第4章 负反馈放大电路

合集下载

放大电路中的负反馈

放大电路中的负反馈

第4章放大电路中的负反馈许多电子设备对放大电路除了要求具有较高的增益外,对其他方面的性能要求也很高。

例如高保真音响放大器要求失真度要很低,精密测量仪器要求增益的稳定性和准确度要很高。

因此,在实用放大电路中,总是要引入不同形式的反馈以改善各方面的性能。

在放大电路中,将输出量(电压或电流)的一部分或全部,经过一定的电路(反馈网络)反过来送回到输入回路,并与原来的输入量(电压或电流)共同控制该电路,这种连接形式称为反馈。

在电子电路中,反馈现象是普遍存在的。

反馈有正负之分。

在放大电路中,通常引入负反馈以改善放大电路的性能,如在分压式偏置电路中利用负反馈稳定放大电路的工作点。

此外,负反馈还可以提高增益的稳定性、减少非线性失真、扩展频带以及控制输入和输出阻抗等。

当然,所有这些性能的改善是以牺牲放大电路的增益为代价的。

至于正反馈,在放大电路中很少采用,常用于振荡电路中。

本章从反馈的基本概念和分类入手,抽象出反馈放大器的方框图,分析负反馈对放大器性能的影响,介绍负反馈放大器的分析计算方法,总结出引入负反馈的一般原则,最后讨论负反馈放大器的自激振荡及其稳定的措施。

4.1 反馈的基本概念及判断方法4.1.1 反馈的基本概念1.反馈放大器的原理框图含有反馈电路的放大器称为反馈放大器。

根据反馈放大器各部分电路的主要功能,可将其分为基本放大电路和反馈网络两部分,如图4-1所示。

整个反馈放大电路的输入信号称为输入量,其输出信号称为输出量;反馈网络的输入信号就是放大电路的输出量,其输出信号称为反馈量;基本放大器的输入信号称为净输入量,它是输入量和反馈量叠加的结果。

图4-1反馈放大器的原理框图由图4-1可见,基本放大电路放大输入信号产生输出信号,而输出信号又经反馈网络反向传输到输入端,形成闭合环路,这种情况称为闭环,所以反馈放大器又称为闭环放大器。

如果一个放大器不存在反馈,即只存在放大器放大输入信号的传输途径,则不会形成闭合环路,这种情况称为开环。

负反馈积分放大电路

负反馈积分放大电路

负反馈积分放大电路摘要:一、负反馈积分放大电路的概念二、负反馈积分放大电路的特点三、负反馈积分放大电路的应用四、负反馈积分放大电路的注意事项正文:负反馈积分放大电路是一种将输入信号积分并输出,同时通过负反馈机制对电路增益进行调整的电路。

它广泛应用于各种电子设备中,如音频放大器、通信放大器等。

一、负反馈积分放大电路的概念负反馈积分放大电路是一种模拟电子电路,它利用负反馈机制对电路增益进行调整,从而使输出信号更稳定。

它主要由输入电阻、运算放大器、积分器、反馈电阻等组成。

二、负反馈积分放大电路的特点1.稳定性好:由于采用了负反馈机制,电路的增益稳定,输出信号波动小。

2.线性度好:电路的线性度较高,能够满足大多数应用场景的需求。

3.噪声抑制能力强:负反馈积分放大电路能够有效地抑制噪声,提高输出信号的质量。

4.输入阻抗高:电路的输入阻抗较高,对输入信号的影响较小。

三、负反馈积分放大电路的应用1.音频放大器:负反馈积分放大电路常用于音频放大器中,对音频信号进行放大,从而提高音频信号的响度。

2.通信放大器:在通信系统中,负反馈积分放大电路用于放大微弱信号,从而延长传输距离。

3.传感器信号处理:在各种传感器信号处理电路中,负反馈积分放大电路用于对传感器信号进行放大、积分处理,提高传感器的灵敏度。

四、负反馈积分放大电路的注意事项1.电路设计时,应选择合适的运算放大器和反馈电阻,以保证电路的稳定性和线性度。

2.在使用过程中,要注意电路的输入和输出阻抗,避免因阻抗不匹配导致的信号损失或反射。

3.为了提高电路的稳定性,可以采用多重反馈结构或添加稳定器等方法。

综上所述,负反馈积分放大电路具有稳定性好、线性度好、噪声抑制能力强等优点,广泛应用于音频放大器、通信放大器等电子设备中。

第四章放大电路中的负反馈

第四章放大电路中的负反馈
m
结论:引入负反馈后,放大电路的上限频率 提高,下限频率降低,因而通频带展宽。
ɺ ɺ BWf ≈ (1 + Am F ) BW
在下图中可以较直观看出负反馈对通频 带和放大倍数的影响
§4.2.4 改变输入电阻和输出电阻
一、负反馈对输入电阻的影响 1、串联负反馈使输入电阻增大
ɺ U i′ Ri = ɺ Ii
.
ɺ ɺ 若 1 + AF > 1 ɺ ɺ 若 1 + AF < 1
这种反馈为负反馈 这种反馈为正反馈 电路自激振荡
.
ɺ ɺ ɺ 若 1 + AF = 0 ,则 Af = ∞
ɺ ɺ 若 1 + A F >> 1 Af =
.
A A 1 ɺ F ≈ AF = F ɺ ɺ ɺ 1+ A ɺ
§4.2 负反馈对放大电路性能的影响
2、正反馈 和负反馈 正反馈:反馈信号增强了外加输入信号, 使放大电路的放大倍数提高。 负反馈:反馈信号削弱了外加输入信号, 使放大电路的放大倍数减小。 反馈极性的判断方法:瞬时极性法。 在放大电路的输入端,假设一个输入信 号对地的极性,可用“+”、“-” 表示。 按信号传输方向依次判断相关点的瞬时极性, 直至判断出反馈信号的瞬时极性。
§4.2.1提高放大倍数的稳定性 4.2.1提高放大倍数的稳定性
ɺ A 根据反馈的一般表达式ɺ f = A ɺ ɺ 1 + AF
在中频范围内, Af =
A 1 + AF
求出放大倍数的相对变化量: dAf =
Af
1 dA × 1 + AF A
由于 1+AF >1,可见引入负反馈后,放大倍 数的稳定性提高了(1+AF) 倍

负反馈放大电路

负反馈放大电路

Xo
uf
反馈信号与输入信号电压叠加 R1 b. 并联反馈 + ui 放大电路 ii iid – if 反馈网络并联于 输入回路 反馈网络 特 反馈信号为电流 点 反馈信号与输入信号电流叠加
Xo
并、串联反馈的两种形式:
i
if ib
ib=i-if ui ube uf
串联反馈
ube=ui-uf
求和点
求和点
+EC
角度: 目的:
+ ui
RB1 C1
RC1 C2
RB21
RC2
C3
+ uo

ui uf C2 R
T1
T2 RB22 RE2 CE
E1

Rf 、RE1组成反馈网络 Rf
C1
减小非线性失真 xi
xid=xi
xid=xi- xf
xo
xi
+
xid xf
A
xo
B
直流通路 交流通路
输 入 回 路
反馈网络
简单判断:采样点是输出端的话,一定是电压反馈 电压反馈采样的两种形式: 取样点 uo RL 取样点
uo
RL
电流反馈采样的形式: io 取样点 RL Rf
取样点
io RL
iE
iE
取样点 io
iE
RL
2、串联反馈和并联反馈
a. 串联反馈
特 点 反馈网络串联于 ui 输入回路 反馈信号为电压
uid
放大电路 反馈网络
放大电路
反馈网络
c. 判断电压和电流反馈的方法 Xi
+
Xid
A 基本放大电路
B 反馈网络

第4章负反馈放大电路

第4章负反馈放大电路

Ec.
1. 找反馈网络:
Rf - Rc
If
+
Ui
Uo
存在反向传输渠道(Rf)。 2. 电压与电流反馈:
用前述的方法判断(电压反馈)。
3. 串联与并联反馈:
用前述的方法判断(并联反馈)。
4. 反馈极性:用瞬时极性法判断
电压并联负反馈电路图
Idi(=Ii-If)减小,故为负反馈.
结论:此电路为电压并联负反馈。
一 电流串联负反馈
(一)判断反馈类型: (步骤)
Rb +
Ui Uf
Ucc Rc
+
Uo
Re
1. 找反馈网络: 存在反向传输渠道(Re)。 2. 电压与电流反馈: 令u0=0时,Uf0,故为电流反馈 3. 串联与并联反馈: Uf串入输入回路,故为串联反馈。 4. 反馈极性:(瞬时极性法)
Udi(=Ui-Uf)减小,故为负反馈
Af=A/(1+AB)A/AB=1/B
第二节 负反馈的分类
负反馈类型有四种: 一 电流串联负反馈 二 电压串联负反馈 三 电流并联负反馈 四 电压并联负反馈 •分析反馈的属性、求电压增益等动态参数。
判断反馈类型(或组态)的方法
1.判断是电流反馈还是电压反馈—用输出电压短路法:
输出电压短路法:令输出电压u0=0,若Xf=0,则为电压反馈;否 则为电流反馈。
第六章 负反馈放大器
第一节 负反馈的基本概念 第二节 负反馈放大器的分类及判断方法 第三节 负反馈对放大电路性能的影响 第四节 负反馈放大器的分析法
第一节 反馈的基本概念
一 反馈的基本概念:
(一 ) 反馈的定义:
反馈——是将输出信号的一部分或全部通过一定的电路 馈送回到放大电路的输入端,并对输入信号产生影响。

负反馈放大电路

负反馈放大电路

A
Af
1 AF
由上式可以看出:
① 放大电路采用负反馈,即|1+AF|>1时,|Af|<|A|,这表明引入负 反馈后,放大倍数下降。当|1+AF|>>1时称为深度负反馈,此时, |Af|≈1/|F|,反馈放大电路的闭环放大倍数几乎与基本放大电路的A无关, 仅与反馈网络的F有关。而反馈网络一般由无源线性元件构成,性能稳定, 故Af也比较稳定。


负馈
反放
馈大
放 大 电
电 路 的 一
路般



1.2
第 11 页
由图11-4所示反馈放大电路的方框图可知,基本放大电路的放大 A X o
倍数A(也称为开环放大倍数)为输出信号与净输入信号之比,即
Xd
上式中,X d Xi X f
反馈网络的反馈系数F为反馈信号与基本放大电路输出信号 之比,即
(a)
(b) 图11-5 例11-1图
(c)
第9页

反反
馈馈
放 大 电
的 类 型 及
路判



1.1
【解】放大器输出电流原来的意义是指流过负载的电流。但在如图11-5(a) 所示从晶体管集电极输出的电路中,由于负载上的电流和晶体管集电极电流同
步变化,所以,为了不造成混乱,可把晶体管的集电极电流作为输出电流。
根据反馈信号与输入信号在放大电路输入端的连接方式不同,反馈可分 为串联反馈和并联反馈。如果反馈信号与输入信号在输入端串联连接,即反 馈信号与输入信号以电压比较的方式出现在输入端,则称为串联反馈;如果 反馈信号与输入信号在输入端并联连接,即反馈信号与输入信号以电流比较 的方式出现在输入端,则称为并联反馈。

放大电路的负反馈

放大电路的负反馈

1
第四章 放大电路负反馈
Powerpoint Design by Chen Zhenyuan
中等职业教育国家规划教材 HEP
《电子技术基础》教学演示文稿
陈振源主编
第一节 反馈的基本概念
反馈是指将放大电路的输出信号的一部分或全部返回到输入端,并与输入信号 叠加的过程。在放大电路中引入负反馈可以大大改善放大器的性能,因此得到广泛 的应用。
13
第四章 放大电路负反馈
Powerpoint Design by Chen Zhenyuan
中等职业教育国家规划教材 HEP
《电子技术基础》教学演示文稿
陈振源主编
第四章 放大电路的负反馈
反馈的基本概念
反负馈对放大电路性能的影响
负反馈放大电路分析 本章小结
场效晶体管是一种电压控制型器件, 是利用输入电压产生电场效应来控制输出 电流,它具有输入阻抗高、噪声低、热稳 定性好、耗电省等优点,目前已广泛应用 于各种电子电路中。本章将介绍场效晶体 管的结构、基本特性和放大电路的基本工 作原理。
11
Powerpoint Design by Chen Zhenyuan
中等职业教育国家规划教材 HEP
《电子技术基础》教学演示文稿
陈振源主编
3.电流串联负反馈放大电路
4.电流并联负反馈放大电路
12
第四章 放大电路负反馈
Powerpoint Design by Chen Zhenyuan
中等职业教育国家规划教材 HEP
陈振源主编
二、反馈的分类 1.按反馈极性分类
正反馈:反馈信号使净输入信号得到增强,常应用于各种振荡电路。
负反馈:反馈信号使净输入信号得到削弱 ,多应用于以改善放大电路特性为 目的场合。

模电第4讲 负反馈放大电路

模电第4讲 负反馈放大电路

小结
反馈分析的一般步骤如下:
(1)判断电路中有关反馈。若放大电路输出回路与输入回路 之间存在起联系作用的反馈元件(或网络),则电路中 存在反馈。必要时判断反馈元件有哪些。 (2)根据输入、输出端的结构特点判断反馈类型,然后根据输 入端反馈类型标出反馈信号,若是串联反馈应标出电压uf; 若是并联反馈,则标出if 。 (3)采用瞬时极性法判断反馈的正、负极性。对于串联反馈应 确定反馈电压 uf 与输入电压 ui 的瞬时极性;对于并联反馈, 则确定反馈电流 if 与输入电流 ii 的瞬时极性。若反馈信号 削弱净输入信号,则为负反馈;若加强,则为正反馈。
Rif R i /(1 AF ) 深度负反馈时 Rif 0
深度负反馈时 Rof
并联负反馈使放大电路输入电阻减小
电流负反馈使放大电路输出电阻增大 Rof (1 AF ) R o 电压负反馈使放大电路输出电阻减小 Rof R o /(1 AF )
A是输出端短路时基本放大电路的源增益 A是输出端开路时基本放大电路的源增益
例 4.1.2分析方法二:
RF
解: RF 跨接于输出和输入之间,为反馈元件。R1也是反馈元件, 它们共同构成反馈网络。 反馈信号加至运放反相输入端, 输入信号加至同相输入端, 故为串联反馈, 反馈信号为 uf 。 uf = uo R1 / (R1+RF) , uf 直接取样于uo ,故为电压反馈。 采用瞬时极性法,可得有关点的瞬时极性如图所示, uid = ui-uf ,故uf 削弱uid ,为负反馈。 因此该电路引入的是电压串联负反馈。
因此引入的是电流串联负反馈。
例 4.1.4 分析图示反馈放大电路
_ + RF

解: RF 跨接在输入和输出之间,为反馈元件。 故为并联反馈, 反馈信号和输入信号均加至运放反相输入端, 标出反馈信号if 和相关信号如图所示。

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈
图4-4 交流反馈和直流反馈 (a) 交流反馈;(b) 直流反馈; (c) 交、 直流反馈
第4章 放大电路中的负反馈
3.电压反馈和电流反馈 由于基本放大电路和反馈网络均是四端双口, 因
此基本放大电路 A 与反馈网络 F 的端口连接方式就
有串联和并联的区别。
基本放大电路 A 与反馈网络 F 在反馈放大电路
路。 假设输入信号瞬时极性为⊕, 则V1的集电极电位
, V2
, 因为电阻不改变信号的极
性, 所以通过Rf送回原输入端反馈信号的瞬时极性为
。 根据图中标出的各点瞬时极性, 反馈信号回到V1
的基极, 与原输入信号在同一点并且极性相反, 因此,
净输入信号减小, 为负反馈。
第4章 放大电路中的负反馈
图4-9 电流并联负反馈
阻Rf上的电流就是反馈电流, 方向按照瞬时极性从⊕ 。
第4章 放大电路中的负反馈
图4-10 电压并联负反馈
第4章 放大电路中的负反馈
4) 电流串联负反馈 图4-11为分压式偏置共发射极放大电路。 反馈元 件为Re1 、 Re2和Ce, 由于旁路电容的存在, Re1 和Re2 构成直流反馈, 交流反馈仅由Re1构成。 由瞬时极性看 出, 净输入信号减小, 为负反馈。
输入端的连接方式, 叫做比较方式, 根据比较方式的 不同, 分为串联反馈和并联反馈, 如图4-6所示。
第4章 放大电路中的负反馈
图4-6 串联反馈和并联反馈(比较方式) (a) 串联反馈; (b) 并联反馈
第4章 放大电路中的负反馈
4.1.3 负反馈的四种基本类型与判别方法 因为不同的反馈类型对放大电路性能的影响大不
第4章 放大电路中的负反馈

负反馈放大电路

负反馈放大电路
负反馈放大电路
本章基本要求
❖ 会判:判断电路中有无反馈及反馈的性质 ❖ 会算:估算深度负反馈条件下的放大倍数 ❖ 会引:根据需求引入合适的反馈 ❖ 会判振消振:判断电路是否能稳定工作,会消除自激振荡。
模拟电子技术基础
反馈的基本概念
1. 什么是反馈
反馈放大电路可用 方框图表示。
要研究哪些问题?
放大电路输出量的一部分或全部通过一定的方式
Ri
Ui I i'
Rif
Ui Ii
Ui
I
' i
If
I
' i
Ui AFIi'
Rif
Ri 1 AF
串联负反馈增大输入电阻,并联负反馈减小输入电阻。
在(1 AF) 时
引入串联负反馈Rif (或Ri'f ) , 引入并联负反馈Rif 0。
模拟电子技术基础
2、对输出电阻的影响
对输出电阻的影响仅与反馈网络和基本放大电路在输出 端的接法有关,即决定于是电压反馈还是电流反馈。
三、展宽频带:设反馈网络是纯电阻网络
20lg A
O
fLf fL
可推导出引入负 反馈后的截止频 率、通频带
引入负反馈后的幅频特性
20lg 1 AF
f
fH fHf
fHf (1 AF) fH
fLf
fL 1 AF
fbwf (1 AF) fbw
Af
1
A AF
AL
Am 1 fL
jf
AH
Am 1 j
f
fH
Af
AXi' Xi' Xf
AXi' Xi' FXo
AXi' Xi' AFXi'

第4章 负反馈放大电路

第4章 负反馈放大电路

模拟电子线路
• 直流负反馈对放大电路性能的影响
稳定静态工作点
模拟电子线路
• 交流负反馈:是改善放大电路性能的重要技 术措施。
1 交流负反馈对增益的影响 2 交流负反馈对输入电阻的影响 3 交流负反馈对输出电阻的影响 4 交流负反馈对通频带的影响 5 交流负反馈对非线性失真的影响
模拟电子线路
1 负反馈对增益的影响
即:if∝uo
为电压反馈
组态的判断
模拟电子线路
串联反馈:反馈信号没有直接引回输入端
• 输入端
的反馈
并联反馈:反馈信号直接引回输入端的反馈
电压反馈:输出短路(uo=0)反馈元件上无 • 输出端 反馈信号的反馈
电流反馈:输出短路(uo=0)反馈元件上
仍有反馈信号的反馈
模拟电子线路
例:判断下列反馈的极性和组态
• 使放大倍数降低:
A
Af

A
1AF
•提高放大倍数的相对稳定性
dAf
(1AF)dAAFdA dA
(1AF)2
(1AF)2
dAf 1 dA Af (1AF) A
有反馈时增益的稳定性比无反馈时提高了(1+AF)倍。
模拟电子线路
模拟电子线路
2 负反馈对输入电阻的影响
负反馈对输入电阻的影响与串联或并联反馈 有关,而与电压或电流反馈无关。
Af

xo xi
A fx x o i x iA d ix d fxx iA d iF dx o xx id A F idx iA d 1 x A AF
•反馈深度
模拟电子线路
1+AF称为反馈深度
当AF>>1时,称为深度负反馈

第四章负反馈放大电路

第四章负反馈放大电路
(3)uf与uid正极不共节点——串联反馈
例题4.分析如下图所示的反馈放大电路。
电压并联 负反馈
()ui uo " " i f iid ( ii i f ) 负反馈。 1
开路法:R L , uo " " iid 存在变化 (2) 电压反馈。 短路法:RL 0, uo =0不变 i f 不变,消失,i f uo
(一)减小非线性失真 预失真 - 净输入信号预先产生相反的失真,抵消管子内部的失真。 一些有源器件的伏安特性的非线性会造成输出信号的非线性失 真,加入负反馈可以减小这种失真,但不能消除非线性失真。
(二)扩展通频带BW 原理:当输入等幅不同频率的信号时,高频段和低频段的输出信号 比中频段的小,因此反馈信号也小,对净输入信号的削弱作用小, 所以高、低频段的放大倍数减小程度比中频段的小,从而扩展了通 频带。图中Am、fL、fH、BW和Amf、fLf、fHf、BWf分别为基本放大电 路、负反馈放大电路的中频放大倍数、下限频率、上限频率和通频 带宽度。中频段放大倍数下降多,高、低频段下降少,通频带展宽。
(3)uf 、uid正极不共节点——串联反馈
例题3.分析如下图所示的反馈放大电路。
电流串联 负反馈
(1)ui uo u f (uid ui u f ) uid 负反馈。
开路法:RL , io 0, u f 0消失(不变) u f io (2) 电流反馈。 短路法:RL 0, io 0,u f R f io 存在(变化) u f io
例题6.试分析下列电路的组态。
分析:分析过程同上,(a)为电流串联负反馈;(b)为电压 串联负反馈;(c)电阻RE引入本级和极间两个反馈,本级为电流 串联负反馈;级间为电流并联负反馈。 归纳: 反馈信号与输入信号在不同节点为串联反馈,在同一个节点为并联 反馈; 反馈取自输出端或输出分压端为电压反馈,反馈取自非输出端为电 流反馈。

负反馈放大电路原理

负反馈放大电路原理

负反馈放大电路原理
负反馈放大电路是一种通过将一部分输出信号反馈至输入端,从而减小电路增益并改善电路性能的技术。

其原理可以描述如下:
1. 输入信号经过放大电路放大后得到输出信号。

2. 将一部分输出信号送回到放大电路的输入端,与输入信号进行叠加。

3. 反馈信号与输入信号相位相反,通过叠加可使得输入信号的幅值减小。

4. 输入信号的幅值减小会使得放大电路的增益减小,从而实现负反馈。

5. 反馈信号还可以根据需要调节其幅值和相位,从而进一步控制放大电路的增益、稳定性和频率响应等性能。

负反馈放大电路能够提供以下几个优点:
1. 减小放大电路的增益,使得电路更加稳定和可靠。

2. 提高电路的线性度,减小非线性失真。

3. 扩展电路的频带宽度,提高信号的传输速度。

4. 降低电路的噪声,提高信噪比。

5. 提供输出阻抗的改变和输入阻抗的提高,方便与其他电路进行匹配。

模电——负反馈

模电——负反馈
➢ 串联反馈还是并联反馈,取决于反馈网络与输入信 号的连接方式。如果反馈量与输入量均为电压则它 们是串联比较求和,因而一定为串联反馈;反之, 如果反馈量与输入量均为电流,它们是并联比较求 和,则为并联反馈。
➢ 正反馈和负反馈(一般指在中频段)可采用瞬时极性法。 如果引入反馈后使净输入信号减小,则为负反馈; 如果净输入增加,则为正反馈。
➢ 按反馈信号在输入回路中叠加的方式来分:
若按电流比较求和,则为并联反馈; 若按电压比较求和,则为串联反馈。
➢ 按反馈通路分:
如果反馈量只含有直流量则称为直流反馈; 如果反馈量只含有交流量,则为交流反馈。
或者说, 仅在直流通路中存在的反馈称为直流反馈, 仅在交流通路中存在的反馈称为交流反馈。
综上所述,负反馈分四种组态:电压串联负反馈、电压并 联负反馈、电流串联负反馈、电流并联负反馈
➢ 比较求和的二种型式
电压比较求和 串联反馈
Vi Vs Vf
电流比较求和
并联反馈
Ii Is If
二、反馈放 大器的分类
➢ 按反馈的极性来分:
若输入反馈后,使净输入增加,则为正反馈; 若输入反馈后,使净输入减小,则为负反馈。
➢按反馈信号对输出回路的取样对象来分:
若反馈量正比于输出电压时为电压反馈; 若反馈量正比于输出电流时为电流反馈。
对于深度负反馈( |1 AF |1 )
A f
X o X s
1
A A F
1 F
X f A FX i (1 A F ) X i X s
净输入:X i X s X f 0
对于串联负反馈,X i Vi 0 ,称为“虚短”。 对于并联负反馈,X i Ii 0 ,称为“虚断”。
一、由集成运放构成的各种运算电路

四节负反馈放大电路的计算

四节负反馈放大电路的计算

1
• u

u
i
Rb +

Ui

I id
• ••
U A U id
od id
rid
R’=R1//Rf -

Au

Rf U 'o

Uf
R1
A r R R r R R r R A R r 1 R r R R R R R

od id
'
b id
1
1
f
'
b id
b id

'
od 1 id

Ud
•+
U
-

U

Rf
Uf
R1

Uf
R1

U o
R1 Rf
所以



U U R R R Auf
•o
• o
1
f 1 f
Ui Uf
R1
R1



因为 Ui Uf 所以 Ud 0
集成电路输入电阻rid很大, 所以,Iid ≈ 0


U U-
第四节

U RL
o
第四节

••
••

X i Ii , X f If , X O U O
Rb
+
••

Ui

U id
A U od id
- rid

Uo
Rf R1
例8-3
1.首先画开环放大器
根据上述原则1,画输出回路:

模拟电子技术_第四章 负反馈放大电路与基本运算电路

模拟电子技术_第四章 负反馈放大电路与基本运算电路

负反馈放大电路与基本运算电路的应用
例 4.1.1 判断电路是否存在反馈。是正反馈还是负反 馈?直反馈还是交流反馈?
C1
RS + us
– –
RB + + uid RE

+VCC
+ 输入 ui 回路
+
C2
输出 回路
+ RL uo

RE 介于输入输出回路,有反馈。 反馈使 uid 减小,为负反馈。 既有直流反馈,又有交流反馈。
第4章
负反馈放大电路与基本运算电路的应用
4.1.2 负反馈放大电路的基本类型 一、电压反馈和电流反馈 电压反馈 — 反馈信号取自输出电压的部分或全部。 判别法:使 uo = 0 (RL 短路), 若反馈消失则为电压反馈。 io A RL uo RL uo A
F
电压 反馈
F
io
电流 反馈
电流反馈 — 反馈信号取自输出电流。 判别法:使 io = 0(RL 开路), 若反馈消失则为电流反馈。
第4 章
负反馈放大电路与 基本运算电路的应用
4.1 负反馈放大电路的组成和基本类型 4.2 负反馈对放大电路性能的影响 4.3 负反馈放大电路应用中的几个问题 4.4 基本运算电路 4.5 集成运放应用电路的测试 第4章 小 结
第 4 章
负反馈放大电路与基本运算电路的应用
4.1 负反馈放大电路的组成和基本类型
第4章
负反馈放大电路与基本运算电路的应用
例 4.1.6
例 4.1.7


电流串联负反馈

RE — 引入本级电流串联负反馈; 引入级间电流并联负反馈。 规 律:
反馈信号与输入信号在不同节点为串 联反馈,在同一个节点为并联反馈。

第四章 放大电路中的负反馈

第四章 放大电路中的负反馈

(+)
+
u + (-)
o
R2
解:(a)图所示的电路中,设输入电压瞬时极性 为(+),从反相端输入,所以输出端为(-), 可画出各电流的瞬时流向如图中所示,净输入电 流比没有反馈的时候小,故为负反馈。
if
Rf
ui ii
(+) R1
iid
-∞
(+)
+
u + (-)
o
R2
在输出端判断反馈的取样方式,将输出端短接, 输压出反电馈压。在uo =输0入,端反,馈反电馈流信i号f 和输Ruof入信0 号,连所接以在为同电一 节点,二者是以电流的方式求和,故为并联反馈。
电压 U f Rf Io 为反馈信号。
(+)
+
+∞ (+)
+
+
Rs
-
+
ui
(+)
us
+
io RL u o
-
-
uf
Rf
-
根据瞬时极性法判断为负反馈。
(+)
+
+∞ (+)
+
+
Rs
-
+
ui
(+)
us
+
io RL u o
-
-
uf
Rf
-
-
采用输出短路法判断取样方式,令RL为零,输出 电压 U o =0,而输出电流 Io 还在,因此反馈信号仍然 存在,所以为电流反馈。在放大电路的输入端,反馈 信号与输入信号接于不同节点,反馈信号与输入信号 是以电压的形式求和,因此是串联反馈。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表示。差模输入电路如图4.7所示, 由图可得
ui1 ui 2
图4.8所示, 由图可得
1 2 uid
(4. 7)
共模输入信号常用uic 来表示。共模输入电路如
u u u
ic i1
i2
(4. 8)
集成运算放大器
差模信号为两输入信号之差, 用uid表示, 即
u u u
id i1
i2
8 4 14
TO -5
凹格标记
1
7
集成运算放大器
调零- 1 -IN 2 +IN 3 -UCC 4 MIN-DIP
8 NC 7 +UCC 6 Uo 5 调零+
NC NC 调零- -IN +IN -UCC NC
1 2 3 4 5 6 7
14 13 12 11 10 9 8
NC NC NC +UCC Uo 调零+ NC

I
EQ 2
CQ 1
I CQ 2
BQ1
I
BQ 2
2R I I
CQ
U EE
e EQ1
(4. 3) (4. 4) (4. 5)

U
CEQ1
U CEQ 2 U CC U EE I CQ1 ( Rc 2 Re )
(4. 6)
集成运算放大器
+UCC
Rc + uo Rb + ui1 - Re V1 -
Rc Rb V 1 + ui1 - I -UEE RL + uo1 -
Rc V2 Rb + ui2 -
图4.13 双端输入、 单端输出差放电路
集成运算放大器
+UCC
Rc Rb + ui - I -UEE V1 + uo - V2
Rc Rb
图4.14 单端输入、 双端输出差动放大电路
集成运算放大器
Rb iB2
图4.7 差模输入电路
集成运算放大器
+UCC
iC1 Rb + uic - + ui1 -
Rc uoc V1 + -
Rc
iC2
V2
Rb + iB2 ui2 -
iB1 iE1 Re iE2 -UEE
图4.8 共模输入电路
集成运算放大器
2) 对差模信号的放大作用 图4.9所示, 由图可以看出, 当从两管集电极取电压 时, 其差模电压放大倍数表示为
RP:调零电位器, 保证输入电压为 零时,输出电压 也为零
Rb + 2.2 k ui1 - 2.2 k +UCC Rc 3k + uo V1 RP 220 Re Rc 3k - Rb V2 2.2 k + ui2 -
辅助电源:与Re配合, 解决Re大阻值与提供 合适的Q点的矛盾
-UEE -12 V
Re:射极公共电阻, 可以稳定Q点及抑 制零漂
-UEE -12 V
Re:射极公共电阻, 可以稳定Q点及抑 制零漂
图 4.1 典型差动放大电路
集成运算放大器
2. 抑制零漂演示 1) 演示过程 (1) 当将两输入端与地连接即ui=0 时, 将万用表 直流电压挡接在输出端, 此时会发现, 万用表的指针 几乎不动, 即UO=0。 (2) 若用一只手捏住一只管子的管壳 时, 你会发 现, 万用表的指针慢慢偏转, 说明此时的输出电压已
计电路时, 合理安排, 使各级都有合适的静态工作点。
若将直接耦合放大器的输入端短路(ui=0), 理论 上讲, 输出端应保持某个固定值不变。 然而, 实际情况 并非如此, 输出电压往往偏离初始静态值, 出现了缓慢 的、 无规则的漂移, 这种现象称为零点漂移。
集成运算放大器
4.2 差动放大电路
4.2.1电路组成与演示 1.电路组成 图4.1为典型差动放大电路, 它是由两个完全对称
Rc Rb V2 + ui2 -
-UEE
图 4.5无调零电位器的差放电路
集成运算放大器
+UCC ICQ1 + Rb IBQ1 IEQ1 + UCEQ1 - Re UO - + UCEQ2 - IR e IEQ2 Rb IBQ2 ICQ2
-UEE
图 4.6 直流通路
集成运算放大器
2. 动态性能分析 1) 输入信号的类型 在放大器两输入端分别输入大小相等、 相位相反 的信号, 即ui1=-ui2时, 这种输入方式称为差模输入, 所 输入的信号称为差模输入信号。 差模输入信号用uid来
压增益。
集成运算放大器
3. 输出级
输出级的主要作用是输出足够的电流以满足负载 的需要, 同时还需要有较低的输出电阻和较高的输入电
阻, 以起到将放大级和负载隔离的作用。
4. 偏置电路 偏置电路的作用是为各级提供合适的工作电流, 一 般由各种恒流源电路组成。
u- u+ - +
图 4.19 集成运放的符号
IBQ1=IBQ2=IBQ IEQ1=IEQ2=IEQ ICQ1=ICQ2=ICQ UCQ1=UCQ2=UCC-ICQRc

UO=UCQ1-UCQ2=0
集成运算放大器
4.2.2差动放大电路的性能分析 从理论上讲, 差放电路的参数是对称的, 因此, 在分
析时, 为了方便, 可采用如图4.5所示的差放电路。
(4. 20)
K K
CMR

A A
ud uc
CMR
20lg
A A
ud uc
( dB)
(4. 21)
集成运算放大器
4.3 差动放大电路的另外几种接法
差动放大电路有两个输入端和两个输出端, 所以在
信号源与两个输入端的连接方式及负载从输出端取出电
压的方式上可以根据需要灵活选择。 1. 双端输入、 单端输出 在图4.13中, 输出信号只从一管的集电极对地输出, 这种输出方式叫单端输出。此时由于只取出一管的集电
R3
R2
恒流源
-UEE
图4.11 恒流源差动放大电路图
集成运算放大器
4.2.4衡量差动放大电路的性能指标——共模抑制比 实际应用中, 差动放大电路两输入信号中既有差模
信号成分, 又有无用的共模输入成分, 此时可利用叠加
原理来求总的输出电压, 即
u A u A u
o ud id uc
ic
(4. 19)
端输出电路计算相同。
集成运算放大器
Rc Rb + ui - + ube1 - r →∞ + uo -
Rc Rb + - uቤተ መጻሕፍቲ ባይዱe2
图 4.15 单端输入差放电路的交流通路
集成运算放大器
+UCC
Rc Rb + ui - I -UEE V1 + uo1 -
Rc Rb
V2
图 4.16 单端输入、 单端输出 差动放大器
集成运算放大器
4.4集成运算放大器
4.4.1集成运算放大器件的识读
常见的集成运算放大器有圆形、 扁平型、 双列直
插式等, 有8管脚、 14管脚等。 4.4.2集成运放的组成及其符号
集成运算放大器
管键
+UCC Uo 调零+ NC 调零- 1 2 4 3 -UCC -IN +IN
7 6 5
8
金属封 片标记
极电压变化量, 只有双端输出电压的一半, 因而差模电压
放大倍数也只有双端输出时的一半。
集成运算放大器
Aud 1
其中
' L
1 2
c
A
ud

L
R
' L
2( R B rbe )
(4. 22)
R R // R
信号也可以从V2的集电极输出, 此时式中无负号, 表示同相输出。
集成运算放大器
+UCC
图4.17集成运算放大器内部组成原理框图
集成运算放大器
1. 输入级 输入级是提高运算放大器质量的关键部分, 要求其
输入电阻高, 为了能减小零点漂移和抑制共模干扰信号,
输入级都采用具有恒流源的差动放大电路, 也称差动输 入级。
2. 中间级
中间级的主要作用是提供足够大的电压放大倍数,
故而也称电压放大级。 要求中间级本身具有较高的电
2. 单端输入、 双端输出 将差放电路的一个输入端接地, 信号只从另一个输
入端输入, 这种连接方式称为单端输入, 如图4.14所示。
它的交流通路如图4.15所示。 3. 单端输入、 单端输出 电路如图4.16所示, 由于单端输入与双端输入情况相 同, 因而单端输入、单端输出电路计算与双端输入、 单
14PIN DIP
4.2集成运放外形结构示意图
集成运算放大器
4.4.2集成运放的组成及其符号 集成运放内部实际上是一个高增益的直接耦合放大
器, 其内部组成原理框图用图4.17 表示, 它由输入级、
中间级、 输出级和偏置电路等四部分组成。

+ uid -
差动输 入级
电压放大 级
输出级
uo
偏置电路
经不为零了, 如图4.3所示。
集成运算放大器
+UCC
0
Rc Rb V1
+ -
Rc
UO=0 RP
V2
Rb
Re
-UEE
图 4.2零输入时零输出
集成运算放大器
(3) 若用两只手分别捏住两只管子的管壳(相当 于给两只管子同时加热)时, 万用表的指针指向零, 说明输出电压为零, 如图4.4所示。
集成运算放大器
集成运算放大器
第4章 集成运算放大器
• • • • • 4.1 直接偶合放大器存在的问题 4.2 差动放大电路 4.3 差动放大电路的另外几种接发 4.4集成运算放大器 4.5 集成运算放大器的主要参数
集成运算放大器
4.1 直接耦合放大器存在的问题
1.偶合工作点的相互影响 在直接耦合放大器中, 由于级与级之间无隔直(流) 电容, 因此各级的静态工作点相互影响, 从而要求在设
相关文档
最新文档