x y y y ⎛⎫+-+-= ⎪⎝⎭,.........................5分 所以222221111142242421111111441444144x x x x x y y y y y y y ⎛⎫⎛⎫⎛⎫∆=-+-=--+- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()2211222211114444161616160y x y y y y -=-++=-++= ∴切线PA 的方程为1114x xy y +=........................8分 (2)根据(1)可得切线PA 的方程为1114x x y y +=,切线PB 的方程为2114x xy y +=,∴11221414x my n x m y n ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线AB 方程为14mx ny +=........................9分 GAB ∆∴2214440mxny x y ⎧+=⎪⎨⎪+-=⎩,消y 得到22222241404m m x x n n n ⎛⎫+-+-= ⎪⎝⎭,∴22222221641611414m m n n AB ka n m n -++∆⎛⎫=+=+- ⎪⎝⎭+..............11分又∵原点O 到直线AB 的距离22214d mn =+,∴222222222164161111224144OABm m n nS AB d n m m n n∆-++⎛⎫==+- ⎪⎝⎭++22224444n m n m +-=+............................................13分又∵(),P m n 为圆2216x y +=上任意一点,∴2216m n +=.∴224312316OABn S n ∆+=+,令231223t n =+≥,则24444OAB t S t t t∆==++在)23,⎡+∞⎣上单调递减,所以32OAB S ∆≤...................................15分已知抛物线24y x =,焦点为F ,过点(2,0)且斜率为正数的直线交抛物线于,A B 两点,且11FA FB =-.( I ) 求直线AB 的方程;(II )设点C 是抛物线上()AB A B 不含、两点上的动点, 求ABC △面积的最大值.解:( I )设直线AB 为2(0)x my m =+>,221212(,), B(,)44y y A y y ,(1,0)F [来224x my y x =+⎧⎨=⎩ ,消x ,得2480y my --=,则212121632048m y y m y y ⎧=+>⎪+=⎨⎪=-⎩则2222222212121212121212(1,)(1,)(1)(1)14444164y y y y y y y y FA FB y y y y y y +=--=--+=-++ 21616418114m +=-+-=- 得21m =,又因为0m >,故1m =,即直线AB 的方程2xy =+,即20x y --=(II )设20(,)4y C y ,224x y y x=+⎧⎨=⎩,解得1,22y =±,故022y -<<+设点C 到直线AB的距离为022001|2||(2)3|y yy d ----== 当02y =,max d =,而||AB ==故max 1||ABC S AB d ==△ OA OB 的最大值.4OA OB =;.)()2kx m +=)22222642121m km km m k k --+=++2OA OB =)()222228221221k k k +-++,32OA OB ≤OA OB 的最大值为椭圆22221(0)x y a b a b +=>>的离心率为13,左焦点F 到直线l :9x =的距离为10,圆G :22(1)1x y -+=,(1)求椭圆的方程;(2)若P 是椭圆上任意一点,EF 为圆N :22(1)4x y -+=的任一直径,求PE PF ⋅的取值范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T ,都满足||||NF NT =若存在,求出圆M 的方程;若不存在,请说明理由。
数学复习:圆锥曲线双变量型三角形面积最值问题
最值问题——数学复习:圆锥曲线双变量型三角形面积最值问题构造函数最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或两个变量的函数,通过求解函数的最值普通方法、基本不等式方法、导数方法等解决的.【例题选讲】[例1] (2020·新全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.[规范解答] (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立{x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×16(3m 2-48)=0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离,即d+由两点之间的距离公式可得|AM |所以△AMN 的面积的最大值为12×318.[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b>0)的离心率为12,点M在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.[规范解答] (1)由椭圆C :x 2a 2+y2b 2=1(a>b >0)的离心率为12,点M在椭圆C 上,得{c =1,1,a 2=b 2+c 2,解得{a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2,由y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2,所以AB 的中点N (-4km3+4k 2,3m 3+4k 2),因为N 在直线y =12x 上,所以-4km3+4k 2=2×3m 3+4k 2,解得k =-32,所以Δ=48(12-m 2)>0,得-mm ≠0,|AB |2-x 1|又原点O 到直线l 的距离d所以S △OAB =12×当且仅当12-m 2=m 2,即m =m m ≠0,所以△OAB [例3] 已知平面上一动点P 到定点F0)的距离与它到直线x P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 的面积的最大值.[规范解答] (1)设P (x ,y ),化简,得x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立{y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简,得m 2<4k 2+1, ①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km (-8km 4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54, ②|MN |1-x 2|∵原点O 到直线l 的距离d ∴S △MON =12|MN|·d =12设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12=12,∴当1t =12,即k =±12时,△MON 的面积取得最大值为1.[例4] 已知动圆过定点F (0,14),且与定直线l :y =-14相切.(1)求动圆圆心的轨迹曲线C 的方程;(2)若点A (x 0,y 0)是直线x -y -1=0上的动点,过点A 作曲线C 的切线,切点记为M ,N ,求证:直线MN 恒过定点,并求△AMN 面积S 的最小值.[规范解答] (1)根据抛物线的定义,由题意可得,动圆圆心的轨迹C 是以点F (0,14)为焦点,以定直线l :y =-14为准线的抛物线.设抛物线C :x 2=2py (p >0),因为点F (0,14)到准线l :y =-14的距离为12,所以p =12,所以圆心的轨迹曲线C 的方程为x 2=y .(2)证明:因为x 2=y ,所以y ′=2x ,设切点M (x 1,y 1),N (x 2,y 2),则x 21=y 1,x 22=y 2,则过点M (x 1,y 1)的切线方程为y -y 1=2x 1(x -x 1),即y =2x 1x -x 21,即y =2x 1x -y 1.同理得过点N (x 2,y 2)的切线方程为y =2x 2x -y 2.因为过点M ,N 的切线都过点A (x 0,y 0),所以y 0=2x 1x 0-y 1,y 0=2x 2x 0-y 2,所以点M (x 1,y 1),N (x 2,y 2)都在直线y 0=2xx 0-y 上,所以直线MN 的方程为y 0=2xx 0-y ,即2x 0x -y -y 0=0.又因为点A (x 0,y 0)是直线x -y -1=0上的动点,所以x 0-y 0-1=0,所以直线MN 的方程为2x 0x -y -(x 0-1)=0,即x 0(2x -1)+(1-y )=0,所以直线MN 恒过定点(12,1).联立{2x 0x -y -y 0=0,y =x 2,得x 2-2x 0x +y 0=0,又x 0-y 0-1=0,所以x 2-2x 0x +x 0-1=0,则Δ=4x 20-4(x 0-1)>0,x 1+x 2=2x 0,x 1·x 2=x 0-1,所以MN又因为点A (x 0,y 0)到直线2x 0x -y -y 0=0的距离为d|2x 0·x 0-y 0-y 0||2x 20-2x 0-1|2|x 20-x 0+1|所以S =12MN·d20-0+x 20-x 0+1|.令tS =2t 3所以当点A 的坐标为(12,-12)时,△AMN 的面积S[例5] 已知抛物线Γ:x 2=2py (p >0),直线y =2与抛物线Γ交于A ,B (点B 在点A 的左侧)两点,且|AB |=(1)求抛物线Γ在A ,B 两点处的切线方程;(2)若直线l 与抛物线Γ交于M ,N 两点,且M ,N 的中点在线段AB 上,MN 的垂直平分线交y 轴于点Q ,求△QMN 面积的最大值.[规范解答] (1)由x 2=2py,令y =2,得x =p =3,即x 2=6y .由y =x 26,得y ′=x3,故y ′|x =所以在A 点的切线方程为y -2x -,即2x-0;同理可得在B 点的切线方程为2x +0.(2)由题意得直线l 的斜率存在且不为0,故设l :y =kx +m ,M (x 1,y 1),N (x 2,y 2),由x 2=6y 与y =kx +m 联立,得x 2-6kx -6m =0,又Δ=36k 2+24m >0,故x 1+x2=6k ,x 1x 2=-6m ,故|MN |又y 1+y 2=k (x 1+x 2)+2m =6k 2+2m =4,所以m =2-3k 2,所以|MN |=由Δ=36k 2+24m >0k k ≠0.因为M ,N 的中点为(3k ,2),所以M ,N 的垂直平分线方程为y -2=-1k (x -3k ),令x =0,得y =5,即Q (0,5),所以点Q 到直线kx -y +2-3k 2=0的距离d2所以S △QMN =12·2令1+k 2=u ,则k 2=u -1,则1<u <73,故S △QMN =设f (u )=u 2(7-3u ),则f ′(u )=14u -9u 2,结合1<u <73,令f ′(u )>0,得1<u <149;令f ′(u )<0,得149<u <73,所以当u =149,即k =(S △QMN )max =【对点训练】1.如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.1.解析 (1)由{y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA → +OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以{-2pk =-4,-2pk 2-4=-12,解得{p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d----由{y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |所以△ABP 面积的最大值为52=2.椭圆C :x 2a2+y 2b 2=1(a >b >0)(1)求椭圆C 的方程;(2)设斜率存在的直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l△AOB 面积的最大值.2.解析 (1)设椭圆的半焦距为c ,依题意知{ca =a∴c b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =kx +m .|m |m 2=34(k 2+1).把y =kx+m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0.Δ=36k 2m 2-4(3k 2+1)(3m 2-3)=36k 2-12m 2+12>0.∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)[36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1]=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =3k =0时,|AB||AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值S =12×|AB |max223.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.(1)求椭圆E 的方程;(2)若不过原点O 的直线l 与椭圆交于A ,B 两点,求△OAB 面积的最大值.3.解析 (1)由题意知{bc =a -c =1,又a2=b 2+c 2,所以a =2,b 所以椭圆E 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =kx +m (m ≠0),代入椭圆方程,整理,得(4k 2+3)x 2+8kmx +4m 2-12=0.由Δ>0,得4k 2-m 2+3>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+3,x 1·x 2=4m 2-124k 2+3.于是|AB |3又坐标原点O到直线l 的距离d |m |所以△OAB 的面积S =12·|AB |·d =m因为|m33≤m 2+(4k 2-m 2+3)24k 2+3=12,所以S =12·|AB |·d当直线l 的斜率不存在时,设其方程为x =t ,同理可求得S =12·|AB |·d =12|t综上,△OAB 4.已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM → .(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.4.解析 (1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2,所以P 2)或P (-2),由PF → =3FM →,得M (,23)或M ,23).(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由{y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 中点M 的坐标为(2k ,2k 2+m ).由PF → =3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以{x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |点F (0,1)到直线AB 的距离为d |m -1|所以S △ABP =4S △ABF =8|m -记f (m )=3m 3-5m 2+m +1(-13<m ≤43),令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1,可得f (m )在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数,又f(19)=256243>f (43)=59.所以当m =19时,f (m )取到最大值256243,此时k =所以△ABP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积的最大值(2012·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22,直线y =k (x -1)与椭圆C交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.21.(本小题满分14分)已知椭圆方程为)0(12222>>=+b a by a x ,它的一个顶点为)1,0(M ,离心率36=e .(1)求椭圆的方程;(2)设直线l 与椭圆交于A ,B 两点,坐标原点O 到直线l 的距离为2,求△AOB 面积的最大值.20.(2013课标全国Ⅱ,理20)平面直角坐标系xOy 中,过椭圆M :2222=1x y a b+(a >b >0)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.23.已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.20.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.24.【2012高考真题广东理20在平面直角坐标系xOy中,已知椭圆C1:22221(0)x ya ba b+=>>的离心率e=23,且椭圆C上的点到Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.9. (2008湖北文)已知双曲线2222:1(0,0)x yC a ba b-->>的两个焦点为:(2,0),:(2,0),7)F F P-点的曲线C上.(Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2,求直线l的方程10. (2008湖北理)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于....2,求直线l斜率的取值范围.18.(2008全国Ⅱ卷文、理)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.23.已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y .又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4,由⎩⎪⎨⎪⎧x 225+y 29=1,x =my +4,消去x 得(9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25=90m 2+19m 2+25.∴S △OPQ =12|OM ||y P -y Q |=2×90m 2+19m 2+25=20m 2+1m 2+259=20m 2+1m 2+1+169=20m 2+1+169m 2+1≤2083=152, 当m 2+1=169m 2+1, 即m =±73时,△OPQ 的面积取得最大值为152,此时直线方程为3x ±7y -12=0.20.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. 【答案】(Ⅰ)由题:12c e a ==; (1) 左焦点(﹣c ,0)到点P (2,1)的距离为:22(2)1d c =++=10 (2) 由(1) (2)可解得:222431a b c ===,,. ∴所求椭圆C 的方程为:22+143x y =.(Ⅱ)易得直线OP 的方程:y =12x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其中y 0=12x 0. ∵A ,B 在椭圆上, ∴220220+12333434422+143A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ⎧=⎪-+⎪⇒==-⨯=-⨯=-⎨-+⎪=⎪⎩.设直线AB 的方程为l :y =﹣32x m +(m ≠0),代入椭圆:2222+143333032x y x mx m y x m ⎧=⎪⎪⇒-+-=⎨⎪+⎪⎩=-.显然222(3)43(3)3(12)0m m m ∆=-⨯-=->. 12m 12m ≠0.由上又有:A B x x +=m ,A B y y +=233m -.∴|AB |A B x x -|∵点P (2,1)到直线l的距离表示为:d ==.∴S ∆ABP =12d |AB |=12|m +当|m +2|m =﹣3 或m =0(舍去)时,(S ∆ABP )max =12.此时直线l 的方程y =﹣3122x +. 24.【2012高考真题广东理20】(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e=3,且椭圆C 上的点到Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由.】9. (2008湖北文)已知双曲线2222:1(0,0)x yC a ba b-->>的两个焦点为:(2,0),:(2,0),7)F F P-点的曲线C上.(Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2,求直线l的方程10. (2008湖北理)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于....2,求直线l斜率的取值范围.(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-K2)x2-4kx-6=0. ∵直线l与双曲线C相交于不同的两点E、F,∴,0)1(64)4(,01222>-⨯+-=∆≠-kkk⇔.33,1<<-±≠kk∴k∈(-3,-1)∪(-1,1)∪(1,3).设E(x,y),F(x2,y2),则由①式得x1+x2=kxxkk--=-16,14212,于是|EF|=2212221221))(1()()(xxkxyxx-+=++-=.132214)(1222212212kkkxxxxk--⋅+=-+⋅+而原点O到直线l的距离d=212k+,∴S△DEF=.132213221122121222222kkkkkkEFd--=--⋅+⋅+⋅=⋅若△OEF面积不小于22,即S△OEF22≥,则有解得.22,022213222422≤≤-≤--⇔≥--kkkkk③综合②、③知,直线l的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).18.(2008全国Ⅱ卷文、理)设椭圆中心在坐标原点,(20)(01)A B,,,是它的两个顶点,直线)0(>=kkxy与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若6ED DF=,求k的值;(Ⅱ)求四边形AEBF面积的最大值.18.(Ⅰ)解:依题设得椭圆的方程为2214xy+=,直线AB EF,的方程分别为22x y+=,(0)y kx k=>.····················如图,设001122()()()D x kxE x kxF x kx,,,,,,其中12x x<,且12x x,满足方程22(14)4k x+=,故2114x xk=-=+.①由6ED DF=知01206()x x x x-=-,得021215(6)77x x x x=+==;由D在AB上知0022x kx+=,得212xk=+.所以212k=+,化简得2242560k k-+=,解得23k=或38k=.··············································································································· 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F,到AB的距离分别为1h==2h==.······································································ 9分又2215AB =+=,所以四边形AEBF 的面积为121()2S AB h h =+ 21525(14)k =+ 214k =+22144214k kk ++=+ 22≤,当21k =,即当12k =时,上式取等号.所以S 的最大值为22. ······························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+ ································································································································· 9分222(2)x y =+22222244x y x y =++ 22222(4)x y +≤22=,当222x y =时,上式取等号.所以S 的最大值为22. ················································· 12分例4、如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e=23,且椭圆C 上的点到Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.。