上海 上海师范大学附属高桥实验中学数学分式填空选择同步单元检测(Word版 含答案)

合集下载

上海 上海师范大学附属高桥实验中学数学轴对称填空选择同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学轴对称填空选择同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学轴对称填空选择同步单元检测(Word 版 含答案)一、八年级数学全等三角形填空题(难)1.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A ; ③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则AEF S mn ∆=.其中正确的结论是____.(填序号)【答案】①②③【解析】【分析】 由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义可得△BEO 和△CFO 是等腰三角形可得①EF =BE +CF 正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m ,AE+AF=n,则△AEF 的面积=12mn ,④错误. 【详解】在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A , ∴∠BOC=180°-(∠OBC+∠OCB )=90°,故②∠BOC =90°+12∠A 正确; 在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=∠EOB ,∠OCB=∠OCF ,∵EF ∥BC ,∴∠OBC=∠EOB ,∠OCB=∠FOC ,∠EOB=∠OBE,∠FOC=∠OCF ,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,即①EF=BE+CF正确;过点O作OM⊥AB于M,作ON⊥BC于点N,连接AO,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;∴S△AEF=S△AOE+ S△AOF=12AE·OM+12AF·OD=12OD·(AE+AF)=12mn,故④错误;故选①②③【点睛】此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.2.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.【答案】7【解析】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.3.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .【答案】41.【解析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩, ∴△BAD ≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=22()=32=42AD AD +',∠D′DA+∠ADC=90°由勾股定理得CD′=22()=932=41DC DD +'+∴BD=CD′=41,故答案为41.4.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥DA 于Q ,PQ =3,EP =1,则DA 的长是________.【答案】7【解析】试题解析:∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE和△CAD中,AB CABAE ACDAE CD⎧⎪∠∠⎨⎪⎩===∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=7.故答案为7.5.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;【答案】217【解析】【分析】首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得BC=34,在Rt△ABC中,根据勾股定理,得AC=22342217+=⨯=AB CB故答案为217【点睛】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.6.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E 从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.【答案】0、2、6、8【解析】∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,∴∠CAB=∠DBE=90°,∴△CAB和△EBD都是Rt△,∵点E运动过程中两三角形始终保持斜边ED=CB,∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,又∵点E每秒钟移动3cm,∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.7.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.8.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S四边形AEDF=14AD2,其中正确结论是_____(填序号)【答案】①②③【解析】【分析】先由ASA 证明△AED ≌△CFD ,得出AE =CF ,DE =FD ;再由全等三角形的性质得到BE +CF =AB ,由勾股定理求得EF 与AB 的值,通过比较它们的大小来判定④的正误;先得出S 四边形AEDF =S △ADC =12AD 2,从而判定⑤的正误. 【详解】解:∵Rt △ABC 中,AB =AC ,点D 为BC 中点,∴∠C =∠BAD =45°,AD =BD =CD ,∵∠MDN =90°,∴∠ADE +∠ADF =∠ADF +∠CDF =90°,∴∠ADE =∠CDF .在△AED 与△CFD 中,EAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =ABBD ,∵EFED ,BD >ED ,∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =12AD 2.故⑤错误. 综上所述,正确结论是①②③.故答案是:①②③.【点睛】考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.9.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】23或43.【解析】【分析】过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,1212DF DFCDF CDFCD CD⎧⎪∠∠⎨⎪⎩===,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=6,∴BE=12×6÷cos30°=3÷32=23,∴BF1=BF2=BF1+F1F2=23+23=43,故BF的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.10.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;其中正确的是_________【答案】①②③【解析】如图,(1)∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=18030752-=,∵CE⊥DC,∴∠DCE=90°,∴∠ACE=∠ACD+∠DCE=165°.故①正确;(2)由(1)可知:∠ACB=∠DCE=90°,∴∠ACE-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴BE=AD=BC.故②正确;(3)延长AD交BE 于点F ,∵△ACD ≌△BCE ,∴∠2=∠CAD=30°,∵AC=BC ,∠ACB=90°,∴∠CAB=∠3=45°,∴∠1=∠CAB-∠CAD=15°,∴∠AFB=180°-∠1-∠2-∠3=90°,∴AD ⊥BE.故③正确;综上所述:正确的结论是①②③.二、八年级数学全等三角形选择题(难)11.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF,∵△ABC是等腰直角三角形,∴∠FCB=∠A=45,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴DE=故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.12.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD∠∠=,则BAC∠=( )A.70B.45C.60D.48【答案】D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.13.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.14.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.15.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.16.如图,等腰直角△ABC中,∠BAC=90︒,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()A.1个B.2个C.3个D.4个【解析】试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,故①正确;∵M为EF的中点,∴AM⊥EF,故②正确;过点F作FH⊥AB于点H,∵BE平分∠ABC,且AD⊥BC,∴FD=FH<FA,故③错误;∵AM⊥EF,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中{FBD DANBD ADBDF ADN∠∠∠∠===∴△FBD≌△NAD,∴DF=DN,故④正确;故选C.17.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.18.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQ B.DE=12AC C.AE=12CQ D.PQ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ 中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.19.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )A .5个B .4个C .3 个D .2个【答案】B【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+45210+,故④正确;当BD =32BC 时,CD =12BC ,∴DE 221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭10BC 5.故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.20.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E.连CD分别交AE,AB于点F,G,过点A做AH⊥CD交BD于点H,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为()A.5 B.4 C.3 D.2【答案】B【解析】【分析】①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证EHG DFA∠=∠,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知AH DF=,即可作出判断.【详解】①正确:∵ABC△是等边三角形,∴60BAC︒∠=,∴CA AB=.∵ABD△是等腰直角三角形,∴DA AB=.又∵90BAD︒∠=,∴150CAD BAD BAC︒∠=∠+∠=,∴DA CA=,∴()1180150152ADC ACD︒︒︒∠=∠=-=;②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.21.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83C .113D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE =设BC=5x ,则CE=3x ∴BE=BC+CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.22.如图,点P 是AB 上任意一点,∠ABC=∠ABD ,还应补充一个条件,才能推出△APC ≌△APD .从下列条件中补充一个条件,不一定能推出△APC ≌△APD 的是( )A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB【答案】B【解析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;B、补充AC=AD,不能推出△APC≌△APD,故错误;C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.故选B.点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.23.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PA C,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键24.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.25.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()A.3 B.5 C.4 D.不确定【答案】C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.26.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠5【答案】A【解析】【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD ⊥1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG ∴∠=∠在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA ∴∆≅∆,1BD CG G ∴=∠=∠点D 是BC 的中点CD BD CG ∴==在CDF ∆和CGF ∆中,45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G ∴∠=∠13∠∠∴=故选:A .【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.27.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.28.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个 B.2个 C.3个 D.4个【答案】D【解析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.29.如图,AO OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化【答案】B【解析】【分析】作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.【详解】如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE ,∵△ABE 、△BFO 均为等腰直角三角形,∴AB=BE ,BF=BO ;在△ABO 与△BEN 中,BAO NBE AOB BNE AB BE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABO ≌△BEN (AAS ),∴BO=NE ,BN=AO ;∵BO=BF ,∴BF=NE ,在△BPF 与△NPE 中,FBP ENP FPB EPN BF NE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BPF ≌△NPE (AAS ), ∴BP=NP=12BN ;而BN=AO , ∴BP=12AO=12×8=4, 故选B .【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.30.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).A.1个B.2个C.3个D.4个【答案】D【解析】BD=CD,AD是角平分线,所以FD=DE,∠DFB=∠DEC=90°,所以CDE≌BDF;①正确.由全等得BF=CE,因为FA=AE,FB=AB+FA,所以CE=AB+AE, ②正确.由全等知,∠=∠,∠DCE=∠FBD,所以∠BAC=∠BDC.③正确. ∴DBF DCE∴A、B、C、D四点共圆,∠=∠,④正确.∴DAF CBD故选D.。

七年级上册上海 上海师范大学附属高桥实验中学数学期末试卷同步检测(Word版 含答案)

七年级上册上海 上海师范大学附属高桥实验中学数学期末试卷同步检测(Word版 含答案)

七年级上册上海上海师范大学附属高桥实验中学数学期末试卷同步检测(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。

八年级数学分式填空选择同步单元检测(Word版 含答案)

八年级数学分式填空选择同步单元检测(Word版 含答案)
【答案】(1)楼梯有54级(2) 198级
【解析】
【试题分析】
(1)设女孩速度为 级/分,电梯速度为 级/分,楼梯(扶梯)为 级,则男孩速度为 级/分,根据时间相等列方程,有:
①两式相除,得 ,解方程得 即可.
因此楼梯有54级.
(2)设男孩第一次追上女孩时,走过扶梯 次,走过楼梯 次,则这时女孩走过扶梯 次,走过楼梯 次.
将 代入方程组①,得 ,即男孩乘扶梯上楼的速度为 级/分,女孩乘扶梯上楼的速度为 级/分.于是有
从而 ,即 .
无论男孩第一次追上女孩是在扶梯上还是在下楼时, 中必有一个为正整数,且 ,经试验知只有 符合要求.
这时,男孩第一次追上女孩所走过的级数是: (级).
【试题解析】
(1)设女孩速度为 级/分,电梯速度为 级/分,楼梯(扶梯)为 级,则男孩速度为 级/分,依题意有
【解析】
【分析】
(1)设乙工程队每天道路的长度为 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;
(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.
【详解】
(1)设乙工程队每天道路的长度为 米,则甲工程队每天道路的长度为 米,
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)变小了,理由见解析;(3)符合条件的所有a值的和为11.
【解析】
分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.
详解:
(1)A= = = .
(2)变小了,理由如下:
【解析】
【分析】
(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.

上海 上海师范大学附属高桥实验中学八年级数学上册第五单元《分式》检测(答案解析)

上海 上海师范大学附属高桥实验中学八年级数学上册第五单元《分式》检测(答案解析)

一、选择题1.使分式21x x -有意义的x的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数2.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14 3.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N5.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( )A .9-B .8-C .7-D .6- 6.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- 7.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -=B .6000600052x x-=C .6000600052x x -=+ D .6000600052x x -=+ 8.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 9.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 10.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( )A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 11.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 12.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1 B .1 C .-3 D .3二、填空题13.已知5,3a b ab -==,则b a a b +的值是__________. 14.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 15.若32a b =,则22a b a +=____. 16.符号“a b c d ”称为二阶行列式,规定它的运算法则为:a bc d =ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.17.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 18.已知215a a+=,那么2421a a a =++________. 19.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__. 20.计算:22a 1a 1a 2a a--÷+=____. 三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 22.计算:(1)()()22x y x x y -++; (2)22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭. 23.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 24.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a 元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价) 25.(提示:我们知道,如果0ab ->,那么a b >.)已知0m n >>.如果将分式n m 的分子、分母都加上同一个不为0的数后,所得分式的值比n m是增大了还是减小了?请按照以下要求尝试做探究. (1)当所加的这个数为1时,请通过计算说明;(2)当所加的这个数为2时,直接说出结果;(3)当所加的这个数为0a >时,直接说出结果.26.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 3.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 4.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 5.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 6.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.7.A解析:A【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据题意得:6000600052x x-=, 故选:A .【点睛】 此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 8.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.9.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 10.C解析:C【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程.【详解】 解:由题意得:7500980020x x 10-=+,故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.11.D解析:D【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程.【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D .【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.12.B解析:B【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y y x y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值. 二、填空题13.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 14.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 15.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.16.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.17.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 20.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22a 1a 1a 2a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键.三、解答题21.1x x -;45【分析】分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.(1)222x y +;(2)36m m -+ 【分析】(1)先根据完全平方公式、单项式与多项式的乘法法则计算,再合并同类项即可; (2)把括号内通分,并把除法转化为除法,然后约分化简即可.【详解】(1)原式22222x xy y x xy =-+++ 222x y =+;(2)原式=2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭ ()()()236366m m m m m --=⋅--+ 36m m -=+. 【点睛】 本题考查了整式的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.23.(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.24.(1)第一批紫水豆干每千克进价是25元;(2)a 的值是50.【分析】(1)设第一批紫水豆干每千克进价是x 元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x 元, 根据题意,得:2500440023x x ⨯=-, 解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a %元, 第二次紫水豆干第二阶段销售利润为每千克325a -元, 由题意得:322%20080%200(180%)152025a a ⨯⨯⨯-⨯-=, 解得:a =50,即a 的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25.(1)所得分式的值比原来增大了,计算说明见解析;(2)增大;(3)增大.【分析】(1)先求出11n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (2)先求出22n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (3)先求出n a n m a m+-+,通分化简,然后根据0m n ->,0m >,0a >判断即可. 【详解】解:(1)由题意得: 11n n m m+-+, (1)(1)(1)(1)m n n m m m m m ++=-++, (1)mn m mn n m m +--=+, (1)m n m m -=+, ∵0m n >>,∴0m n ->,0m >,10m +>, ∴0(1)m n m m ->+, ∴101n n m m+->+, 11n n m m+∴>+,即所得分式的值比原来增大了;(2)22n n m m+-+ (2)(2)(2)(2)m n n m m m m m ++=-++ 22(2)mn m mn n m m +--=+ ()2(2)m n m m -=+同理可得()20(2)m n m m ->+, ∴22n n m m+>+,即所得分式的值比原来增大了; (3)n a n m a m +-+ ()()()()m n a n m a m m a m m a ++=-++ ()mn ma mn na m m a +--=+ ()(2)a m n m m -=+∵0m n ->,0m >,0a >,∴()0(2)a m n m m ->+ ∴n a n m a m+>+,即所得分式的值比原来增大了. 【点睛】本题考查分式的运算,解题的关键是掌握分式运算的法则.26.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x ≤-3,解得x≤32-.【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.。

八年级数学分式填空选择同步单元检测(Word版 含答案)

八年级数学分式填空选择同步单元检测(Word版 含答案)

八年级数学分式填空选择同步单元检测(Word 版 含答案)一、八年级数学分式填空题(难)1.若关于x 的分式方程1x a x -+=a 无解,则a 的值为____. 【答案】1或-1【解析】根据方程无解,可让x+1=0,求出x=-1,然后再化为整式方程可得到x-a=a (x+1),把x=-1代入即可求得-1-a=(-1+1)×a ,解答a=-1;当a=1时,代入可知方程无解.故答案为1或-1.2.当m= __________ 时,关于x 的分式方程231062x m x x x +++=--+没有实数解. 【答案】4或-6【解析】【分析】 先将分式方程化为整式方程,根据方程231062x m x x x +++=--+没有实数解会产生增根判断增根是x=3或x=-2,再把增根x=3或x=-2代入整式方程即可求出m 的值.【详解】 解:方程231062x m x x x +++=--+变形为310(3)(2)2x m x x x +++=-++, 方程两边同时乘以(3)(2)x x -+去分母得:x+m+3+x-3=0;整理得:2x+m=0∵关于x 的分式方程231062x m x x x +++=--+没有实数解. ∴分式方程有增根x=3或x=-2. 把x=3和x=-2分别代入2x+m=0中得m=-6或m=4.【点睛】分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.3.当m =____________时,解分式方程533x m x x-=--会出现增根. 【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4.化简:(1221121x x x x x ++÷=--+)_____. 【答案】11x x -+. 【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】 (1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x-+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】0.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.6.化简a b b a a b+--的结果是______ 【答案】﹣1【解析】 分析:直接利用分式加减运算法则计算得出答案.详解:a b b a a b +--=a b b a b a ---=()1a b b a b a b a---==---. 故答案为-1. 点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.7.使分式的值为0,这时x=_____. 【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法8.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.9.(内蒙古包头市2018届九年级中考全真模拟试卷一数学试题)化简2x 4x 1-+÷(1−3x 1+)的结果为_________. 【答案】2【解析】 原式2x 4x 13x 1x 1x 1-+⎛⎫=÷- ⎪+++⎝⎭ ()2x 22x 4x 2x 1 2.x 1x 1x 1x 2---+=÷=⋅=+++- 故答案为2.10.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x 元,则购买240元甲商品的数量比购买300元乙商品的数量多____件. 【答案】90x【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据购买240元甲商品的数量比购买300元乙商品的数量多2403004803009022x x x x --==. 故答案为:90x.二、八年级数学分式解答题压轴题(难)11.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x-,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值.【详解】解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+ =2(2)(2)132x x x x +++-+ =13212x x +-+, ∵x 是整数,225112x x x +-+也是整数, ∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.12.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解,则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.13.为了迎接运动会,某校八年级学生开展了“短跑比赛”。

上海 上海师范大学附属高桥实验中学数学分式解答题同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学分式解答题同步单元检测(Word版 含答案)
3.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
【答案】王老师的步行速度是 ,则王老师骑自行车的速度是 .
【解析】
【分析】
王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度= 小时.
【详解】
设王老师的步行速度是 ,则王老师骑自行车是 ,
由题意可得: ,解得: ,
经检验, 是原方程的根,

答:王老师的步行速度是 ,则王老师骑自行车的速度是 .
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)原分式值变小了,见解析;(3)11
【解析】
【分析】
(1)根据分式混合运算顺序和运算法则化简即可得;
(2)根据题意列出算式 ,化简可得 ,结合a的范围判断结果与0的大小即可得;
(3)由 可知, =±1、±2、±4,结合a的取值范围可得.
5.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点 ,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的 倍还多 .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的 .
(1)小王用自驾车上班平均每小时行驶多少千米?
(2)上周五,小王上班时先步行了 ,然后乘公交车前往,共用 小时到达.求他步行的速度.
这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];
所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.

上海 上海师范大学附属高桥实验中学数学一元一次方程同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学一元一次方程同步单元检测(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

上海 上海师范大学附属高桥实验中学数学有理数同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学有理数同步单元检测(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.4.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.5.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.6.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.7.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.8.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.9.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.10.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)【答案】(1)解:根据材料,设M= ①,∴将等式两边同时乘以3,则3M= ②,由② ①,得:,∴;∴ .(2)解:根据材料,设N= ③,∴将等式两边同时乘以5,④,由④ ③,得:,∴;∴ .【解析】【分析】(1)设M= ,将等式两边同时乘以3,然后按照材料中的方法进行计算,即可得到答案;(2)设N=,将等式两边同时乘以5,然后按照材料中的方法进行计算,即可得到答案.11.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【答案】(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R(3)解:线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.12.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”) (2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.【答案】(1)不是;是(2)解:一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是−2000.∵2019−a中a的值越大,则2019−a的值越小,∴一个黄金集合中最大的一个元素为4019,则最小的元素为:2019−4019=−2000.(3)解:该集合共有16个元素。

上海 上海师范大学附属高桥实验中学八年级数学上册第十五章《分式》经典练习卷(含答案)

上海 上海师范大学附属高桥实验中学八年级数学上册第十五章《分式》经典练习卷(含答案)

一、选择题1.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-2.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个B .2个C .3个D .4个 3.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m - 4.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 5.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( )A .20本B .25本C .30本D .35本6.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -1 7.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=-B .4605801140x x =--C .4605801x 140x =+-D .4605801140x x-=- 8.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .39.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=-B .18018032x x-=+C .18018032x x -=-D .18018032x x -=+ 10.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 11.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .112.下列各式中错误的是( )A .2c d c d c d c d d a a a a -+-----== B .5212525a a a +=++ C .1x y x y y x -=--- D .2211(1)(1)1x x x x -=--- 13.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- 14.若分式2132x x x --+的值为0,则x 的值为( ) A .1-B .0C .1D .±1 15.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a二、填空题16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.已知5,3a b ab -==,则b a a b+的值是__________. 18.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.19.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 20.计算22111m m m ---,的正确结果为_____________. 21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .22.已知0534x y z ==≠,则2222x y z xy xz yz -+=+-______.23.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____. 24.计算:262393x x x x -÷=+--______. 25.方程22020(1)1x x x ++-=的整数解的个数是_____.26.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题27.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍.(1)甲每小时走多少千米?(2)求甲乙相遇时乙走的路程.28.(11201(2)(3)2π-⎛⎫---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+29.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 30.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭.。

上海 上海师范大学附属高桥实验中学数学高一下期末经典练习卷(含答案)

上海 上海师范大学附属高桥实验中学数学高一下期末经典练习卷(含答案)

一、选择题1.(0分)[ID :12727]设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5B .7C .9D .112.(0分)[ID :12713]若cos(π4−α)=35,则sin2α=( ) A .725B .15C .−15D .−7253.(0分)[ID :12705]已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增4.(0分)[ID :12702]已知D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,则xy 的取值范围是( )A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦5.(0分)[ID :12688]若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.(0分)[ID :12685]已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=( )A .50B .2C .0D .50-7.(0分)[ID :12675]要得到函数2sin 2y x x =+2sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 8.(0分)[ID :12673]在ABC 中,已知,2,60a x b B ===,如果ABC 有两组解,则x 的取值范围是( )A .23⎛⎫ ⎪ ⎪⎝⎭,B .23⎡⎢⎣⎦,C .23⎡⎢⎣⎭,D .2,3⎛ ⎝⎦9.(0分)[ID :12672]若||1OA =,||3OB =,0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C .33D .310.(0分)[ID :12635]已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 11.(0分)[ID :12662]函数2ln ||y x x =+的图象大致为( )A .B .C .D .12.(0分)[ID :12655]如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C .D .3π 13.(0分)[ID :12654]已知二项式2(*)nx n N x ⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( )A .14B .14-C .240D .240-14.(0分)[ID :12644]若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭15.(0分)[ID :12677]已知{}n a 的前n 项和241n S n n =-+,则1210a a a +++=( ) A .68B .67C .61D .60二、填空题16.(0分)[ID :12825]在ABC △ 中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________.17.(0分)[ID :12817]已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.18.(0分)[ID :12815]()sin1013tan 70+=_____19.(0分)[ID :12813]函数2sin 26y x π⎛⎫=-⎪⎝⎭([]0,x π∈)为增函数的区间是 . 20.(0分)[ID :12791]如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.21.(0分)[ID :12774]函数()12x f x -的定义域是__________. 22.(0分)[ID :12758]关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.23.(0分)[ID :12770]在△ABC 中,85a b ==,,面积为12,则cos 2C =______. 24.(0分)[ID :12799]底面直径和高都是4cm 的圆柱的侧面积为___cm 2. 25.(0分)[ID :12742]如图,棱长均为2的正四棱锥的体积为_______.三、解答题26.(0分)[ID :12918]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x .(1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围, 27.(0分)[ID :12902]ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =,332ABC S ∆=,求ABC ∆的周长. 28.(0分)[ID :12887]已知函数()()sin 0,0,2f x A x A πωφωφ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的单调增区间并求出()f x 取得最小值时所对应的x 取值集合. 29.(0分)[ID :12871]如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .30.(0分)[ID :12867]某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A2.D3.A4.D5.B6.C7.C8.A9.B10.B11.A12.A13.C14.C15.B二、填空题16.【解析】由得所以即则又所以故答案为17.36π【解析】三棱锥S−ABC的所有顶点都在球O的球面上SC是球O的直径若平面SCA⊥平面SCBSA=ACSB=BC三棱锥S−ABC的体积为9可知三角形SBC与三角形SAC都是等腰直角三角形设球的半18.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二19.【解析】试题分析:因为所以只要求函数的减区间即可解可得即所以故答案为考点:三角函数的图象和基本性质的运用【易错点晴】本题以函数的表达式的单调区间为背景考查的是三角函数中形如的正弦函数的图象和性质解答20.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等21.【解析】由得所以所以原函数定义域为故答案为22.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析23.【解析】【分析】利用面积公式即可求出sinC 使用二倍角公式求出cos2C 【详解】由题意在中面积为12则解得∴故答案为【点睛】本题考查了三角形的面积公式二倍角公式在解三角形中的应用其中解答中应用三角形 24.【解析】【分析】【详解】圆柱的侧面积为25.【解析】在正四棱锥中顶点S 在底面上的投影为中心O 即底面ABCD 在底面正方形ABCD 中边长为2所以OA=在直角三角形SOA 中所以故答案为三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 2.D解析:D 【解析】试题分析:cos[2(π4−α)]=2cos 2(π4−α)−1=2×(35)2−1=−725,且cos[2(π4−α)]=cos[π2−2α]=sin2α,故选D. 【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.4.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下,对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.5.B解析:B 【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥”是“//l α的必要不充分条件,故选B . 考点:空间直线和平面、直线和直线的位置关系. 6.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦ 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.7.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.8.A解析:A 【解析】 【分析】已知,,a b B ,若ABC 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 9.B解析:B【解析】 【分析】利用向量的数量积运算即可算出. 【详解】 解:30AOC ︒∠=3cos ,2OC OA ∴<>=32OC OA OC OA⋅∴=()32mOA nOB OA mOA nOB OA+⋅∴=+ 2222322m OAnOB OAm OA mnOAOB n OB OA+⋅=+⋅+1OA =,3OB =,0OA OB ⋅=2=229m n ∴=又C 在AB 上 0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.10.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.11.A解析:A 【解析】 【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。

八年级上册分式填空选择同步单元检测(Word版 含答案)

八年级上册分式填空选择同步单元检测(Word版 含答案)

八年级上册分式填空选择同步单元检测(Word 版 含答案)一、八年级数学分式填空题(难)1.若222222M ab b a b a b a b a b---=--+,则M =________. 【答案】2a【解析】【分析】把等式两边变为同分母的分式,分母相同分子也相同,即可得出答案·. 【详解】222222M ab b a b a b ---- =2222M ab b a b-+- a b a b -+=2()()()a b a b a b -+-=22222a ab b a b-+-, 22222M ab b a ab b -+=-+所以M=2a故答案为:2a【点睛】本题考查分式的减法运算、平方差公式、完全平方公式,利用等式两边分母相同,分子也相同求解是解题的关键.2.当m= __________ 时,关于x 的分式方程231062x m x x x +++=--+没有实数解. 【答案】4或-6【解析】【分析】 先将分式方程化为整式方程,根据方程231062x m x x x +++=--+没有实数解会产生增根判断增根是x=3或x=-2,再把增根x=3或x=-2代入整式方程即可求出m 的值.【详解】 解:方程231062x m x x x +++=--+变形为310(3)(2)2x m x x x +++=-++, 方程两边同时乘以(3)(2)x x -+去分母得:x+m+3+x-3=0;整理得:2x+m=0∵关于x 的分式方程231062x m x x x +++=--+没有实数解. ∴分式方程有增根x=3或x=-2. 把x=3和x=-2分别代入2x+m=0中得m=-6或m=4.【点睛】分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.3.已知关于x 的方程12x a x +=--有解且大于0,则a 的取值范围是_____. 【答案】a <2 且 a ≠-2【解析】【分析】 分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0,列出关于a 的不等式,求出不等式的解集,即可得到a 的范围.【详解】解:原分式方程去分母得:x+a=-x+2, 解得:22a x -=, 根据题意得:22a ->0且22a -≠2, 解得:a<2,a ≠-2. 故答案为:a<2,a ≠-2.【点睛】本题考查了分式方程的解,弄清题意和理解分式有意义的条件是解本题的关键.4.计算:()()()()()()()11111122320182019x x x x x x x x ++++=+++++++________________.【答案】()20192019x x + 【解析】【分析】 利用裂项法先将每个分式化简,再将结果相加即可.【详解】∵111(1)1x x x x =-++, 111(1)(2)12x x x x =-++++111(2)(3)23x x x x =-++++ ……111(2018)(2019)20182019x x x x =-++++ ∴原式=11111111()()()()1122320182019x x x x x x x x -+-+-+⋅⋅⋅+-+++++++ =112019x x -+ =()20192019x x +. 【点睛】此题考察分式的混合运算,运用裂项法将每个分式化简是解题的关键.5.若32a b =,则a b a -的值为____________ 【答案】12-【解析】【分析】利用32a b =,在a b a -中,将b 用a 表示,约掉a 得到结果. 【详解】∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=- 故答案为:12-【点睛】本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.6.将1111100m n =⎧⎪⎨=⎪⎩,222199m n =⎧⎪⎨=⎪⎩,333198m n =⎧⎪⎨=⎪⎩,…10010010011m n =⎧⎪⎨=⎪⎩,依次代入1111y m n =+++得到1y ,2y ,3y …100y ,那么123100y y y y ++++=__________.【答案】100.【解析】【分析】用m 表示n ,然后化简11n +,再分别表示123100y y y y 、、、、,再求和即可. 【详解】解:分析可知n=1101m -, ∴n+1=1101m -+1=102101m m --, ∴1n 1+=101m 102m --=1-1102m-, ∴1y =12+1-1101,2y =13+1-1100,3y =14+1-199,…,100y =1101+1-12, ∴1231001y y y y 2++++=+13+14+…+1101-(1111101100992+++⋯+)+100=100 故答案是:100.【点睛】本题考查了分式的规律性问题,逐个计算找到规律是解题关键,体现了由特殊到一般的数学思想.7.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 【答案】k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.8.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2.【解析】【分析】 利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.9.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 【答案】1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+220181a +的值为_____. 【答案】2017【解析】试题解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1a =a ﹣1+1a =21a a+﹣1 =2018﹣1=2017故答案为2017二、八年级数学分式解答题压轴题(难)11.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+()()()()11111x x x x x x -=-+-+-()()111x x =+-;(2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解所以x 的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.12.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。

上海 上海师范大学附属高桥实验中学初中数学八年级下期末经典练习卷(含答案)

上海 上海师范大学附属高桥实验中学初中数学八年级下期末经典练习卷(含答案)

一、选择题1.(0分)[ID:10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是()A.15尺B.16尺C.17尺D.18尺2.(0分)[ID:10227]若63n是整数,则正整数n的最小值是()A.4B.5C.6D.73.(0分)[ID:10215]已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B4.(0分)[ID:10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.15.(0分)[ID:10207]如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是 ( )A.AB=CD B.BC∥AD C.BC=AD D.∠A=∠CBC BD为折痕,则6.(0分)[ID:10199]将一张长方形纸片按如图所示的方式折叠,,的度数为()CBDA .60︒B .75︒C .90︒D .95︒7.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个8.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .9.(0分)[ID :10146]为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 10.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.11.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.612.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定13.(0分)[ID:10153]正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.每条对角线平分一组对角C.对边相等D.对角线相等14.(0分)[ID:10150]如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8015.(0分)[ID:10148]如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.43二、填空题16.(0分)[ID:10313]函数1y=x的定义域____.17.(0分)[ID:10294]如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.18.(0分)[ID:10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

八年级数学上册 分式填空选择同步单元检测(Word版 含答案)

八年级数学上册 分式填空选择同步单元检测(Word版 含答案)

八年级数学上册 分式填空选择同步单元检测(Word 版 含答案)一、八年级数学分式填空题(难)1.如果111a b +=,则2323a ab b a ab b-+=++__________. 【答案】15- 【解析】【分析】 由111a b +=得a+b=ab ,然后再对2323a ab b a ab b-+++变形,最后代入,即可完成解答. 【详解】 解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b ab a b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-. 【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.2.若x+1x ,则x-1x=____________. 【答案】±2【解析】【分析】先对等式x+1x 21()8x x +=,整理得到2216x x+=,再用完全平方公式求出21()x x-的值,再开平方求出1x x -的值. 【详解】解:∵x+1x , ∴21()8x x += ∴22128x x ++= ∴2216x x += ∴22211()2624x x x x -=+-=-=∴12x x-=± 故答案是: ±2.【点睛】 本题考查了互为倒数的两个数的和与差的完全平方公式的应用,利用当两数互为倒数时积为1这个特征去解题是关键.3.若以x 为未知数的方程()22111232a a x x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值.【详解】去分母得()()()2121x a x a -+-=+,整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解;当1a ≠-时,原方程有增根为1x =或2x =.当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.4.若关于x 的分式方程12x -﹣3a x -=2256x x -+无解,求a=______. 【答案】-1或2【解析】 ∵12x -﹣3a x -=2256x x -+, ∴12x -+3a x -=()223x x --()∵方程无解,∴(x -2)(x -3)=0, ∴x =2由x =3.5.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.6.若分式的值为零,则x 的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.7.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.【答案】12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键.8.若关于x 的分式方程3x x --2=3m x -有增根,则增根为________,m =________. 【答案】x =3 3【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x-3),得x-2(x-3)=m ,∵原方程有增根, ∴最简公分母x-3=0,即增根是x=3, 把x=3代入整式方程,得m=3,故答案为x=3,3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.已知114a b +=,则3227a ab b a b ab-++-=______. 【答案】1【解析】 ∵11a b+=4, ∴4b a ab+=, ∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1.10.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;那么f (1)+f (2)+f ()+f (3)+f ()+…+f (2013)+f ()= .【答案】2012.5【解析】试题分析:由题意f (2)+f ()==1,f (3)+f ()=1,…,f (2013)+f ()=1,根据这个规律即可求得结果.由题意得f (1)+f (2)+f ()+f (3)+f ()+…+f (2013)+f () =+1+1+1…+1=2012.5.考点:找规律-式子的变化点评:解答此类找规律的问题的关键是仔细分析所给式子的特征得到规律,再把这个规律应用于解题. 二、八年级数学分式解答题压轴题(难) 11.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x >0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,112x x x x +≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭ ∵()1122x x x x ⎛⎫--≥-⋅-= ⎪⎝⎭∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.12.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.13.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11n n +的形式,而()11111n n n n =-++,这样就把()11n n +一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++ ①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 【答案】()()()3412n n n n +++【解析】【分析】(1)根据题目的叙述的方法即可求解;(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解;②根据()()()()()11111..1221212n n n n n n n =-+++++把所求的每个分式化成两个分式的差的形式,然后求解.【详解】解:(1)112⨯+123⨯+134⨯+…+120161017⨯ =1-12+12-13+13-14+…+12016-12017 =1-12017=20162017; (2)①∵()1A n n ++()()12B n n ++=()()()2n 12A B n A n n ++++ =()()1n 12n n ++, ∴120A B B ⎧=⎪⎨⎪+=⎩, 解得1212A B ⎧=⎪⎪⎨⎪=-⎪⎩. ∴A 和B 的值分别是12和-12; ②∵()()1n 12n n ++=12•()11n n +-12•()()1n 12n n ++ =12•(1n -1n 1+)-12(11n +-12n +) ∴原式=12•112⨯-12•123⨯+12•123⨯-12•134⨯+…+12•()11n n +-12•()()112n n ++ =12•112⨯-12•()()112n n ++ =14-()()1212n n ++=()()()3412n n n n +++.【点睛】本题考查了分式的化简求值,正确理解()()1n 12n n ++=12•()1n 1n +-12•()()112n n ++是关键.14.观察下列等式:112⨯=1-12, 123⨯=12-13, 134⨯=13-14. 将以上三个等式的两边分别相加,得:112⨯+123⨯+134⨯=1-12+12-13+13-14=1-14=34. (1)直接写出计算结果:112⨯+123⨯+134⨯+…+()11n n +=________. (2)仿照112⨯=1-12, 123⨯=12-13, 134⨯=13-14的形式,猜想并写出: ()13n n +=________. (3)解方程: ()()()()()111333669218x x x x x x x ++=++++++. 【答案】1n n +;11133n n ⎛⎫- ⎪+⎝⎭【解析】试题分析:本题考查分式的运算规律,通过所给等式,可以将(1)展开进行计算, (1)112⨯+123⨯+134⨯+…+()11n n +=11111111112233411n n n -+-+-+⋯+-=-++, =1n n +, (2)因为()()()11333333n n n n n n n n n n +-=-=++++=()133n n +, 所以,()1111 333n n n n ⎛⎫=- ⎪++⎝⎭, (3)根据(2)的结论将(3)中方程进行化简可得:()()()()()111333669218x x x x x x x ++=++++++,1111111333669x x x x x x ⎡⎤-+-+-⎢⎥+++++⎣⎦=3218x +, 11139x x ⎡⎤-⎢⎥+⎣⎦=3218x +, 解得2x =,经检验, 2x =,是原分式方程的解.解:(1) 1n n + (2) 11133n n ⎛⎫- ⎪+⎝⎭(3)仿照(2)中的结论,原方程可变形为11111113(333669218x x x x x x x -+-+-=++++++, 即()111369x x =+, 解得x =2.经检验,x =2是原分式方程的解.15.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;(2)已知每本硬面笔记本比软面笔记本贵a 元,是否存在正整数a ,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.【答案】(1))不能买到;(2)存在,a 的值为3或9.【解析】【分析】【详解】解:(1))设每本软面笔记本x 元,则每本硬面笔记本(x+1.2)元,由题意,得 12211.2x x =+, 解得:x=1.6. 此时12211.6 1.2 1.6=+=7.5(不符合题意), 所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m 元(1≤m≤12的整数),则每本硬面笔记本(m+a )元,由题意,得1221m m a=+, 解得:a=34m ,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当86ma=⎧⎨=⎩时,12211.5m m a==+(不符合题意)∴a的值为3或9.。

数学八年级上册 分式填空选择同步单元检测(Word版 含答案)

数学八年级上册 分式填空选择同步单元检测(Word版 含答案)

数学八年级上册 分式填空选择同步单元检测(Word 版 含答案)一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误; ③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确; ④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.若关于x 的分式方程321x m x -=-的解是正数,则m 的取值范围为_______. 【答案】m >2且m ≠3【解析】 解关于x 的方程321x m x -=-得:2x m =-, ∵原方程的解是正数, ∴20210m m ->⎧⎨--≠⎩ ,解得:2m >且3m ≠. 故答案为:2m >且3m ≠.点睛:关于x 的方程321x m x -=-的解是正数,则字母“m ”的取值需同时满足两个条件:(1)2x m =-不能是增根,即210m --≠;(2)20x m =->.3.已知关于x 的方程12x a x +=--有解且大于0,则a 的取值范围是_____. 【答案】a <2 且 a ≠-2【解析】【分析】 分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0,列出关于a 的不等式,求出不等式的解集,即可得到a 的范围.【详解】解:原分式方程去分母得:x+a=-x+2, 解得:22a x -=, 根据题意得:22a ->0且22a -≠2, 解得:a<2,a ≠-2.故答案为:a<2,a ≠-2. 【点睛】本题考查了分式方程的解,弄清题意和理解分式有意义的条件是解本题的关键.4.若关于x 的分式方程25x -=1-5m x -有增根,则m 的值为________ 【答案】-2【解析】 2155m x x =--- 方程两侧同时乘以最简公分母(x -5),得 ()25x m =--,整理,得 7x m =+,即7m x =-.令最简公分母x -5=0,得x =5,∵x =5应该是整式方程7x m =+的解,∴m =5-7=-2.故本题应填写:-2.点睛:本题考查了分式方程增根的相关知识. 一方面,增根使原分式方程去分母时所使用的最简公分母为零. 另一方面,增根还应该是原分式方程所转化成的整式方程的解. 因此,在解决这类问题时,可以通过令最简公分母为零得到增根的候选值,再利用原分式方程所转化成的整式方程检验这些候选值是否为该整式方程的解,从而确定增根. 在本题中,参数m 的值正是利用x =5满足整式方程这一结论求得的.5.将1111100m n =⎧⎪⎨=⎪⎩,222199m n =⎧⎪⎨=⎪⎩,333198m n =⎧⎪⎨=⎪⎩,…10010010011m n =⎧⎪⎨=⎪⎩,依次代入1111y m n =+++得到1y ,2y ,3y …100y ,那么123100y y y y ++++=__________. 【答案】100.【解析】【分析】用m 表示n ,然后化简11n +,再分别表示123100y y y y 、、、、,再求和即可. 【详解】解:分析可知n=1101m -, ∴n+1=1101m -+1=102101m m --, ∴1n 1+=101m 102m --=1-1102m-, ∴1y =12+1-1101,2y =13+1-1100,3y =14+1-199,…,100y =1101+1-12, ∴1231001y y y y 2++++=+13+14+…+1101-(1111101100992+++⋯+)+100=100 故答案是:100.【点睛】本题考查了分式的规律性问题,逐个计算找到规律是解题关键,体现了由特殊到一般的数学思想.6.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.7.若关于x 的分式方程3x x --2=3m x -有增根,则增根为________,m =________. 【答案】x =3 3【解析】 【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x-3),得x-2(x-3)=m ,∵原方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得m=3,故答案为x=3,3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.9.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m ,结果共用8天完成这一任务,则原计划每天铺设管道的长度为_________.【答案】60 m【解析】设原计划每天铺设x m 管道,则加快施工进度后,每天铺设(20x +)m ,由题意可得,120600120820x x -+=+,解得:60x =,或5x =-(舍去),故答案为:60 m .二、八年级数学分式解答题压轴题(难)11.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.12.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点27km ,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的37. (1)小王用自驾车上班平均每小时行驶多少千米?(2)上周五,小王上班时先步行了6km ,然后乘公交车前往,共用43小时到达.求他步行的速度.【答案】(1)小王用自驾车上班平均每小时行驶27km ;(2)小王步行的速度为每小时6km .【解析】【分析】(1))设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.再利用乘公交车的方式平均每小时行驶的路程比他自用驾SS 式平均每小时行驶的路程的2倍还多9千米和乘公交车所用时间是自驾车方式所用时间的37,列方程求解即可;(2)设小王步行的速度为每小时ykm ,然后根据“步行时间+乘公交时间=小时”列方程解答即可.【详解】解(1)设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.根据题意得:27327297x x=⋅+ 解得:27x =经检验,27x =是原方程的解且符合题意.所以小王用自驾车上班平均每小时行驶27km ;(2)由(1)知:小王乘坐公交车上班平均每小时行驶29227963x +=⨯+=(km );设小王步行的速度为每小时ykm ,根据题意得:62764633y -+= 解得:6y =.经检验:6y =是原方程的解且符合题意所以小王步行的速度为每小时6km .【点睛】本题考查了分式方程的应用,解答的关键在于弄清题意、找到等量关系、列出分式方程并解答.13.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x 件产品,则乙工厂每天加工(x+8)件产品, 根据题意得:48728x x =+, 解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24, 答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.14.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________. 【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-;(3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.15.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x 天,则乙队单独完成这项工程需要2x 天,根据题意,得611161x x 2x ⎛⎫++= ⎪⎝⎭, 解得x =30经检验,x =30是原方程的根,则2x =2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y 天,则有11y 13060⎛⎫+= ⎪⎝⎭, 解得y =20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.。

上海上海大学附属中学实验学校数学分式填空选择章末训练(Word版 含解析)

上海上海大学附属中学实验学校数学分式填空选择章末训练(Word版 含解析)

上海上海大学附属中学实验学校数学分式填空选择章末训练(Word版 含解析)一、八年级数学分式填空题(难)1.如果关于x 的分式方程1a x +-3=11x x -+有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <-2,那么符合条件的所有整数a 的积是_________. 【答案】9【解析】()243412a x x x x ⎧-≥--⎪⎨+<+⎪⎩①②, 由①得:x≤2a+4,由②得:x<-2,由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,分式方程去分母得:a-3x-3=1-x , x=42a -, 由分式方程1a x +-3=11x x -+有负分数解,则有a-4<0,所以a<4, 所以-3≤a<4, 把a=-3代入整式方程得:-3x-6=1-x ,即x=-72,符合题意; 把a=-2代入整式方程得:-3x-5=1-x ,即x=-3,不合题意; 把a=-1代入整式方程得:-3x-4=1-x ,即x=-52,符合题意; 把a=0代入整式方程得:-3x-3=1-x ,即x=-2,不合题意;把a=1代入整式方程得:-3x-2=1-x ,即x=-32,符合题意; 把a=2代入整式方程得:-3x-1=1-x ,即x=-1,不合题意;把a=3代入整式方程得:-3x=1-x ,即x=-12,符合题意, ∴符合条件的整数a 取值为-3,-1,1,3,之积为9,故选D 【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.2.如果111 a b+=,则2323a ab ba ab b-+=++__________.【答案】15-【解析】【分析】由111a b+=得a+b=ab,然后再对2323a ab ba ab b-+++变形,最后代入,即可完成解答.【详解】解:由111a b+=得a+b=ab,2323a ab ba ab b-+=++2332a b aba b ab+-++=()()232a b aba b ab+-++=232ab abab ab-+=15-.【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.3.有一个计算程序,每次运算都是把一个数先乘以 2,再除以它与 1 的和,多次重复进行这种运算的过程如下∶则2y=___ (用含字母x的代数式表示); 第 n次的运算结果记为n y,则n y= __(用含字母x和n的代数式表示).【答案】431xx+2(21)1nnxx-+【解析】解:将y1=21xx+代入得:y2=221211xxxx⨯+++=431xx+;将y2=431xx+代入得:y3=42314131xxxx⨯+++=871xx+,依此类推,第n次运算的结果y n=2(21)1nnxx-+.故答案为:431xx+,2(21)1nnxx-+.点睛:此题考查了分式的混合运算,找出题中的规律是解本题的关键.4.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 【答案】34 【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.5.若关于x 的分式方程12x -﹣3a x -=2256x x -+无解,求a=______. 【答案】-1或2【解析】 ∵12x -﹣3a x -=2256x x -+, ∴12x -+3a x -=()223x x --() ∵方程无解,∴(x -2)(x -3)=0, ∴x =2由x =3.6.将1111100m n =⎧⎪⎨=⎪⎩,222199m n =⎧⎪⎨=⎪⎩,333198m n =⎧⎪⎨=⎪⎩,…10010010011m n =⎧⎪⎨=⎪⎩,依次代入1111y m n =+++得到1y ,2y ,3y …100y ,那么123100y y y y ++++=__________.【答案】100.【解析】【分析】用m 表示n ,然后化简11n +,再分别表示123100y y y y 、、、、,再求和即可. 【详解】解:分析可知n=1101m -, ∴n+1=1101m -+1=102101m m --, ∴1n 1+=101m 102m --=1-1102m-, ∴1y =12+1-1101,2y =13+1-1100,3y =14+1-199,…,100y =1101+1-12, ∴1231001y y y y 2++++=+13+14+…+1101-(1111101100992+++⋯+)+100=100 故答案是:100.【点睛】本题考查了分式的规律性问题,逐个计算找到规律是解题关键,体现了由特殊到一般的数学思想.7.当m =____________时,解分式方程533x m x x-=--会出现增根. 【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.化简3m m ++269m -÷23m -的结果是___________________. 【答案】1【解析】【分析】先进行分式的除法运算,然后再进行分式的加法运算即可得.【详解】m m 3++26m 9-÷2m 3- =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为:1.【点睛】 本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.9.化简a b b a a b+--的结果是______ 【答案】﹣1【解析】 分析:直接利用分式加减运算法则计算得出答案.详解:a b b a a b +--=a b b a b a ---=()1a b b a b a b a---==---. 故答案为-1. 点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.10.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.二、八年级数学分式解答题压轴题(难)11.已知:12x M +=,21x N x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值; ②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1【解析】【分析】(1)作差后,根据分式方程的加减法法则计算即可;(2)①把M 、N 代入整理得到y ,解分式方程即可;②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可.【详解】(1)当0x >时,M -N ≥0.理由如下: M -N =()()21122121x x x x x -+-=++ . ∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0. (2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1. ②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2. 当x +1=1,即0x =时,22401y =+=> ; 当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ; 当x +1=-2时,即3x =-时,22102y =+=>-() ;综上所述:当x 为整数时,y 的正整数值是4或3或1.【点睛】本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.12.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数,∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=7720﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.13.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天(2)工程预算的施工费用不够用,需追加预算8万元【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;(2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得201160()12233x x x ++=,解得:x =180.经检验,x =180是原方程的根,∴23x =23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y 天,则有11()1120180y +=,解得 y =72. 需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.14.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________.【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】 试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.15.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金b n元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金; (2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)b b a b n n n n =-⨯=- ,23111()(1)(1)b b a b n n n n n =-⨯-=-; (2)11(1)k k b a n n-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.【解析】【试题分析】(1)根据第1所民办学校得奖金b n 元,然后再将余额除以n 发给第2所民办学校,得:22311111()(1),()(1)(1).bb b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a n n -=- ; (3)11(1)k k b a n n -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111()(1),()(1)(1).bb b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a n n -=- (3)11(1)k k b a n n -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.。

上海疁城实验学校数学分式填空选择同步单元检测(Word版 含答案)

上海疁城实验学校数学分式填空选择同步单元检测(Word版 含答案)

上海疁城实验学校数学分式填空选择同步单元检测(Word 版 含答案)一、八年级数学分式填空题(难)1.已知a 1=1t t+,a 2=111a -,a 3=211a -,…,a n +1=11n a - (n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示).【答案】1+t【解析】分析:把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,即可确定出a 2018的值.详解:根据题意得:a 1=1t t +,a 2=1111t t t=+-+,a 3=411111111t a t t t t=-==--++,…,2018÷3=672…2,∴a 2018的值为1+t . 故答案为:1+t .点睛:本题考查了分式的混合运算,弄清题中的规律是解答本题的关键.2.若x+1x,则x-1x=____________. 【答案】±2【解析】【分析】 先对等式x+1x21()8x x +=,整理得到2216x x+=,再用完全平方公式求出21()x x-的值,再开平方求出1x x -的值. 【详解】解:∵x+1x, ∴21()8x x += ∴22128x x ++= ∴2216x x+= ∴22211()2624x x x x-=+-=-=∴12x x-=± 故答案是: ±2.【点睛】 本题考查了互为倒数的两个数的和与差的完全平方公式的应用,利用当两数互为倒数时积为1这个特征去解题是关键.3.若关于x 的不等式组64031222x a x x ++>⎧⎪⎨-+⎪⎩有4个整数解,且关于y 的分式方程211a y y ---=1的解为正数,则满足条件所有整数a 的值之和为_____【答案】2【解析】【分析】先解不等式组确定a 的取值范围,再解分式方程,解为正数从而确定a 的取值范围,即可得所有满足条件的整数a 的和.【详解】 原不等式组的解集为46a --<x ≤3,有4个整数解,所以﹣1406a --≤<,解得:-4<a ≤2.原分式方程的解为y =a +3,因为原分式方程的解为正数,所以y >0,即a +3>0,解得:a >﹣3.∵y =a +3≠1,∴a ≠-2,所以-3<a ≤2且a ≠-2.所以满足条件所有整数a 的值为-1,0,1,2.和为-1+0+1+2=2.故答案为:2.【点睛】本题考查了不等式组的整数解、分式方程,解答本题的关键是根据不等式组的整数解确定a 的取值范围.4.已知210a a --=,且423223215211a xa a xa a -+=-+-,则x =______. 【答案】27【解析】【分析】先根据a 2-a-1=0,得出a 2,a 3,a 4的值,然后将等式化简求解.【详解】解:由题意可得a 2−a−1=0∴a 2=a+1∴a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2,a 3=a ⋅a 2=a(a+1)=a 2+a=a+1+a=2a+1, ∵423223215211a xa a xa a -+=-+- ∴2264321521211a a a a x x a +-+=-++- 22663151211a a x x a a +-∴=-++ ()()22116631512a a x a a x ⨯+-=-⨯++整理得()2-38110ax a +⨯+=∴381x = 27x ∴=故答案为:27.【点睛】本题主要考查了分解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键.5.若解分式方程144x m x m -=++产生增根,则m =_____. 【答案】-5【解析】【分析】【详解】试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x =-4,然后把分式方程化为整式方程x-1=m ,解得m =-5故答案为-5.6.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.7.若11a b+=3,则22a b a ab b +-+的值为_____.【答案】35【解析】【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a b a ab b+-+即可求解. 【详解】 ∵113a b+=, ∴3a b ab +=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35. 【点睛】 本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.8.关于x 的方程12ax x +-=−1的解是正数,则a 的取值范围是________. 【答案】a>-1且a≠-0.5【解析】112+=--ax x 方程两侧同时乘以最简公分母(x -2),得 ()12ax x +=--,整理,得 ()11a x +=,①(1) 当a =-1时,方程①为01x ⋅=,此方程无解.(2) 当a ≠-1时,解方程①,得11x a =+. ∵原分式方程有解, ∴11x a =+不为增根, ∴当11x a =+时,最简公分母x -2≠0, ∴1201a -≠+, ∴12a ≠-. ∵原分式方程的解为正数, ∴101x a =>+,∴1a >-.综上所述,a 的取值范围应该为1a >-且12a ≠-,即a >-1且a ≠-0.5. 故本题应填写:a >-1且a ≠-0.5.点睛:本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分母后,由于未知数x 的系数中含有未知参数a ,所以不能直接进行“系数化为1”的步骤,应该对参数a 的值进行讨论.9.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;那么f (1)+f (2)+f ()+f (3)+f ()+…+f (2013)+f ()= .【答案】2012.5【解析】试题分析:由题意f (2)+f ()==1,f (3)+f ()=1,…,f (2013)+f ()=1,根据这个规律即可求得结果.由题意得f (1)+f (2)+f ()+f (3)+f ()+…+f (2013)+f () =+1+1+1…+1=2012.5.考点:找规律-式子的变化点评:解答此类找规律的问题的关键是仔细分析所给式子的特征得到规律,再把这个规律应用于解题.10.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m ,结果共用8天完成这一任务,则原计划每天铺设管道的长度为_________.【答案】60 m【解析】设原计划每天铺设x m 管道,则加快施工进度后,每天铺设(20x +)m ,由题意可得,120600120820x x -+=+,解得:60x =,或5x =-(舍去),故答案为:60 m .二、八年级数学分式解答题压轴题(难)11.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.12.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-; (2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解所以x 的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.13.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,… ()1请你根据上面各式的规律,写出符合该规律的一道等式:________()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________ (用含有n 的式子表示) ()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++. 【答案】1111426767==-⨯ 1n n + 【解析】【分析】 根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:()11111(426767==-⨯答案不唯一); 故答案为1111426767==-⨯; ()2原式1n n =+; 故答案为1n n + ()3分式方程整理得:111111121111x x x x x x x -+-+-=---++, 即1221x x =-+, 方程两边同时乘()()21x x --,得()122x x +=-,解得:5x =,经检验,5x =是原分式方程的解.【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.14.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.15.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;(2)工程预算的施工费用不够,需追加预算4万元.【解析】【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】(1)解:设乙队单独完成这项工程需要x 天,则甲队单独完成需要2x 3填;403012xx3+=解得:x90=经检验,x=90是原方程的根.则22x906033=⨯=(天)答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(160+190)=1.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.。

上海 上海师范大学附属高桥实验中学数学三角形填空选择同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学三角形填空选择同步单元检测(Word版 含答案)

上海 上海师范大学附属高桥实验中学数学三角形填空选择同步单元检测(Word 版 含答案)一、八年级数学三角形填空题(难) 1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.3.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.4.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,∴∠BEF=12(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠EBC,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C.故③正确;④∠ABD=90°-∠BAC,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,∵∠CBD=90°-∠C,∴∠DBE=∠BAC-∠C-∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC-∠C-∠DBE,∴∠F=12(∠BAC-∠C);故④正确,故答案为①②③④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键5.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.6.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.7.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.8.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.9.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.【答案】108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键. 10.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.二、八年级数学三角形选择题(难)11.图1是二环三角形,S=∠A1+∠A2+…+∠A6=360,图2是二环四边形,S=∠A1+∠A2+…+∠A8=720,图3是二环五边形,S=∠A1+∠A2+…+∠A10=1080…聪明的同学,请你直接写出二环十边形,S=_____________度()A.1440 B.1800 C.2880 D.3600【答案】C【解析】【分析】本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.【详解】解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…∴二环十边形,S=360×(10﹣2)=2880度.故选:C.【点睛】本题考查了多边形的内角和,本题可直接根据S的度数来找出规律,然后根据规律表示出二环十边形的度数.12.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A .2a -10B .10-2aC .4D .-4【答案】C【解析】 试题分析:已知三角形的三边长分别为2,a -1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a >3,a<7.所以a -3>0,a-7<0. |a -3|+|a -7|=a-3+(7-a )=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

【精选试卷】上海 上海师范大学附属高桥实验中学中考数学填空题专项练习经典练习卷(含答案)

【精选试卷】上海 上海师范大学附属高桥实验中学中考数学填空题专项练习经典练习卷(含答案)

一、填空题1.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。

2.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.3.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______4.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .5.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.6.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.7.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).8.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).9.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.10.82=_______________.11.分解因式:2x3﹣6x2+4x=__________.12.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.13.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.15.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.16.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069率m/n根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).17.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.18.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.19.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.20.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.21.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.22.若ab=2,则222a ba ab--的值为________.23.若一个数的平方等于5,则这个数等于_____.24.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.25.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.26.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.27.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.28.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.29.3x+x的取值范围是_____.30.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.【解析】【分析】过点E作交AG的延长线于H根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E作交AG的延长线于H厘米`根据折叠的性质可知:根据折叠的性质可知:(2.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出3.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=24.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC 可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B5.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=26.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=C D又∵BD⊥x轴∴7.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈6218.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确9.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-110.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键11.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点12.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案13.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:414.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++215.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A 2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得16.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数0 07左右故男性中男性患色盲的概率为007故17.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA18.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO =3所以BD=6即可19.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:22.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本23.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质24.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM25.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2 m=0有一个根为0∴m2﹣2m=26.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式 27.【解析】【分析】过D 作DQ ⊥x 轴于Q 过C 作CM ⊥x 轴于M 过E 作EF ⊥x 轴于F 设D 点的坐标为(ab )求出CE 的坐标代入函数解析式求出a 再根据勾股定理求出b 即可请求出答案【详解】如图过D 作DQ ⊥x 轴于Q28.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单29.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式30.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x ∴顶点坐标为2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、填空题1.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:(解析:4+【解析】 【分析】过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠= 根据三角形外角的性质可得30,EAG EGA ∠=∠=根据锐角三角函数求出GC ,即可求解. 【详解】如图,过点E 作EH AG ⊥交AG 的延长线于H ,15,2C AE EG ︒∠===厘米,`根据折叠的性质可知:15,C CAG ∠=∠=30,EAG EGA ∴∠=∠= 322cos302223,2AG HG EG ==⋅=⨯⨯= 根据折叠的性质可知:23,GC AG ==2,BE AE ==222342 3.BC BE EG GC ∴=++=++=+(厘米)故答案为:4 3.+ 【点睛】考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.2.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30 【解析】 【分析】由图象可以V 甲=9030=3m/s ,V 追=90120−30=1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:12004=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间. 【详解】由图象可得V 甲=9030=3m/s ,V 追=90120−30=1m/s ,∴V 乙=1+3=4m/s , ∴乙走完全程所用的时间为:12004=300s ,此时甲所走的路程为:(300+30)×3=990m . 此时甲乙相距:1200﹣990=210m 则最后相遇的时间为:2103+4=30s故答案为:30 【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.3.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为152.4.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B 解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).5.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=26.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.7.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.8.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.9.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.10.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.11.2x (x ﹣1)(x ﹣2)【解析】分析:首先提取公因式2x 再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x (x2﹣3x+2)=2x (x ﹣1)(x ﹣2)故答案为2x (x ﹣1)(x ﹣2)点解析:2x (x ﹣1)(x ﹣2).【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.12.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒, ∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆, ∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.13.4【解析】【分析】【详解】解:连接AC 交OB 于D∵四边形OABC 是菱形∴AC⊥OB∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形,∴AC ⊥OB .∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:414.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得 解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.16.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.17.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.18.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.19.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.22.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.23.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.24.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.25.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.26.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.27.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.28.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.29.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.30.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵x>0,
∴ y x 16 3 2 x 16 3 11
x
x
当 x 16 时,最小值为 11; x
(3)设 S△BOC=x,已知 S△AOB=4,S△COD=9 则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD ∴x:9=4:S△AOD
∴:S△AOD= 36 x
∴四边形 ABCD 面积=4+9+x+ 36 13 2 x 36 25
【分析】
(1)直接把分子变形为 3(x-1)+10 解答即可;
(2)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b,按照题意,求出 a 和 b 的值,即可把
分式 x4 6x2 8 拆分成一个整式与一个分式(分子为整数)的和的形式. x2 1
【详解】
解:(1) 3x 7 = 3x 3 10 x 1 x 1
解:(1)当 x>0 时, x 1 2 x 1 2
x
x

x<0
时,
x
1 x
x
1 x
∵x 1 2 x
x
1 x
2

x
1 x
2
∴当 x 0 时, x 1 的最小值为 2;当 x 0 时, x 1 的最大值为-2;
x
x
(2)由 y x2 3x 16 x 16 3
x
x
m 1 解得: m 5 或 1 .
3 故答案为: 1或 5 或 1 .
3
【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.
6.化简:(1
1 ) x 1
x2 x2
x 2x 1
_____.
【答案】 x 1 . x 1
【解析】
【分析】
原式括号中两项通分,同时利用除法法则变形,约分即可得将含 x 的项用题中所给公式求得最
x
小值,再加上常数即可; (3)设 S△BOC=x,已知 S△AOB=4,S△COD=9,则由等高三角形可知:S△BOC:S△COD=S△AOB: S△AOD,用含 x 的式子表示出 S△AOD,四边形 ABCD 的面积用含 x 的代数式表示出来,再按照 题中所给公式求得最小值,加上常数即可. 【详解】
5.若关于
x
的方程
x
1
4
m x4
m3 x2 16
无解,则
m
的值为__.
【答案】-1 或 5 或 1 3
【解析】
【分析】
直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.
【详解】
去分母得: x 4 m x 4 m 3,
可得: m 1 x 5m 1,
当 m 1 0 时,一元一次方程无解, 此时 m 1, 当 m 1 0 时, 则 x 5m 1 4 ,
8.已知 xm=6,xn=3,则 x2m﹣n 的值为_____.
【答案】12 【解析】 【分析】 逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可. 【详解】
∵ xm 6,xn 3 , ∴ x2mn (xm )2 xn 62 3 12 .
故答案为 12. 【点睛】
熟记“同底数幂的除法法则: am an amn ,幂的乘方的运算法则: (am )n amn ,并能
= 3 x 1 10
x 1 =3+ 10 ;
解分式方程的方法及分式有意义的条件是解题关键.
2.计算:
x
1 x
1
x
1
1
x
2
x
1
2
x
3
x
1
2018
x
2019
______________
__.
2019
【答案】 x x 2019
【解析】 【分析】 利用裂项法先将每个分式化简,再将结果相加即可. 【详解】
∵ 1 1 1 , x(x 1) x x 1
x
x
(2)当 x 0 时,求 y x2 3x 16 的最小值. x
(3)如图,四边形 ABCD 的对角线 AC ,BD 相交于点 O,△AOB、△COD 的面积分别为 4 和
9,求四边形 ABCD 面积的最小值.
【答案】(1)2,-2;(2)11;(3)25 【解析】 【分析】
(1)当 x>0 时,按照公式 a+b≥2 ab (当且仅当 a=b 时取等号)来计算即可;x<0 时, 由于-x>0,- 1 >0,则也可以按照公式 a+b≥2 ab (当且仅当 a=b 时取等号)来计算;
【详解】
(1+ 1 )÷ x2 x x 1 x2 2x 1
=
x
x 1
x
2 x2
2x 1 x
x x 12
= x 1 x x 1
= x 1 , x 1
故答案为 x 1 . x 1
【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.
7.若关于 x 的方程 2 x m 2 有增根,则 m 的值是 ▲ x2 2x
(1)方程 + = + 的解;
(2)方程 ﹣ = ﹣ 的解(a、b、c、d 表示不同的数).
【答案】(1)x=4;(2)x=

【解析】 通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利 用这个关系可得出两个方程的解.
解:解方程 ﹣ = ﹣ ,先左右两边分别通分可得:

x 2018 x 2019
=1 1 x x 2019
2019
= x x 2019 .
【点睛】 此题考察分式的混合运算,运用裂项法将每个分式化简是解题的关键.
3.已知关于 x 的方程 x 4 m 4 m 无解,则 m=________.
x3
3 x
【答案】-3 或 1
【解析】
【分析】
分式方程去分母转化为整式方程 m 3 x 4m 8 ,分两种情况:(1)
上海 上海师范大学附属高桥实验中学数学分式填空选择同步单元检 测(Word 版 含答案)
一、八年级数学分式填空题(难)
1.若关于 x 的分式方程
=3 的解是负数,则字母 m 的取值范围是 ___________ .
【答案】m>-3 且 m≠-2
【解析】
【分析】
先解关于 x 的分式方程,求得 x 的值,然后再依据“解是负数”建立不等式求 m 的取值范
围.
【详解】
原方程整理得:2x-m=3(m+1),
解得:x=-(m+3),
∵ x<0,
∴ -(m+3)<0,即 m>-3,
∵原方程是分式方程,
∴x≠-1,即-(m+3)≠-1,
解得:m≠-2,
综上所述:m 的取值范围是 m>-3,且 m≠-2,
故答案为:m>-3,且 m≠-2
【点睛】
此题考查了分式方程的解,解答本题时,易漏掉分母不等于 0 这个隐含的条件,熟练掌握
化简可得:

整理可得:2x=15﹣8, 解得:x= , 这里的 7 即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4), 这里的 2 即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)]; 解方程 ﹣ = ﹣ ,先左右两边分别为通分可得:

化简可得:

解得:x= ,
这里的 11 即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6), 这里的 2 即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)]; 所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常 数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.
x
x
当且仅当 x=6 时取等号,即四边形 ABCD 面积的最小值为 25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性
质,本题难度中等略大.
13.阅读下面材料并解答问题
材料:将分式 x3 2x2 x 3 拆分成一个整式与一个分式(分子为整数)的和的形式. x2 1

12.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:
当 a 0 , b 0 时,∵ ( a b )2 a 2 ab b 0 ,∴ a b 2 ab ,当且仅当
a b 时取等号.请利用上述结论解决以下问题:
(1)当 x 0 时, x 1 的最小值为_______;当 x 0 时, x 1 的最大值为__________.
2)
1
x
2
1 x2 1
这样,分式
x3
2x2 x x2 1
3
被拆分成了一个整式
x
2
与一个分式
1 x2
1
的和
解答:(1)将分式 3x 7 拆分成一个整式与一个分式(分子为整数)的和的形式 x 1
(2)求出 x4 6x2 8 的最小值. x2 1
【答案】(1)3+ 10 ;(2)8 x 1
【解析】
∵ 分式方程 m 3 1的解为正数, x 1 1 x
∴ x=m-2>0 且 x-1≠0, 即 m-2>0 且 m-2-1≠0, ∴ m>2 且 m≠3, 故答案为 m>2 且 m≠3.
10.若 x2 4xy 4 y2 0,则 x y 等于________. x y
【答案】 1 3
【解析】
(1)先把方程分为两边差的形式:方程 ﹣ = ﹣ ,
由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8, 分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,
所以方程的解为 x= =4;
相关文档
最新文档