山东省德州市夏津县2018_2019学年八年级数学下学期招生考试试题新人教版

合集下载

2018-2019学年新人教版初二下册期末数学试卷(含答案)

2018-2019学年新人教版初二下册期末数学试卷(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A. 选取一个班级的学生B. 选取50名男生C. 选取50名女生D. 在该校各年级中随机选取50名学生2.若点P(m,m+3)在第二象限,则m的值可能是()A. 1B. 0C.D.3.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.4.如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A. BD的长度增大B. 四边形ABCD的周长不变C. 四边形ABCD的面积不变D. 四边形ABCD由矩形变为平行四边形5.在平面直角坐标系中,一次函数y=1-x的图象是()A. B.C. D.6.如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A. B. C. D.7.将点B(5,-1)向上平移3个单位长度得到点A(a+1,1-b),则()A. ,B. ,C. ,D. ,8.如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A. 4吨B. 5吨C. 6吨D. 7吨9.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 减小2B. 增加2C. 减小4D. 增加410.如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(-4,2),点B的坐标为(2,-4),则坐标原点可能为()A.B.C.D.11.用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A. B.C. D.12.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东方向上的1200米处C. 南偏西方向上的1200米处D. 南偏西方向上的1200米处13.若函数y=kx(k≠0)的图象过(2,-3),则关于此函数的叙述不正确的是()A. y随x的增大而增大B.C. 函数图象经过原点D. 函数图象过二、四象限14.某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A. ①②B. ①④C. ②③D. ③④15.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 乙对,甲不对D. 甲、乙两人都不对16.如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A. 点AB. 点BC. 点CD. 不能确定二、填空题(本大题共4小题,共12.0分)17.根据如图的程序计算,当输出的结果y=5.5时,则输入x=______.18.如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n-1+∠A n=2040°,若∠P=60°,则n的值为______.19.学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:则表中a的值是______.20.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到-3℃;从次日5时至次日8时,气温又将由-3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续______时,你认为是否有必要对大棚蔬菜采取防冻措施?______(填“有”或“没有”)三、解答题(本大题共6小题,共56.0分)21.平面直角坐标系中,已知点A(-a,2a+3),B(1,a-2)(1)若点A在第一象限的角平分线上时,则a=______;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为______;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证______由已知,BE=DF,又由______,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费______元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是______万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则______卖区销售额最高,该卖区占5月份商场销售总额的百分比是______,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是______.(2)下表是x与y的对应值:①m=______;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=______;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为______;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x-1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x 轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A (4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.答案和解析1.【答案】D【解析】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.根据调查数据要具有随机性,进而得出符合题意的答案.此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【答案】C【解析】解:∵点P(m,m+3)在第二象限,可得:,解得:-3<m<0,所以m的值可能是-1.5,故选:C.点在第二象限的条件是:横坐标是负数,纵坐标是正数.此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【答案】D【解析】解:A、B、C当x取值时,y有唯一的值对应,故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.4.【答案】C【解析】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.由旋转的性质和平行四边形的性质可求解.本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【答案】A【解析】解:一次函数y=-x+1,其中k=-1,b=1,其图象为:,故选:A.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【答案】D【解析】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°-50°=130°;故选:D.先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【答案】B【解析】解:由题意:,解得,故选:B.根据左减右加,上加下减的规律解决问题即可.本题考查坐标与图形变化-平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【答案】B【解析】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°-(90°+90°+60°)=120°,故选:B.根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【答案】D【解析】解:∵当x的值减小1,y的值就减小2,∴y-2=k(x-1)+b=kx-k+b,即y=kx-k+b+2.又∵y=kx+b,∴-k+b+2=b,即-k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【答案】A【解析】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(-4,2),点B的坐标为(2,-4),∴,解得:,∴直线AB为y=-x-2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b 决定了直线与y轴的交点位置.11.【答案】B【解析】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48-2x由三角形三边关系可得:12<x<24故选:B.由三角形周长及三角形三边关系可求得.本题考察三角形三边的关系,为基础题型.12.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.13.【答案】A【解析】解:把点(2,-3)代入y=kx(k≠0)得:2k=-3,解得:k=-,函数的解析式为:y=-x,A.k=-<0,y随着x的增大而减小,即A项不正确,B.k=-,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.把点(2,-3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【答案】B【解析】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故①错误,③正确,该产品已经出现供大于求的趋势价格将趋跌,故②正确,由图象不能得到销售价格,故不能判断是否亏损,故④错误,故选:B.根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】A【解析】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】C【解析】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018-2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.17.【答案】0.5【解析】解:y=5.5时,x+5=5.5,解得x=0.5,-x+5=5.5,解得x=-0.5(舍去).故答案为:0.5.分别把y=5.5代入代数式,计算即可.本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【答案】14【解析】解:(2040°+180°-60°)=(n-2)×180°所以n=14,故答案为14.减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【答案】15【解析】解:∵b+c=1-30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【答案】有【解析】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到-3℃所需时间为:(0-3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由-3℃上升到0℃所需要的时间为:[0-(-3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.根据题意列算式即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型21.【答案】-1 (1,2)【解析】解:(1)∵点A在第一象限的角平分线上,∴-a=2a+3,解得:a=-1,故答案为:-1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a-2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a-2,解得:a=-5,∴点A(5,-7),B(1,-7),则AC=5-1=4.(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB的长度.本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【答案】四边形BEDF为平行四边形BE∥DF【解析】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF为平行四边形,得出BF∥DE,即可得出结论.本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【答案】160【解析】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x-100;(3)将x=150代入y=6x-100,得y=6×150-100=800,答:每月用于水费的支出最多为800元.(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】36 B8.4%【解析】解:(1)5月份的销售额=600-180-90-115-95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】全体实数 4 -9 1【解析】解:(1)全体实数;(2)4和-9;(3)①图象如右图所示.②1,③函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【答案】OFF1BOB1(-4,1)3【解析】解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(-4,1),故答案为OFF1,BOB1,(-4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a-1),∵F(-4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.(1)①证明△OFF1≌△BOB1(AAS)即可解决问题.②作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.。

山东省夏津县2018-2019学年八年级上招生考试数学试卷含答案

山东省夏津县2018-2019学年八年级上招生考试数学试卷含答案

山东省夏津县2018-2019学年第二实验中学八年级上学期招生考试数学试卷一、单选题(共10小题)1.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错考点:命题答案:A试题解析:①三条直线只有两个交点,则其中两条直线互相平行,正确;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,正确;③过直线外一点有且只有一条直线与已知直线平行,所以错误.故①、②是正确的命题,故选:A.2.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是()A.B.都是C.或D.以上都不对考点:平行线的判定及性质角的余角和补角答案:C试题解析:两个角的两边分别平行时,情况有两种,一是相等,二是互补相等时,设这个角为X则X=4X-30°-3X=-30°X=10°这个角是10°,互补时,设这个角为X则X+(4X-30°)=180°5X-30°=180°5X=210°X=42°这个角是42°,另一个角是180°-42°=138°,所以这两个角都等于10°,或者一个角是42°,另一个角是138°3.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)考点:平面直角坐标系及点的坐标答案:C试题解析:∵线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),先向右平移5个单位,在向上平移3个单位,则点B(-4,-1)的对应点D的坐标为(1,2)4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后左转130°D.先右转50°,后左转50°考点:平行线的判定及性质答案:D试题解析:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,也可以得到∠1=∠2.故选D.5.若三元一次方程组的解使ax+2y+z=0,则a的值为().A.1B.0C.-2D.4考点:二元一次方程(组)及其解法答案:B试题解析:三元一次方程组得,将代入ax+2y+z=0得3a+4-4=0,a=0.故选B。

2018-2019学年人教版八年级(下)期末数学试卷(解析版)

2018-2019学年人教版八年级(下)期末数学试卷(解析版)

2018-2019学年八年级(下)期末数学试卷人教版一、选择题(共10小题,每小题3分,共30分,下列各题中均有四个备选答案,其中有且只有一个正确)1.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4B.5C.6D.102.数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.703.矩形是轴对称图形,它的对称轴有几条?()A.5B.4C.3D.24.计算=()A.4B.2C.2D.5.下列式子中,表示y是x的正比例函数的是()A.y=2x2B.y=C.y=D.y2=3x6.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8B.7C.6D.57.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4B.2.2C.1.8D.1.68.已知x=﹣6,则代数式x2+5x﹣6的值为()A.2+3B.5﹣5C.3﹣2D.5﹣79.已知直线y=x+b经过点P(4,﹣1),则直线y=2x+b的图象不经过第几象限?()A.一B.二C.三D.四10.如图,正方形ABCD中,AC与BD相交于点O,DE平分∠BDC交AC于F,交BC于E.若正方形ABCD的边长为2,则3OF+2CE=()(供参考(+1)(﹣1)=a﹣1,其中a ≥0)A.3+B.4+2C.+1D.+2二、填空题(共6小题,每小题3分,共18分)11.使式子有意义的a的取值范围是.12.如图所示,A,B,C三地的两两距离如图所示,A在B的正东方向,则C在B的什么方向?答:.13.一组数据:24,58,45,36,75,48,80,则这组数据的中位数是.14.在平行四边形ABCD中,AB=,AD=2,点A到边BC,CD的距离分别为AM=,AN=2,则∠MAN的度数为.15.将函数y=x﹣1的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x﹣1|的图象.若函数y=|x﹣1|的图象与y=a交点间距离不小于1且不大于3,则a的取值范围是.16.如图,矩形ABCD中,点M是CD上的点,将△ADM沿折痕AM折叠,使点D落在BC边上的点N处,点P是线段CB延长线上的点,连AP,若AD=5,CD=4,则满足使△APN为等腰三角形的PB的长是.三、解答题(共8小题,共72分)17.(8分)计算:(1)×÷(2)﹣+18.(8分)如图,四边形ABCD是菱形,∠ACD=30°,BD=6,求:(1)∠ABC的度数.(2)四边形ABCD的周长.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5hB组:0.5h≤t<1hC组:1h≤t<0.5hD组:t≥1h请根据上述信息解答下列问题:(1)求C组的人数,并将图中的统计图补充完整;(2)本次调查数据的中位数落在组内.20.(8分)如图,在4×5的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图.(1)在图①中画一条线段AB,使AB=.(2)在图②中画一个三边长均为无理数,且斜边长为的等腰直角三角形DCE,其中∠DCE =90°,并求出它的周长.21.(8分)已知△ABC中,AB=AC,点E、D、F分别是AB、BC、AC的中点.(1)如图①,若∠A=90°,请判断四边形AEDF的形状,并证明你的结论.(2)如图②,若∠A=120°,BC=4,求四边形AEDF的周长和面积.22.(10分)在汛期来临之前,某市提前做好防汛工作,该市的A、B两乡镇急需防汛物质分别为80吨和120吨,由该市的甲、乙两个地方负责全部运送到位,甲、乙两地有防汛物质分别为110吨和90吨,已知甲、乙两地运到A、B两乡镇的每吨物质的运费如表所示:(1)设乙地运到A乡镇的防汛物质为x吨,求总运费y(元)关于x(吨)的函数关系式,并指出x的取值范围.(2)求最低总运费,并说明总运费最低时的运送方案.23.(10分)已知:平行四边形ABCD的对角线AC,BD相交于点O.(1)如图①,EF过点O且与AB,CD分别相交于点E、F,AC=6,△AEO的周长为10,求CF+OF的值.(2)如图②,将平行四边形ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD、DE于点H、P,请在折叠后的图形中找一条线段,使它与EP相等,并加以证明.(3)如图③,△ABO是等边三角形,AB=1,点E在BC边上,且BE=1,则2EC﹣2EO=直接填结果.24.(12分)已知:在平面直角坐标系中,边长为8的正方形OABC的两边在坐标轴上(如图).(1)求点A,B,C的坐标.(2)经过A,C两点的直线l上有一点P,点D(0,6)在y轴正半轴上,连PD,PB(如图1),若PB2﹣PD2=24,求四边形PBCD的面积.(3)若点E(0,1),点N(2,0)(如图2),经过(2)问中的点P有一条平行于y轴的直线m,在直线m上是否存在一点M,使得△MNE为直角三角形?若存在,求M点的坐标;若不存在,请说明理由.2017-2018学年湖北省武汉市江夏区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分,下列各题中均有四个备选答案,其中有且只有一个正确)1.【分析】利用勾股定理即可求出斜边长.【解答】解:由勾股定理得:斜边长为:=5.故选:B.【点评】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.2.【分析】根据算术平均数的定义计算可得.【解答】解:这四个数的平均数是=50,故选:B.【点评】此题考查了平均数,掌握平均数的计算公式是本题的关键;平均数是指在一组数据中所有数据之和再除以数据的个数.3.【分析】根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【解答】解:矩形是轴对称图形,它的对称轴共有2条.故选:D.【点评】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.【分析】先化简分子,再约分即可得.【解答】解:原式==2,故选:B.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化的常用方法.5.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、y=2x2表示y是x的二次函数,故本选项错误;B、y=表示y是x的反比例函数,故本选项错误;C、y=表示y是x的正比例函数,故本选项正确;D、y2=3x不符合正比例函数的含义,故本选项错误;故选:C.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx的定义条件是:k为常数且k≠0,自变量次数为1.6.【分析】根据众数的定义求解可得.【解答】解:在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【点评】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.7.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,AO==2.4,故选:A.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.【分析】直接把x的值代入进而求出答案.【解答】解:∵x=﹣6,∴x2+5x﹣6=(x+6)(x﹣1)=(﹣6+6)×(﹣6﹣1)=×(﹣7)=5﹣7.故选:D.【点评】此题主要考查了二次根式的化简求值,正确应用公式是解题关键.9.【分析】直接把点P(4,﹣1)代入直线y=x+b,求出b的值,即可得到直线y=2x+b的图象不经过第二象限.【解答】解:∵直线y=x+b经过点(4,﹣1),∴﹣1=2+b,解得b=﹣3,∴直线经过一、三、四象限,∴直线y=2x+b的图象不经过第二象限,故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.10.【分析】先证明∠EFC=67.5°=∠DEC,则EC=FC,可知:2CE+2OF=2OC=2,过F作FG⊥CD于G,根据角平分线的性质得:OF=FG,由△FCG是等腰直角三角形,得CF=FG=OF,计算OF的长可得结论.【解答】解:在正方形ABCD中,∵AD=DC=2,∠ADC=90°,∴AC=2,∴OC=,∵∠BDC=45°,∠BCD=90°,∵ED平分∠BDC,∴∠BDE=∠CDE=22.5°,∴∠DEC=67.5°,∵∠FCE=45°,∴∠EFC=67.5°=∠DEC,∴EC=FC,∴2CE+2OF=2OC=2,过F作FG⊥CD于G,∵AC⊥BD,ED平分∠BDC,∴OF=FG,∵∠ACD=45°,∴△FCG是等腰直角三角形,∴CF=FG=OF,∴OF+OF=OC=,∴OF===2﹣,∴3OF+2CE=OF+2OF+2CE=2﹣+2=2+.故选:D.【点评】本题考查了正方形的性质,角平分线的定义和性质,等腰直角三角形的判定和性质,熟记各性质是解题的关键,根据正方形的边长计算出OF的长是本题的难点.二、填空题(共6小题,每小题3分,共18分)11.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:使式子有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.12.【分析】由题中数据可得三角形为直角三角形,所以点B,C在一条垂线上,进而可得出其方向角.【解答】解:根据题意,AB=12,BC=5,AC=13.∵BC2+AB2=52+122=25+144=169,AC2=132=169,∴BC2+AB2=AC2.∴∠CBA=90°.∵A地在B地的正东方向,∴C地在B地的正北方向.故答案为:正北方向.【点评】此题考查勾股定理的应用,能够利用直角三角形判断方向角.13.【分析】根据中位数的概念求解.【解答】解:将这组数据重新排列为24、36、45、48、58、75、80,所以这组数据的中位数为48,故答案为:48.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.【分析】首先根据题意画出图形,再根据勾股定理可得DF=N=AN,AM=BM,然后再根据三角形内角和可得∠DAN=45°,∠MAB=45°,根据平行四边形的性质可得AB∥CD,进而得到∠D+∠DAB=180°,求出∠DAB的度数,进而可得答案,同理可得出∠MAN另一个度数.【解答】解:如图1所示:∵AN⊥DC,AM⊥CB∴∠DNA=90°,∠AMB=90°,∵AD=2,AN=2,∴DN=2∴∠D=∠DAN=45°,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DAB=135°,∵AB=,AM=,∴MB=,∴AM=BM,∴∠MAB=45°,∴∠MAN=135°﹣45°﹣45°=45°,如图2,过点A作AM⊥CB延长线于点M,过点A作AN⊥CD延长线于点N,同理可得:∠MAB=45°,∠BAD=45°,∠NAD=45°,则∠MAN=135°,故答案为:45°或135°.【点评】此题主要考查了勾股定理的应用,平行四边形的性质,关键是正确计算出∠DAN=45°,∠MAB =45°.15.【分析】依据函数y =|x ﹣1|的图象与y =a 交点间距离不小于1且不大于3,可得关于a 的不等式组,即可得到a 的取值范围.【解答】解:函数y =x ﹣1的图象位于x 轴下方的部分沿x 轴翻折至其上方后可得y =﹣x +1(x ≤1),当y =a 时,x =1﹣a ;在y =x ﹣1(x ≥1)中,当y =a 时,x =a +1;∵函数y =|x ﹣1|的图象与y =a 交点间距离不小于1且不大于3,∴,解得≤a ≤,故答案为:≤a ≤.【点评】本题考查了一次函数图象与几何变换,解决问题的关键是利用自变量与函数值的对应关系.16.【分析】由折叠可得AN =5,由勾股定理可得BN =3,由△APN 是等腰三角形,则分三种情况讨论即可.【解答】解:∵ABCD 是矩形∴AB =CD =4,AD =BC =5,∵折叠,∴AD =AN =5;由勾股定理得:BN =3,∵△APN 是等腰三角形,∴AP =AN 或AN =NP 或AP =PN ;若AP =AN =5,且AB ⊥BC ,∴PB =BN =3,若AN =PN =5,∴PB =PN ﹣BN =5﹣3=2;若PN =PA ,∴AP 2=AB 2+(PN ﹣3)2,∴AP =,∴BP =.故答案为:2或3或【点评】本题考查了折叠问题,等腰三角形的判定,矩形的性质,关键利用分类讨论思想解决等腰三角形的问题.三、解答题(共8小题,共72分)17.【分析】(1)利用二次根式的乘除法则运算;(2)先把化简,然后合并即可.【解答】解:(1)原式==;(2)原式=2﹣+=+.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】(1)根据菱形的性质得出∠ADC =2∠CDO ,∠ABC =∠ADC ,∠DOC =90°,求出∠CDO ,即可求出答案;(2)易求出DO ,则DC 的长可得,进而可求出四边形ABCD 的周长.【解答】解:(1)∵四边形ABCD 是菱形,∴∠ADC =2∠CDO ,∠ABC =∠ADC ,DB ⊥AC ,∴∠DOC =90°,∵∠1=30°,∴∠CDO =60°,∴∠ABC =∠ADC =2∠CDO =120°;(2)∵四边形ABCD 是菱形,BD =6,∴DO =BO =3,∵∠DOC =90°,∠1=30°,∴DC =2DO =6,∴四边形ABCD 的周长=4×6=24.【点评】本题考查了菱形的性质和解直角三角形等知识点,能灵活运用菱形的性质进行推理是解此题的关键.19.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140,条形统计图如图:(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组.故答案为:C;【点评】本题考查条形统计图,同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.20.【分析】(1)AB的长就是长为5,宽为2的矩形对角线;(2)腰长是长为4,宽为1的矩形对角线;【解答】解:(1)如图①中,线段AB即为所求;(2)如图②中,△DCE即为所求.DC=EC=,斜边DE=.周长=2+.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【分析】(1)先判定四边形AEDF是菱形,再根据∠A=90°,即可得到四边形AEDF是正方形;(2)连接AD,EF,求得AD=2,根据DF是△ABC的中位线,可得DF=2,即可得到菱形AEDF周长为8.根据EF是△ABC的中位线,可得EF=2,即可得到菱形AEDF的面积为2.【解答】解:(1)四边形AEDF是正方形.证明:∵AB=AC,点E、D、F分别是AB、BC、AC的中点,∴AE=DE=DF=AF,∴四边形AEDF是菱形,∵∠A=90°,∴四边形AEDF是正方形.(2)如图,连接AD,EF,∵AB=AC,点D是BC的中点,∴AD⊥BC,又∵∠A=120°,BC=4,∴∠B=30°,BD=2,∴AD=tan30°×BD=2,∴AB=2AD=4,由题可得,DF是△ABC的中位线,∴2DF=AB,即DF=2,∴菱形AEDF周长为8.由题可得,EF是△ABC的中位线,∴BC=2EF,即EF=2,∴菱形AEDF的面积=0.5×2×2=2.【点评】此题主要考查了菱形的判定和性质,等腰三角形的性质,三角形中位线的性质定理,综合运用各定理是解答此题的关键.22.【分析】(1)设乙运A镇x吨,则运B镇(90﹣x)吨,甲运A镇(80﹣x)吨,运B镇(110﹣80+x)吨,根据题意即可求得总运费y与x的函数关系式;(2)由(1)中的函数解析式,即可得y随x的增大而减小,则可求得何时总运费最低,继而可求得总运费最低时的运输方案.【解答】解:(1)设乙运A镇x吨,则运B镇(90﹣x)吨,甲运A镇(80﹣x)吨,运B镇(110﹣80+x)吨.可得:y=20(80﹣x)+25(110﹣80+x)+15x+24(90﹣x)=﹣4x+4510(0≤x≤80);(2)∵k=﹣4<0,∴y随x的增大而减少,当x=80时,最低费用y=4190(元).方案:乙运A镇80吨,运B镇10吨.甲110吨全部运B镇.【点评】此题考查了一次函数的实际应用问题.此题难度适中,解题的关键是理解题意,根据题意求得当乙运A镇x吨时的运输方案.23.【分析】(1)只要证明△AOE≌△COF即可解决问题;(2)结论:FG=EP.只要证明△A1PE≌△CGF即可;(3)作OH⊥BC,解直角三角形分不清楚EC、OE即可解决问题;【解答】解:(1)如图①中,∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∵∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,AE=CF,∴CF+OF=AE+OE=△AOE的周长﹣OA=7.(2)结论:FG=EP.理由:如图②中,连AC,由(1)可知:△AOE≌△COF,∴AE=CF,由折叠可知,AE=A1E=CF,∠A1=∠A=∠BCD,∵∠A1PE=∠DPH,∠D=∠B1,∠PHD=∠B1HG,∴∠DPH=∠B1GH,∵∠B1GH=∠CGF,∴∠A1PE=∠CGF,∴△A1PE≌△CGF,∴FG=EP.(3)如图③中,作OH⊥BC于H.∵△AOB是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,∵∠ABC=90°,∵AB =OB =BE =1,∴BC =,EC =﹣1,∵OB =OC ,OH ⊥BC ,∴BH =CH =, ∴HE =1﹣,OH =OH =,∴OE ==,∴2EC ﹣2EO =2﹣2﹣+.故答案为2﹣2﹣+. 【点评】本题考查四边形综合题、平行四边形的性质、矩形的性质、翻折变换、解直角三角形、等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.【分析】(1)根据正方形的性质直接写出点点A ,B ,C 的坐标.(2)求得直线AC 的解析式为y =﹣x +8,过点P 作平行于X 轴的直线,根据题意可求点P 的坐标是:P (3,5),故四边形PBCD 的面积=S △PCD +S △PBC ;(3)根据第(2)中求得的P (3,5),设M (3,t ),分类讨论:①当∠MEN =90°时,ME 2=32+(t ﹣1)2,EN 2=12+22,MN 2=12+t 2,利用勾股定理求得t 的值;②当∠MNE =90°时,同理可求:M (3,2).③显然∠EMN 不可能等于90°.综合可得:使△MNE 为直角三角形的点是M (3,7)或M (3,2).【解答】解:(1)∵如图1,四边形OABC 是正方形,且其边长为8,∴OA =AB =BC =OC =8,∴A (8,0),B (8,8),C (0,8).(2)设直线AC 的解析式为y =kx +8,将A (8,0)代入,得0=8k +8,解得k =﹣1,故直线AC 的解析式为y =﹣x +8,设P (x ,﹣x +8),∵PB 2﹣PD 2=24,D (0,6),B (8,8),∴(x ﹣8)2+(﹣x +8﹣8)2﹣x 2﹣(﹣x +8﹣6)2=24,解得x =3,∴点P 的坐标是:P (3,5),∴四边形PBCD 的面积=S △PCD +S △PBC =×2×3+×8×3=15;(3)根据第(2)中求得的P (3,5),设M (3,t ),分类讨论:①当∠MEN =90°时,ME 2=32+(t ﹣1)2,EN 2=12+22,MN 2=12+t 2∴MN 2=ME 2+EN 2∴1+t 2=9+t 2﹣2t +1+5,∴t =7,∴M (3,7).②当∠MNE =90°时,同理可求:M (3,2).③显然∠EMN 不可能等于90°.综合可得:使△MNE 为直角三角形的点M 的坐标是(3,7)或(3,2).【点评】考查了四边形综合题.利用待定系数法求一次函数的解析式,正方形的性质,坐标与图形的特点,三角形面积的求法,勾股定理等知识点,第(3)问难度较大,运用了分类讨论的思想,利用数形结合的思想解决此问题.。

人教版2018-2019学年八年级数学第二学期期末考试试卷及答案

人教版2018-2019学年八年级数学第二学期期末考试试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>03.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3.【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了2cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是4.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA =PE ,PD =PE ,∴PE =PA =PD ,∵PA +PD =AD =8,∴PA =PD =4,∴PE =4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x 元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x 元.根据题意得:解得:x =2经检验x =2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC 中,∠BAC =90°,AB =4,AC =6,点D 、E 分别是BC 、AD 的中点,AF ∥BC 交CE 的延长线于F .则四边形AFBD 的面积为 12 .【分析】由于AF ∥BC ,从而易证△AEF ≌△DEC (AAS ),所以AF =CD ,从而可证四边形AFBD 是平行四边形,所以S 四边形AFBD =2S △ABD ,又因为BD =DC ,所以S △ABC =2S △ABD ,所以S 四边形AFBD =S △ABC ,从而求出答案.【解答】解:∵AF ∥BC ,∴∠AFC =∠FCD ,在△AEF 与△DEC 中,∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形,∴S 四边形AFBD =2S △ABD ,又∵BD =DC ,∴S △ABC =2S △ABD ,∴S 四边形AFBD =S △ABC ,∵∠BAC =90°,AB =4,AC =6,∴S △ABC =AB •AC =×4×6=12,∴S 四边形AFBD =12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x <﹣1,由②得:x ≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。

2018-2019学年人教版八年级(下册)期末数学考试试题及答案

2018-2019学年人教版八年级(下册)期末数学考试试题及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t2.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣14.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

人教版八年级数学下册2018—2019学年第二学期期中模拟测试卷及解析

人教版八年级数学下册2018—2019学年第二学期期中模拟测试卷及解析
20 .(本小题满分 6 分)如图,在 Rt △ABC 中,∠ACB= 90 °,点D,E 分别是边 AB ,AC 的中点,延 1
长 BC 到点 F,使 CF= BC.若 AB =12 ,求 EF的长. 2
解:连接 CD.∵D 是 AB 边的中点, ∴CD 是 Rt△ABC 斜边上的中线.
1 ∴CD = AB =6.
∴∠ADB =90 °.∴四边形 AGBD 是矩形.
23 .(本小题满分 12 分 )如图所示,四边形 ABCD 是正方形, M 是 AB 延长线上一点.直角三角尺的 一条直角边经过点 D ,且直角顶点 E 在 AB 边上滑动 (点 E 不与点 A ,B 重合 ),另一直角边与∠ CBM 的平分线 BF 相交于点 F.
9 .下列式子成立的是 (C)
A.( -5) 2=5
B. (- 5)2 =- 5
C. (- 5 )2=5
D. x2=x
10 .如图,在 ? ABCD 中,∠B= 110 °,延长AD 至 F,延长 CD 至 E,连接 EF,则∠E+∠F=(C)
A.30 °
B. 50 °
C.70 °
D .110 °
11 .如图,在一块平地上,张大爷家屋前 9 米远处有一棵大树,在一次强风中,这棵大树从离地面 6
3 4 ∴AC = 6. 3
第 4页 共 8页
19 .(本小题满分 8 分)我们把满足方程 x2+y2=z2 的正整数解 (x,y ,z)叫做勾股数.如: (3 ,4,5) 就是一组勾股数. (1) 请你再写出两组勾股数: (6 ,8,10) ,(5 ,12 , 13) ; (2) 在研究直角三角形的勾股数时, 古希腊的哲学家柏拉图曾指出: 如果 n 表示大于 1 的整数,x= 2n , y=n 2-1 ,z=n 2+ 1,那么以 x,y,z 为三边的三角形为直角三角形 (即 x,y,z 为勾股数 ),请你加 以证明. 证明: x2+y2=(2n) 2+ (n 2- 1) 2= 4n 2 +n 4- 2n 2+1 =n 4+2n 2+1=(n 2+1) 2=z2. ∴以 x,y,z 为三边的三角形是直角三角形.

山东省德州市德城区2018-2019学年八年级下学期期末考试数学试题

山东省德州市德城区2018-2019学年八年级下学期期末考试数学试题

2018—2019学年度第二学期期末检测八年级数学试题一.选择题(本大题共12小题,每小题4分,共48分)1.下列二次根式中,是最简二次根式的是( )A.2.0B.12C.3D.182.下列各式中正确的是( )A .16=4±B .2-=2(2)C .27=3D .1=333.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( )A .方差B .平均数C .众数D .中位数4.以下列长度(单位:cm )为边长的三角形是直角三角形的是( )A .5,6,7B .7,8,9C .6,8,10D .5,7,95.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+ 6.一次函数y=-2x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.将一次函数y=﹣2x+4的图象平移得到图象的函数关系式为y=﹣2x ,则移动方法为( )A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位8.能判定四边形ABCD 为平行四边形的条件是( )A .AB ∥CD ,AD=BC; B .∠A=∠B ,∠C=∠DC .AB=CD ,AD=BC; D .AB=AD ,CB=CD9.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=﹣x+3B .y=-2x+3C .y=2x ﹣3D .y=-x-3 【八年级数学试题共4页】第1页10.如图,矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B —C —D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象▱( )11.如图,在 ABCD 中,用直尺和圆规作∠BAD 的平分线AG交BC 于点E .若BF=6,AB=5,则AE 的长为( )A .4B .6C .8D .10 12.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(m —1)D .32(m —1) 二.填空题(本大题共6小题,每小题4分,共24分)13.函数1y x =-x 的取值范围是 .14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是 .15.2cm 3cm ,那么能与它们组成直角三角形的第三条线段的长是 .16.点(﹣1,y 1)、(2,y 2)是直线y=2x+1上的两点,则y 1 y 2(填“>”或“=”或“<”).17.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx x a b -=-的解是x=3;④当x <3时,y 1<y 2中.则正确的序号有 . 17题图 18题图18.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 . 【八年级数学试题共4页】第2页三.解答题(本大题共7小题,共78分)19.(8分)计算:(1148312242(2)2101(2)()8(23)2--+20.(10分)某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.21.(10分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A(0,2),点C(1,0),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D.(1)求证:△AOC≌△CEB;(2)求△ABD的面积.22.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.【八年级数学试题共4页】第3页23.(12分)为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b 折售票。

新人教版2018-2019八年级下学期数学期末试卷及其答案

新人教版2018-2019八年级下学期数学期末试卷及其答案

2018—2019学年度(下)学期期末教学质量检测八年级数学试卷参考答案考试时间:90分钟 试卷满分:100分一、选择题(每小题2分,共20分)1.D 2.B 3.A 4.B 5.C 6.C 7.B 8.D 9.C 10.A二、填空题(每小题2分,共16分)11.2x ≥-且1x ≠ 12.相等的角为对顶角 13.2cm 14.2516.12 17.x <-2 18.(2017,0) 三、解答题(19题8分,20题8分,共计16分)19. (1)解:-------------------------------------------------------------------------------------------4 (227a + 26=+. -------------------------------------------------2 当1a =时, 原式=1165652=+=+. ----------------------------4 20. 解:(1)如图1------------------------------------------------------------2(((5⎛-÷⨯ ⎝=-÷=-⨯=(2)如图2----------------------------------------------------------------4(3)如图3,连接AC ,由勾股定理得则AC 2=BC 2=10,AB 2=20---------------------------------------------------------5 ∴AC 2+BC 2=AB 2∴∠ACB=90°,-------------------------------------------------------------6 又AC=BC=,------------------------------------------------------------7 ∴∠ABC=∠BAC=45°.-------------------------------------------------------8四、解答题(21题8分,22题8分,共计16分)21.解:(1)补全条形统计图,如下图.------------------------------------------------------------------------4(2)86;92. ----------------------------------------------------------6(3)甲校:从平均分或从中位数上比较,甲校比乙校数学学业水平更好些乙校:从众数上比较,乙校比甲校数学学业水平更好些 ---------------822. (1)∵四边形ABCD 是矩形∴AD ∥BC ,----------------------1∴∠DEF =∠EFB (2)由折叠可知∠BEF =∠DEF (3)∴∠BEF =∠EFB.∴BE =BF (4)(2)∵四边形ABCD 是矩形∴∠A =90°由折叠知BE=ED,设BE=ED=x ,则AE=9-x----------------------------------------5 第22题图在Rt △ABE 中,由勾股定理得AE 2+AB 2=BE 2---------------------------------------6 ∴()22293x x -+=--------------------------------------------------------7 解得x=5∴BE=5---------------------------------------------------------------------8五、解答题(8分)23. 解:(1)由题意可得,8x +6y +5(20﹣x ﹣y )=120,---------------------------------------------------------------2 化简,得y =﹣3x+20,-------------------------------------------------------------------------------------3 即y 与x 的函数关系式为y =﹣3x+20;---------------------------------------------------4 (2)由题意可得,15×8x +14×6(﹣3x+20)+8×[120﹣8x ﹣6(﹣3x+20)]=1420,----------------6 解得,x =5,-------------------------------------------------------------------------------------7 ∴y =20﹣3×5=5,20﹣x ﹣y =10,答:加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.-------------8六、解答题(8分)24.解:(1)当40≤x ≤58时,设y 与x 的函数解析式为y =k 1x +b 1,由图象可得 第24题图,---------------------------------------------------------------------------1解得.-------------------------------------------------------------------------------2∴y=﹣2x+140.---------------------------------------------------------------------------------3当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,------------------------------------------------------------------------------4解得,-----------------------------------------------------------------------------------5∴y=﹣x+82,------------------------------------------------------------------------------------6综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=52+100a,------------------------------------------------------------7解得a=3;答:该店的员工有3人.----------------------------------------------------------------------------8七、解答题(8分) 25.(1)证明:延长EO 交AB 于H---------------------------------------------------------------------1 ∵四边形ABCD 为矩形∴CD ∥AB ,OD =OB-----------------------------------------------------------------------------2 ∴∠ODE =∠OBH ,∠OED =∠OHB ,-------------------------------------------------------3 ∴△ODE ≌△OBH (AAS )-------------------------------------------------------------------4 ∴DE =BH ,OE =OH------------------------------------------------------------------------------5 又OF ⊥OE∴EF=FH-------------------------------------------------------------------------------------------6 ∴BF -DE=BF -BH =FH=EF-----------------------------------------------------------------------7(2)八、解答题(8分)26.解:(1)令x=0,得y=4,∴B (0,4)令y=0,得x=4,∴A (4,0)-----------------------------------------------------------2 第25题图第26题图(2)设P (x ,y )y <0时,显然不成立①x <0,y >4时,∵△PBO 与△P AC 面积相等 ∴()1134()34222x y x ⨯⨯-=⨯⨯=-+-----------------------------------------------3解得x=-12,y=16∴P (-12,16)----------------------------------------------------------------------------------------4 ②当0≤x <4,0<y ≤4时∵△PBO 与△P AC 面积相等 ∴()113434222x y x ⨯⨯=⨯⨯=-+-----------------------------------------------------5 解得1216,77x y == ∴P 1216(,)77--------------------------------------------------------------------------------------------6 所以满足条件的点P 的坐标是(-12,16)或1216(,)77 (3)△PCO 周长的最小值是6---------------------------------------------------------------------8。

山东省德州市2018-2019学年八年级(下)期末数学试卷(含解析)

山东省德州市2018-2019学年八年级(下)期末数学试卷(含解析)

山东省德州市2018-2019学年八年级第二学期期末数学试卷一、选择题(本题包括12小题,每小题4分,共48分,每小题只有一正确答案)1.对于的理解错误的是()A.是实数B.是最简二次根式C.<2D.与是同类项2.若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4B.2C.4D.83.下列结论中,不正确的是()A.对角线互相垂直的平行四边形是菱形B.对角线相等的平行四边形是矩形C.一组对边平行,一组对边相等的四边形是平行四边形D.对角线互相垂直的四边形面积等于对角线乘积的一半4.代数式中x的取值范围在数轴上表示为()A.B.C.D.5.在△ABC中,∠A、∠B、∠C的对边分别为a,b,c,下列说法中错误的是()A.如果∠C﹣∠B=∠A,那么∠C=90°B.如果∠C=90°,那么c2﹣a2=b2C.如果(a+b)(a﹣b)=c2,那么∠A=90°D.如果∠A=30°,那么AC2=3BC26.一次函数y=kx﹣k,若y随着x的增大而减小,则该函数的图象经过()A.一、二、三B.一、二、四C.二、三、四D.一、三、四7.某校文学社成员的年龄分布如下表:对于不同的正整数,下列关于年龄的统计量不会发生改变的是()A.平均数B.众数C.方差D.中位数8.2018年以来,我国电子信息产业处于高速增长上升期,某电子厂生产一件产品起初的成本为110元,经过两次技术改进,现生产一件产品的成本比起初下降了24元设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.110(1﹣2x)=110﹣24B.110(1﹣x)2=110﹣24C.110(1﹣x)2=24D.24(1+x)2=1109.如图,直线y=ax+b(a≠0)过点A、B,则不等式ax+b>0的解集是()A.x>4B.x>0C.x>﹣3D.x>10.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.1511.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB =S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个12.甲乙二人走步晨练,两人同时同地向距离600米的目标出发,二人所走的路程y(米)与所走的时间t(分)之间的函数关系如图所示,下列说法:①甲走全程的平均速度为75米/分:②第4分钟时,二人在途中相遇;③第2分钟时甲在乙前面100米处;④乙比甲提前2.5分钟到达终点;其中正确的有()个.A.1B.2C.3D.4二、填空题(本题包括6小题,每小题4分,共24分)13.一个三角形的三边分别是、1、,这个三角形的面积是.14.菱形的两条对角线的长是方程x2﹣8x+12=0的两根,则菱形的边长是.15.直线与直线m的图象关于y轴对称,若直线m的表达式为y=2x﹣1,则直线l的表达式为.16.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为万元较为合适.17.矩形ABCD中,AC与BD相交于点O,AE平分∠BAD,若∠EAO=15°,则∠AEO的度数为.18.如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图.MN为衣架的墙体固定端,A为固定支点,B为滑动支点,四边形DFGI和四边形EIJH是菱形,且AF=BF=CH=DF=EH.点B在AN上滑动时,衣架外延钢体发生角度形变,其外延长度(点A和点C间的距离)也随之变化,形成衣架伸缩效果.伸缩衣架为初始状态时,衣架外延长度为42cm.当点B向点A移动8cm时,外延长度为90cm.如图3,当外延长度为120cm时,则BD和GE的间距PQ长为cm.三、解答题(本题包括7小题共计78分)19.(12分)(1)计算:3﹣;(2)计算:2÷×;(3)解方程:(y+2)2﹣6=0.20.(10分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.(1)线段AB的长为;(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.21.(10分)老师布置了一个作业,如下:已知:如图1▱ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O 求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的,请你解答下列问题:(1)能找出该同学错误的原因吗?请你指出来;(2)请你给出本题的正确证明过程.22.(10分)在某中学举行的一次知识竞赛活动中,每个班参加竞赛的人数都相同.成绩分别为A、B 、C 、D 四个等级,四个等级对应的分数依次为100分、90分、80分、70分,现九年级一班和二班的成绩整理并绘制出如下的统计图.请根据以上提供的信息,解答下列问题: (Ⅰ)每个班参加竞赛的学生人数为 ;(Ⅱ)二班成绩为B 等级的学生占比赛人数的m %,则m = ; (Ⅲ)求一班参加竞赛学生成绩的平均数; (Ⅳ)求二班参加竞赛学生成绩的众数和中位数.23.(10分)关于x 的方程,kx 2+(k +1)x +=0有实根. (1)求k 的取值范围;(2)是否存在实数k ,使方程的两根的倒数和为1?若存在,请求出k 的值;若不存在,请说明理由.24.(12分)在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的两条直线分别交边AB 、CD 、AD 、BC 于点E 、F 、G 、H .【感知】如图①,若四边形ABCD 是正方形,且AG =BE =CH =DF ,则S 四边形AEOG = S正方形ABCD;【拓展】如图②,若四边形ABCD 是矩形,且S 四边形AEOG =S 矩形ABCD ,设AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);【探究】如图③,若四边形ABCD 是平行四边形,且AB =3,AD =5,BE =1,试确定F 、G 、H 的位置,使直线EF 、GH 把四边形ABCD 的面积四等分.25.(14分)某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如表:(1)如果在线下购买甲、乙两种书架30个,共花费8280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.参考答案与试题解析一、选择题(本题包括12小题,每小题4分,共48分,每小题只有一正确答案)1.【分析】分别根据实数的定义、二次根式的定义、实数的比较方法和同类型的定义判断即可.【解答】解:A、是无理数,是实数,故本选项不合题意;B、是最简二次根式,正确;故本选项不合题意;C、∵,∴,故本选项不合题意;D、.故与不是同类型.故本选项符合题意.故选:D.【点评】本题主要考查了实数的定义、二次根式的定义、实数的比较方法和同类型的定义,熟练掌握定义是解答本题的关键.2.【分析】根据根的判别式得出△=42﹣4×1×a=0,求出方程的解即可.【解答】解:∵关于x的方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4×1×a=0,解得:a=4,故选:C.【点评】本题考查了根的判别式和解一元二次方程,能熟记根的判别式的内容是解此题的关键.3.【分析】由菱形和矩形的判定得出A、B正确,由等腰梯形的判定得出C不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D正确,即可得出结论.【解答】解:A.∵对角线互相垂直的平行四边形是菱形,∴A正确;B.∵对角线相等的平行四边形是矩形,∴B正确;C.∵一组对边平行,一组对边相等的四边形是平行四边形或等腰梯形,∴C不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D正确;故选:C.【点评】本题考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形/矩形和等腰梯形的判定方法是解题的关键.4.【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≤3且x≠1,故选:A.【点评】本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.【分析】根据直角三角形的定义以及勾股定理的逆定理一一判断即可.【解答】解:A、∵∠C﹣∠B=∠A,∠A+∠B+∠C=180°,∴∠C=90°,故本选项正确,不符合题意.B、∵∠C=90°,∴c2=a2+b2,∴c2﹣a2=b2,故本选项正确,不符合题意.C、∵(a+b)(a﹣b)=c2,∴a2﹣b2=c2,∴a2=b2+c2,∴∠A=90°,故本选项正确,不符合题意.D、∠A=30°,不能推出AC2=3BC2,故本选项错误,符合题意.故选:D.【点评】本题考查勾股定理以及逆定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】根据已知条件“y随x的增大而减小”判断k的取值,再根据k,b的符号即可判断直线所经过的象限.【解答】解:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故选:B.【点评】本题考查了一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系:k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.【分析】由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.【解答】解:∵14岁和15岁的频数之和为15﹣a+a=15,∴频数之和为6+9+15=30,则这组数据的中位数为第15、16个数据的平均数,即=13.5,∴对于不同的正整数a,中位数不会发生改变,故选:D.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.8.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=110﹣24,把相应数值代入即可列出方程.【解答】解:设平均每次降价的百分率为x,根据题意得:110(1﹣x)2=110﹣24,故选:B.【点评】此题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.【分析】几何函数图象,写出函数图象在x轴上方所对应的自变量的范围即可.【解答】解:当x>﹣3时,y>0,所以不等式ax+b>0的解集为x>﹣3.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.10.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG =EF =4, ∴BH =16,∴在直角三角形AHB 中,由勾股定理得到:AB ===20.故选:C .【点评】此题考查勾股定理的证明,解题的关键是得到直角三角形ABH 的两直角边的长度. 11.【分析】根据正方形的性质得AB =AD =DC ,∠BAD =∠D =90°,则由CE =DF 易得AF =DE ,根据“SAS ”可判断△ABF ≌△DAE ,所以AE =BF ;根据全等的性质得∠ABF =∠EAD , 利用∠EAD +∠EAB =90°得到∠ABF +∠EAB =90°,则AE ⊥BF ;连结BE ,BE >BC ,BA ≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA ≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF ﹣S △AOF =S △DAE ﹣S △AOF ,即S △AOB =S 四边形DEOF . 【解答】解:∵四边形ABCD 为正方形, ∴AB =AD =DC ,∠BAD =∠D =90°, 而CE =DF , ∴AF =DE , 在△ABF 和△DAE 中,∴△ABF ≌△DAE ,∴AE =BF ,所以(1)正确; ∴∠ABF =∠EAD , 而∠EAD +∠EAB =90°, ∴∠ABF +∠EAB =90°, ∴∠AOB =90°,∴AE ⊥BF ,所以(2)正确; 连结BE , ∵BE >BC , ∴BA ≠BE , 而BO ⊥AE ,∴OA ≠OE ,所以(3)错误;∵△ABF ≌△DAE ,∴S △ABF =S △DAE ,∴S △ABF ﹣S △AOF =S △DAE ﹣S △AOF ,∴S △AOB =S 四边形DEOF ,所以(4)正确.故选:B .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了正方形的性质.12.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由图可得,甲走全程的平均速度为:600÷(2+)=600÷8=75米/分,故①正确;甲2分以后的速度为:(500﹣300)÷(6﹣2)=50米/分,乙的速度为600÷6=100米/分, 设甲乙经过x 分钟时相遇,100x =300+(x ﹣2)×50,得x =4,故②正确;第2分钟时甲在乙前面:300﹣2×100=100米处,故③正确;甲到达终点的时间为:2+(600﹣300)÷50=8(分钟),乙比甲提前8﹣6=2分钟到达终点,故④错误;故选:C .【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.二、填空题(本题包括6小题,每小题4分,共24分)13.【分析】首先根据勾股定理逆定理可判定此三角形是直角三角形,然后再计算面积即可.【解答】解:∵()2+12=3=()2,∴这个三角形是直角三角形,∴面积为:×1×=,故答案为:.【点评】此题主要考查了二次根式的应用以及勾股定理逆定理,关键是正确判断出三角形的形状.14.【分析】先求出方程的解,即可得出AC=6,BD=2,根据菱形的性质求出AO和OD,根据勾股定理求出AD即可.【解答】解:解方程x2﹣8x+12=0得:x=6和2,即AC=6,BD=2,∵四边形ABCD是菱形,∴∠AOD=90°,AO=OC=3,BO=DO=1,由勾股定理得:AD==,即菱形的边长是,故答案为:.【点评】本题考查了解一元二次方程和菱形的性质,能求出方程的解是解此题的关键.15.【分析】利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可.【解答】解:与直线y=2x﹣1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则y=2(﹣x)﹣1,即y=﹣2x﹣1.所以直线l的解析式为:y=﹣2x﹣1.故答案为y=﹣2x﹣1.【点评】此题主要考查了一次函数的图象与几何变换,利用轴对称变换的特点解答是解题关键.16.【分析】根据中位数的意义进行解答,即可得出答案.【解答】解:想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标;故答案为:18.【点评】本题考查了众数、中位数和平均数,反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.17.【分析】由角平分线定义及矩形性质可得AB=BE,∠AEB=45°,再证明△ABO是等边三角形,得到OB=BE,在等腰△BOE中求解∠OEB度数,则∠AEO=∠OEB﹣45°.【解答】解:∵四边形ABCD是矩形,∠DAB=∠ABE=90°.OA=OB.∵AE平分∠BAD,∴∠BAE=45°,∠AEB=45°.∴AB=BE.∴∠BAO=45°+15°=60°.∴△BAO是等边三角形.∴AB=BO=BE.∵∠OBE=30°,∴∠OEB=(180°﹣30°)÷2=75°.∴∠OEB=75°﹣45°=30°.故答案为30°.【点评】本题主要考查了矩形的性质、等腰三角形的性质,解题的关键是通过矩形性质即特殊角得到等边三角形,平行线+角平分线得到等腰三角形,在等腰三角形中求解角的度数.18.【分析】三节段式伸缩晾衣架,相当于三个菱形构成,前半个和后半个组成一个整体,中间共有两个.本题需用到菱形的性质和勾股定理,根据横向对角线的长度等先计算出菱形的边长,然后根据菱形的面积公式容易求出结果.【解答】解:如图,作FK⊥AB于K,设AB=2xcm,由题意,FK=7cm,当AB=(2x﹣8)cm 时,FK=15cm.则有AF2=x2+72=(x﹣4)2+152,∴x=24(cm),∴AF==25(cm),如图,当OF=20时,在Rt△DFO中,OD==15(cm),∵PQ⊥GI,∴•FI•DG=DF•PQ,∴PQ==24(cm).故答案为:24.【点评】本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(本题包括7小题共计78分)19.【分析】(1)首先化简二次根式,然后再去括号合并同类二次根式即可;(2)根号外乘除,根号内乘除,然后再化简即可;(3)首先把﹣6移到等号右边,再等式两边同时乘以2,最后开平方即可.【解答】解:(1)原式=3﹣(2+),=3﹣2﹣,=;(2)原式=2,=2,=2,=2×2×2×3×,=24;(3)(y+2)2=6,(y+2)2=12,y+2=∴y1=2﹣2,y2=﹣2﹣2.【点评】此题主要考查了二次根式的加减和乘除,以及直接开平方法解一元二次方程,关键是掌握二次根式相加减时,先化简,后合并.20.【分析】(1)利用勾股定理求出AB的长即可;(2)根据勾股定理的逆定理,即可作出判断.【解答】解:(1)AB==;故答案为:;(2)如图,EF==,CD==2,∵CD2+AB2=8+5=13,EF2=13,∴CD2+AB2=EF2,∴以AB、CD、EF三条线可以组成直角三角形.【点评】本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.21.【分析】(1)直接利用菱形的判定方法分析得出答案;(2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案.【解答】解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC 垂直平分EF,需要通过证明得出;(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分线,∴OA=OC.∵在△AOF与△COE中,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF与AC互相垂直平分.∴四边形AECF是菱形.【点评】此题主要考查了菱形的判定,正确得出全等三角形是解题关键.22.【分析】(Ⅰ)根据一班的成绩,利用条形统计图的信息解决问题即可.(Ⅱ)根据百分比之和为100%,计算即可.(Ⅲ)根据平均数的定义计算即可.(Ⅳ)根据众数,中位数的定义判断即可.【解答】解:(Ⅰ)每个班参加竞赛的学生人数为5+10+2+3=20(人);故答案为20人.(Ⅱ)二班成绩为B等级的学生占比赛人数的m%,则m=100﹣25﹣35﹣30=10;故答案为10.(Ⅲ)求一班参加竞赛学生成绩的平均数==88.5.(Ⅳ)二班参加竞赛学生成绩的众数和中位数分别为100分,80分.【点评】本题考查众数,加权平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【分析】(1)分为k=0和k≠0两种情况,分别求出即可;(2)根据根与系数的关系得出不等式,求出不等式的解集即可.【解答】解:(1)①当k=0时,方程的解是x=0,符合题意;②当k≠0时,,所以且k≠0,综上所述,k的取值范围是;(2)假设存在实数k,使方程的两根的倒数和为1,所以,∵x 1+x 2=,x 1•x 2=,∴,∴﹣4k ﹣4=k ,∴,∵,∴不存在实数k ,使方程两根的倒数和为1.【点评】本题考查了根与系数的关系和解一元一次方程、解一元二次方程等知识点,能熟记知识点的内容是解此题的关键.24.【分析】【感知】如图①,根据正方形的性质和全等三角形的性质即可得到结论;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,根据图形的面积得到mb =AG •a ,于是得到结论;【探究】如图③,过O 作KL ⊥AB ,PQ ⊥AD ,则KL =2OK ,PQ =2OQ ,根据平行四边形的面积公式得到=,根据三角形的面积公式列方程即可得到结论.【解答】解:【感知】如图①,∵四边形ABCD 是正方形,∴∠OAG =∠OBE =45°,OA =OB ,在△AOG 与△BOE 中,,∴△AOG ≌△BOE ,∴S 四边形AEOG =S △AOB =S 正方形ABCD ;故答案为:;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,∵S △AOB =S 矩形ABCD ,S 四边形AEOG =S 矩形ABCD ,∴S △AOB =S 四边形AEOG ,∵S △AOB =S △BOE +S △AOE ,S 四边形AEOG =S △AOG +S △AOE ,∴S △BOE =S △AOG ,∵S △BOE =BE •OM =mb =mb ,S △AOG =AG •ON =AG •a =AG •a ,∴mb =AG •a ,∴AG =; 【探究】如图③,过O 作KL ⊥AB ,PQ ⊥AD ,则KL =2OK ,PQ =2OQ ,∵S 平行四边形ABCD =AB •KL =AD •PQ ,∴3×2OK =5×2OQ ,∴=,∵S △AOB =S 平行四边形ABCD ,S 四边形AEOG =S 平行四边形ABCD ,∴S △AOB =S 四边形AEOG ,∴S △BOE =S △AOG ,∵S △BOE =BE •OK =×1×OK ,S △AOG =AG •OQ ,∴×1×OK =AG •OQ ,∴=AG =,∴当AG =CH =,BE =DF =1时,直线EF 、GH 把四边形ABCD 的面积四等分.【点评】本题考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S △BOE =S △AOG 是解决问题的关键.25.【分析】(1)设线下购买甲种书架x 个,购买乙种书架y 个,根据在线下购买甲、乙两种书架30个共花费8280元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设线上购买总花费为w 元,购买甲种书架m 个,则购买乙种书架(30﹣m )个,根据总价=单价×数量可得出w 关于m 的函数关系式,由购买乙种书架的数量不少于甲种书架的3倍可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再利用一次函数的性质结合m 为整数即可解决最值问题.【解答】解:(1)设线下购买甲种书架x个,购买乙种书架y个,依题意,得:,解得:.答:甲种书架购买了12个,乙种书架购买了18个.(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30﹣m)个,依题意,得:w=(210+20)m+(250+30)(30﹣m)=﹣50a+8400.∵买乙种书架的数量不少于甲种书架的3倍,∴30﹣m≥3m,解得:m≤7.∵m为整数,∴m≤7.∵﹣50<0,∴w值随m值的增大而减小,∴当m=7时,总花费最小,最少费用为8050,此时30﹣m=23.答:当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的最值,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)由总价=单价×数量,找出w 关于m的函数关系式.。

2018-2019学年下学期人教版八年级期末考试数学试题(含答案)

2018-2019学年下学期人教版八年级期末考试数学试题(含答案)

2018-2019学年八年级下学期期末考试数学试题一、选择题(本大题共10小题,共20.0分)1.若分式的值为零,则x的值为()A. B. C. 2 D. 32.若y2-4y+m=(y-2)2,则m的值为()A. B. C. 2 D. 43.不等式组的解集为()A. B. C. D.4.如图所示,△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,若∠A=50°,则∠BDC的度数为()A. 50B.C.D.5.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A. B. C. D.6.如图,在△ABC中,∠ACB=90°,点D,E,F分别是边AB,BC,CA的中点,若EF=3,则CD的长是()A. 3B. 2C.D. 17.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为()A. 8B. 7C. 6D. 58.如图所示,甲、乙是两张画有图形的透明胶片,把其中一张通过平移、旋转后与另一张重合,形成的图形不可能是()A. B. C. D.9.如图,AD是△ABC的角平分线,DE,DF分别是△ABD,△ACD的高,连接EF,交AD于点O,则下面四个结论:①OA=OD;②AD EF;③当AE=6时,四边形AEDF的面积为36;④AE2+DF2=AF2+DE2.其中正确的是()A. ②③B. ②④C. ①③④D. ②③④10.如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4.将△AOB绕顶点O按顺时针方向旋转α(0°<α<90°)到△A1OB1处,此时线段OB1与边AB的交点为点D,则在旋转过程中,线段B1D长的最大值为()A.B. 5C.D.二、填空题(本大题共6小题,共12.0分)11.▱ABCD的边AB=6,则边CD的长为______.12.因式分解:1-9b2=______.13.一个凸多边形的内角和是其外角和的2倍,则这个多边形是______边形.14.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE CD于点E,GF BC于点F,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为310m,小聪行走的路程为460m,则AB 长为______m.15.若关于x的分式方程+=4的解为正数,则a的取值范围为______.16.如图,点D在△ABC的边AB上,连接CD,若△ACD为等腰三角形,∠BCD=∠A=48°,则∠ACB的度数为______.三、计算题(本大题共3小题,共24.0分)17.计算:(m+2-)•18.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(-2018)⊕(-2019)=______;(2)若(-3p+5)⊕8=8,求p的负整数值.19.某超市在2016年和2017年都销售一种礼盒.2016年,该超市用3500元购进了这种礼盒且全部售完;2017年,这种礼盒的进价比2016年下降了11元/盒,该超市用2400元购进了与2016年相同数量的这种礼盒也全部售完,这两年该礼盒的售价均为60元/盒.(1)2016年这种礼盒的进价是多少元盒?(2)求这两年销售该种礼盒的总利润为多少?四、解答题(本大题共6小题,共44.0分)20.解不等式:4x+5>2(x+1)21.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.22.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,已知DE∥BC,∠ADE=∠EFC.求证:四边形BDEF是平行四边形.23.若一个长方形的面积S=x3+2x2+x(x>0),且一条边a=(x+1)2,求另一条边b的长.24.如图,在矩形ABCD中,AB=6,BC=4,动点P在边AB上,连接CP,将△CPB沿CP所在的直线翻折得到△CPE,延长PE交CD的延长线于点F.(1)求证:FC=FP;(2)当BP=1时,求DF的长.上一点,过点E作ED AC于点D,过点D作DF BC于点F.①若AE=7,求BF的长;②连接EF,若EF AB,求AE的长;(2)已知正方形ABCD的边长为10,点E是边AB上一点,过点E作∠AEF=60°交边AD于点F,再过点F作∠DFG=60°交边CD于点G,继续过点G作∠CGH=60°交边BC于点H,连接EH,若∠BHE=60°,请直接写出AE的长.答案和解析1.【答案】D【解析】解:由题意得:x-3=0,且2x+3≠0解得:x=3,故选:D.根据分式值为零的条件可得x-3=0,且2x+3≠0,再解即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.2.【答案】D【解析】解:y2-4y+m=(y-2)2=y2-4y+4,则m=4.故选:D.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确记忆公式是解题关键.3.【答案】C【解析】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.先求出每个不等式的解集,再求出每个解集的公共部分即可.本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.4.【答案】B【解析】解:∵△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,∴AD=DC,∴∠A=∠ACD,∵∠A=50°,∴∠ACD=50°,∴∠BDC=∠A+∠ACD=50°+50°=100°,故选:B.根据线段垂直平分线的性质得出AD=DC,推出∠A=∠ACD=50°,根据三角形外角的性质得出即可.本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形外角的性质等知识点,能根据线段垂直平分线的性质得出AD=DC是解此题的关键.5.【答案】C【解析】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.6.【答案】A【解析】解:∵点D,E,F分别是边AB,BC,CA的中点,EF=3,∴AB=6,∵在△ABC中,∠ACB=90°,CD是斜边的中线,∴CD=3,故选:A.根据三角形的中位线定理得出AB,再利用直角三角形斜边上的中线等于斜边的一半求得CD的长即可.本题考查了直角三角形的性质以及三角形的中位线定理,求得AB的长是本题的关键.7.【答案】B【解析】解:∵四边形ABCD是平行四边形,周长为10,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=5,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=5+2=7.故选:B.先利用平行四边形的性质求出AB=CD,BC=AD,AD+CD=5,可利用全等的性质得到△AEO≌△CFO,求出OE=OF=1,即可求出四边形的周长.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.8.【答案】B【解析】解:把甲平移,使甲乙的中心重合可得到A选项中的图形;把甲绕其中心逆时针旋转90度后平移,使甲乙的中心重合可得到C选项中的图形;把甲绕其中心旋转180度后平移,使甲乙的中心重合可得到D选项中的图形.故选:B.把乙图形不变,然后旋转甲,再进行平移可对各选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平移的性质.9.【答案】B【解析】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD EF,∴②正确;当AE=6时,∵无法知道DE的长,∴四边形AEDF的面积不能确定,故③错误,∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②④正确,故选:B.根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再一一判断即可.本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt△AFD是解此题的关键.10.【答案】D【解析】解:因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值.∵如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4,∴AB===5,则OA•OB=AB•OD,OD===.由旋转的性质知:OB1=OB=4,∴B1D=OB1-OD=4-=.即线段B1D长的最大值为.故选:D.因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值,所以利用等面积法求得OD的长度即可.考查了旋转的性质和勾股定理,根据题意得到“当OD AB时,B1D长的取最大值”是解题的难点.11.【答案】6【解析】解:∵四边形ABCD是平行四边形,∴AB=CD=6,故答案为:6.根据平行四边形的性质:对边相等解答即可.本题考查了平行四边形的性质,熟记平行四边形的各种性质是解题的关键.12.【答案】(1+3b)(1-3b)【解析】解:原式=(1+3b)(1-3b).故答案为:(1+3b)(1-3b).直接利用平方差公式分解因式得出答案.此题主要考查了平方差公式分解因式,熟练应用公式是解题关键.13.【答案】6【解析】解:设多边形边数为n.则360°×2=(n-2)•180°,解得n=6.故答案为:6.多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.14.【答案】150【解析】解:连接GC,如下图∵四边形ABCD为正方形于是可得:AD=CD,∠ADG=∠CDG=45°,DG=DG∴△ADG≌△CDG(SAS)∴AG=GC而GE CD,GF BC∴四边形GECF是矩形∴GC=EF∴AG=EF又∵GE CD,∠BDC=45°∴△DEG是等腰直角三角形,即GE=DE若设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF=2BA+DE+EF由AG=EF,GE=DE∴n-m=(2BA+DE+EF)-(BA+AG+GE)=AB即AB=n-m=460-310=150故答案为150.设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF.可连接GC,通过证明△ADG≌△CDG,可得AG=GC=EF,而DE=GE,于是可得AB=n-m,即可得AB的长度.本题考查了正方形与矩形的性质,能准确发现小敏与小聪的路程差的意义是解决问题的关键.15.【答案】a<6且a≠2【解析】解:方程两边同乘(x-1)得:2-a=4(x-1),解得:x=,∵x>0且x-1≠0,∴,解得:a<6且a≠2,故答案为:a<6且a≠2.方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a的式子,解为正数且最简公分母不为零,得到关于a的一元一次不等式,解之即可.本题考查分式方程的解和解一元一次不等式,根据不等量关系列出一元一次不等式是解题的关键.16.【答案】114°或96°【解析】解:当AC=AD时,∠ACD=∠ADC=(180°-∠A)=66°,∴∠ACB=∠ACD+∠BCD=114°;当DA=DC时,∠ACD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°;当CA=CD时,∠ADC=∠A=48°,∵∠ADC=∠BCD+∠B,∴∠ADC>∠BCD=48°,∴该情况不合适,舍去.故答案为:114°或96°.分AC=AD、DA=DC、CA=CD(当CA=CD时,利用三角形的外角性质找出该情况不符合题意)三种情况考虑,根据等腰三角形的性质结合三角形内角和定理,可求出∠ACD的度数,再利用∠ACB=∠ACD+∠BCD即可求出结论.本题考查了等腰三角形的性质、三角形内角和定理以及三角形的外角性质,分AC=AD、DA=DC、CA=CD三种情况考虑是解题的关键.17.【答案】解:原式=(-)•=•=-2(m+3)=-2m-6.【解析】先计算括号内分式的减法,再计算乘法即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.【答案】-2018【解析】解:(1)∵-2018>-2019,∴(-2018)⊕(-2019)=-2018,故答案为:-2018;(2)∵(-3p+5)⊕8=8,∴-3p+5≤8,解得:p≥-1,∴p的负整数值为-1.(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p的不等式,求出p的取值范围即可.本题考查的是解一元一次不等式,根据题意得出关于p的不等式是解答此题的关键.19.【答案】解:(1)设2016年这种礼盒的进价为x元/盒根据题意得:解得:x=35经检验x=35是分式方程的解答2016年这种礼盒的进价是35元/盒(2)购买盒数:这两年销售该种礼盒的总利润为:100×(60-35)+100×[60-(35-11)]=2500+3600=6100答总利润为6100元.【解析】(1)设2016年这种礼盒的进价为x元/盒,根据该超市用2400元购进了与2016年相同数量的这种礼盒,列出分式方程,解之并检验,可得结论.(2)根据总利润=2014年利润+2016年利润,列出式子计算可得.本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是找准等量关系,列出分式方程.20.【答案】解:4x+5>2x+2,4x-2x>2-5,2x>-3,x>-.【解析】依次去括号、移项、合并同类项即可得.本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.21.【答案】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;【解析】根据中心对称图形,画出所有可能的图形即可.本题考查中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:∵DE∥BC,∴∠ADE=∠B,∵∠ADE=∠EFC,∴∠EFC=∠B,∴EF∥AB,∴四边形BDEF是平行四边形.【解析】想办法证明EF∥AB即可解决问题;本题考查平行四边形的判定、平行线的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:∵S=x(x2+2x+1)=x(x+1)2∴另一条边b的长为:x(x+1)2÷(x+1)2=x,故另一边为x【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FCP=∠BPC.由翻折的性质可知:∠FCP=∠EPC,∴∠BPC=∠EPC,∴FC=FP.(2)∵四边形ABCD是矩形,∴CD=AB=6.由翻折的性质可得到CE=BC=,EP=BP=1,∠CEP=∠CBP=∠CEF=90°.设DF=x,则CF=CD+DF=6+x,EF=FP-EP=6+x-1=5+x.在Rt△CEF中,由勾股定理得:CE2+EF2=CF2,即42+(5+x)2=(6+x)2,解得:x=,∴DF=.【解析】(1)首先依据平行线的性质和翻折的性质证明∠BPC=∠EPC,然后依据等角对等边的性质进行证明即可;(2)设DF=x,则CF=6+x,EF=5+x,然后在Rt△CEF中,依据勾股定理列方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,熟练掌握相关知识是解题的关键.25.【答案】解:(1)①∵△ABC是等边三角形∴AB=AC=BC=10,∠A=60°=∠B=∠C且DE AC,DF BC∴∠AED=∠FDC=30°∵AE=7,DE AC,∠EAD=30°∴AD=,∴CD=且DF BC,∠CDF=30°∴CF=∴BF=②如图1连接EF∵EF AB,ED AC,DF BC,∠A=∠B=∠C=60°∴∠AED=∠CDF=∠EFB=30°,∴∠EDF=∠DFE=∠DEF=60°∴△DEF是等边三角形,∴DE=DF=EF且∠A=∠B=∠C,∠AED=∠CDF=∠EFB=30°∴△ADE≌△BEF≌△DCF∴AD=CF=BE,AE=BF=CD∵∠EFB=30°,EF AB∴BF=2BE即AE=2BE∵AE+BE=10∴BE=,AE=(2)∵ABCD为正方形∴∠A=∠B=∠C=∠D=90°,AB=AD=CD=BC∵∠AEF=∠DFG=∠HGC=∠EHB=60°∴∠GHC=∠BEH=∠AFE=∠FGD=30°,BE=BH,AF=AE ∴∠FEH=∠EHG=∠HGF=∠EFG=90°∴EFGH是矩形∴EH=FG,EF=HG,∵∠A=∠C=90°,EF=HG,∠AEF=∠HGC=60°∴△AEF≌△HGC∴AE=CG,AF=CH同理可得AF=CH设AE=a,∴AF=a,∴∴BH=10-a,∵BE=BH=10-3a,∵AE+BE=10∴10a-3a+a=10∴a=5-5∴AE=5-5【解析】(1)①根据直角三角形中,30°所对的直角边是斜边的一半,可依次求AD,FC的长,则BF的长可求②先证△EDF是等边三角形,再证△ADE≌△BEF≌△DFC,可得AE=BF=CD,BE=CF=AD,即可求AE的长(2)先证EFGH是矩形,可得EF=HG,EH=FG,根据三角函数可求AF= AE,BE=BH,即可求AE的长度.本题考查了等边三角形的性质和判定,正方形的性质,锐角三角函数,关键是灵活运用这些性质解决问题.。

2018-2019学年人教版八年级第二学期期末数学试卷(附答案)

2018-2019学年人教版八年级第二学期期末数学试卷(附答案)

2018-2019学年八年级(下)期末数学模拟试卷一、选择题(本大题共5小题,共15.0分)1.下列分解因式,正确的是()A. B.C. D.2.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.B.C. 8D. 133.在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为()A. 2B.C. 4D. 84.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()A. 4B. 5C. 6D. 85.如图,△ABC中,∠C=90°,E、F分别是AC、BC上两点,AE=8,BF=6,点P、Q、D分别是AF、BE、AB的中点,则PQ的长为()A. 4B. 5C. 6D. 8二、填空题(本大题共6小题,共18.0分)6.已知关于x的方式方程=会产生增根,则m=______.7.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为______.8.已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.9.如图,在▱ABCD中,∠B=50°,CE平分∠BCD,交AD于E,则∠DCE的度数是______.10.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.11.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的图形面积为36时,它移动的距离AA′等于______.三、计算题(本大题共2小题,共24.0分)12.分解因式:(1)x(x+y)(x-y)-x(x+y)2(2)(x-1)2+2(1-x)•y+y213.计算题:(1)解不等式组>(2)先化筒,再求值(),其中m=(3)解方程=1-四、解答题(本大题共6小题,共63.0分)14.已知,线段a,直线1及1外一点A,求作:△ABC,使AB=AC,BC=a,且点B、C在直线1上.15.一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?16.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.17.某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?18.已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.(1)求证:OE=OF;(2)楚接BE,DF,求证:BE=DF.19.如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、(x+1)(x-1)=x2-1,是整式乘法,故此选项错误;B、-9+y2=(3+y)(y-3),正确;C、x2+2x+l=(x+1)2,故此选项错误;D、x2-4y2=(x+2y)(x-2y),故此选项错误;故选:B.利用平方差公式以及完全平方公式分别分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.2.【答案】A【解析】解:设△EDF的面积为x,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△DFE和Rt△DHG中,,∴Rt△DFE≌Rt△DHG,由题意得,38+x=51-x,解得,x=6.5,∴△EDF的面积为6.5,故选:A.作DH⊥AC于H,根据角平分线的性质得到DF=DH,证明Rt△DFE≌Rt△DHG,根据题意列出方程,解方程即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.3.【答案】D【解析】解:∵∠A、∠B、∠C的度数之比是1:1:2,∴∠A=∠B=45°,∠C=90°,∴BC=AC=4,∴S△ABC=×4×4=8,故选:D.依据∠A、∠B、∠C的度数之比是1:1:2,即可得到∠A=∠B=45°,∠C=90°,再根据BC=AC=4,即可得出S△ABC=×4×4=8.本题主要考查了等腰直角三角形的性质,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.4.【答案】A【解析】解:正八边形的每个内角为:180°-360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°-270°=90°,∵正方形的每个内角和为90°,∴另一个是正方形.故选:A.正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.5.【答案】B【解析】解:∵P、Q、D分别是AF、BE、AB的中点,∴PD,QD是△PDQ的中位线,∴PD=BF=3,DQ=AE=4,PD∥BF,DQ∥AE,∴∠PDA=∠ABC,∠QDB=∠CAB,∵∠C=90°,∴∠ABC+∠CAB=90°,∴∠PDA+∠QDB=90°,∴∠PDQ=90°,∴PQ==5,故选:B.由已知条件易证△PDQ是直角三角形,再根据三角形中位线定理可求出PD 和PQ的长,利用勾股定理即可求出PQ的长,问题得解.本题考查了三角形中位线定理的运用、直角三角形的判断以及勾股定理的运用,证明△PDQ是直角三角形是解题的关键.6.【答案】-5【解析】解:两边都乘以x+4,得:x-1=m,∵分式方程有增根,∴增根为x=-4,将x=-4是代入整式方程,得:m=-5,故答案为:-5.分式方程去分母转化为整式方程,由分式方程有增根,得到x+4=0,求出x的值,代入整式方程求出m的值即可.此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.【答案】3×()2017【解析】解:Rt△OA2C2中,∠A2OC2=30°,OC2=3则OA2=3×∴OA2=OC3=3×同理OA3=3×()2依此规律,点A2018OA3=3×()2017故答案为:3×()2017根据三角函数OC n=OA n依次可得点A2018的纵坐标.本题为平面直角坐标系下的坐标规律探究问题,考查了特殊角锐角三角函数以及数形结合的思想.8.【答案】x<-1【解析】解:两个条直线的交点坐标为(-1,2),当x<-1时,直线y1在直线y2的上方,当x>-1时,直线y1在直线y2的下方,故不等式-x+1>kx+b的解集为x<-1.故答案为;x<-1由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式-x+1>kx+b的解集.本题主要考查一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变,难度适中.9.【答案】65°【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠DCE=∠BCD=65°,故答案为65°.利用平行四边形的邻角互补,求出∠BCD即可解决问题;本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】【解析】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A顺时针旋转,使点C落在E处,点B恰好落在AC延长线上点D处,∴AD=AB=5,∴CD=AD-AC=1,∴四边形AEDB的面积为,故答案为:.通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.11.【答案】6【解析】解:设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD-AA′=12-x,∵两个三角形重叠部分的面积为36,∴x(12-x)=36,整理得,x2-12x+36=0,解得x1=x2=6,即移动的距离AA′等于6.故答案为:6.设AA′=x,AC与A′B′相交于点E,判断出△AA′E是等腰直角三角形,根据等腰直角三角形的性质可得A′E=x,再表示出A′D,然后根据平行四边形的面积公式列方程求解即可.本题考查了平移的性质,正方形的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.12.【答案】解:(1)原式=x(x+y)[(x-y)-(x+y)]=-2xy(x+y)(2)原式=(x-1)2-2(x-1)y+y2=(x-1-y)2【解析】(1)提公因式法分解因式即可;(2)理由公式法分解因式即可;本题考查提公因式法与公式法的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】解:(1)①>②由不等式①,得x≥-1,由不等式②,得x<,故原不等式组的解集是-1≤x<;(2)()===,当m=时,原式===-5;(3)=1-方程两边同乘以2(x-1),得2=2(x-1)-3去括号,得2=2x-2-3移项及合并同类项,得7=2x系数化为1,得x=经检验,x=是原分式方程的根.【解析】(1)根据解不等式组的方法可以解答本题;(2)根据分式的减法和乘法可以化简题目中的式子,然后将m的值代入即可解答本题;(3)根据解分式方程的方法可以解答本题.本题考查分式的化简求值、解分式方程、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.14.【答案】解:如图所示,△ABC即为所求.【解析】过A作l的垂线AE,垂足为D,作线段a的垂直平分线,在l上截取DC=DB=a,连接AB,AC,即可得到△ABC.本题主要考查了复杂作图以及等腰三角形的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.【答案】解:设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意得:-=2,解得:x=500,经检验,x=500是原分式方程的解,∴(1+50%)x=(1+50%)×500=750.答:实际每天修路750米.【解析】设原来每天修路x米,则实际每天修路(1+50%)x米,根据工作时间=总工作量÷工作效率结合提前2天完工,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16.【答案】证明:∵∠ACB=90°,DE⊥AB,∴∠ACB=∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE,∴ED=EC,∵ED=EC,BD=BC,∴BE垂直平分CD.【解析】证明Rt△BDE≌Rt△BCE,根据全等三角形的性质得到ED=EC,根据线段垂直平分线的判定定理证明.本题考查的是线段垂直平分线的判定,掌握到线段的两个端点的距离相等的点在线段的垂直平分线上是解题的关键.17.【答案】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤27.设总花费为y元,由题意可得,y=50a+70(50-a)=-20a+3500.∵-20<0,∴y随x的增大而减小,∴a取最大值27时,y的值最小,此时50-a=23.答:这所学校再次购买27个甲种足球,23个乙种足球,才能使总花费最低.【解析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据购进乙种足球的数量不少于甲种足球数量的,列出不等式,求出x的取值范围.再设总花费为y元,根据总花费=a个甲种足球的花费+(50-a)个乙种足球的花费列出y关于x的函数解析式,利用一次函数的性质即可求解.本题考查一次函数的应用,分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的关系式.18.【答案】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAF=∠OCE,在△OAF和△OCE中,∠ ∠,∠ ∠∴△AOF≌△COE(ASA),∴OE=OF;(2)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OF,∴四边形DEBF是平行四边形,∴BE=DF.【解析】(1)由四边形ABCD是平行四边形,易证得△AOF≌△COE(ASA),即可得OE=OF;(2)只要证明四边形DEBF是平行四边形即可;此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.19.【答案】解:(1)如图1中,∵EF∥PC,∴当EF=PC时,四边形PCFE是平行四边形,∴t=8-2t,∴t=.(2)如图2中,作EH⊥BC于H.在Rt△EBH中,∵BE=8-t,∠B=60°,∴EH=BE•sin60°=(8-t)•,∴y=•BP•EH=•2t•(8-t)=-t2+4t(0<t≤8).(3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上.∴2t-8=8-t,∴t=,∴t=时,点C在PF的中垂线上.【解析】(1)当EF=PC时,四边形PCFE是平行四边形,延长构建方程即可解决问题;(2)如图2中,作EH⊥BC于H.求出EH,利用三角形的面积公式计算即可;(3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上,延长构建方程即可解决问题;本题考查四边形综合题、等边三角形的性质、线段的垂直平分线的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用方程的思想思考问题,属于中考压轴题.。

2018-2019学年人教版初二数学下册期末考试试题(含答案)

2018-2019学年人教版初二数学下册期末考试试题(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.今年我市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A. 这1000名考生是总体的一个样本B. 近5万名考生是总体C. 每位考生的数学成绩是个体D. 1000名学生是样本容量2.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,-8),则点B的坐标是()A. (−2,−8)B. (2,8)C. (−2,8)D. (8,2)3.在下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.在平面直角坐标系中,一次函数y=x-1的图象是()A. B. C. D.5.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A. B. C. D.6.下列命题中正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线相等的平行四边形是矩形D. 对角线互相垂直的平行四边形是矩形7. 一个多边形的内角和等于1080°,这个多边形的边数为( )A. 9B. 6C. 7D. 88. 一次函数y =k 1x +b 1的图象与y =k 2x +b 2的图象相交于点P (-2,3),则方程组{y =k 2x +b 2y=k 1x+b 1的解是( ) A. {y =3x=−2 B. {y =−2x=3 C. {y =3x=2 D. {y =−3x=−29. 已知:线段AB ,BC ,∠ABC =90°.求作:矩形ABCD .以下是甲、乙两同学的作业:甲:1.以点C 为圆心,AB 长为半径画弧;2.以点A 为圆心,BC 长为半径画弧;3.两弧在BC 上方交于点D ,连接AD ,CD ,四边形ABCD 即为所求(如图1).乙:1.连接AC ,作线段AC 的垂直平分线,交AC 于点M ;2.连接BM 并延长,在延长线上取一点D ,使MD =MB ,连接AD ,CD ,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是( )A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对10. 若点(m ,n )在函数y =2x +1的图象上,则2m -n 的值是( )A. 2B. −2C. 1D. −111. 如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A. 14B. 15C. 16D. 1712.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A. x≥2B. x≤2C. x≥4D. x≤413.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A. 梯形B. 矩形C. 菱形D. 正方形14.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A. B.C. D.15.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A. 3B. 245C. 5D. 891616.将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为()cm2.A. 14B. n4C. n−14D. 14n二、填空题(本大题共4小题,共12.0分)17.函数y=√x−1x−2中,自变量x的取值范围是______.18.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行______米.19.已知:如图,在矩形ABCD中,AE⊥BD于E,对角线AC、BD相交于点O,且BE:ED=1:3,AB=6cm,则AC的长度为______cm.20.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为______.三、解答题(本大题共6小题,共56.0分)21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线1上,(1)求直线l所表示的一次函数的表达式:(2)请判断点P3(6,9)是否在直线l上,并说明理由.23.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).态度频数(人数)频率非常喜欢 5 0.05喜欢0.35一般50 n不喜欢10合计m l(1)在上面的统计表中m=______,n=______.(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?24.如图,直线l1的解析式为y=-x+2,l1与x轴交于点B,直线l2:y=kx+5与直线l1交于点C(-1,m),且与x轴交于点A.(1)求点C的坐标及k的值;(2)求△ABC的面积.25.某公司在推销一种新产品时,在规定时期内为推销员提供了两种获取推销费的方法:方式A:每推销1千克新产品,可获20元推销费;方式B:公司付给推销员300元的基本工资,并且每推销1千克新产品,还可获10元推销费.设推销产品数量为x(千克),推销员按方式A获取的推销费为y A(元),推销员按方式B获取的推销费为y B(元).(1)分别写出y A(元)、y B(元)与x(千克)的函数关系式;(2)在所给坐标系中,分别画出它们的函数图象,并根据图象回答:推销员应如何选择获取推销费的方式能更合算?26. (1)如图,三角形ABC 中,AB =AC =4,三角形ABC 的面积为10,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC 垂足分别为E 、F .易证PE +PF =5.解题过程如下:如图,连接AP ,∵PE ⊥AB ,PF ⊥AC ,∴S △ABP =12AB •PE =2PE ,S △ACP =12AC •PF =42PF =2PF∵S △ABP +S △ACP =S △ABC∴2PE +2PF =10∴2(PE +PF )=10,故PE +PF =5(2)如图1和图2,在边长为5的菱形ABCD 中,对角线BD =8,点P 是直线BD 上的动点,PE ⊥AB 于E ,PF ⊥AD 于F .①对角线AC的长是______;菱形ABCD的面积是______;②如图1,当点P在对角线BD上运动时,PE+PF的值是否会发生变化?请说明理由;③如图2,当点P在对角线BD的延长线上时,PE+PF的值是否会发生变化?若不变,请说明理由;若变化,请探究PE、PF之间的数量关系,并说明理由.④当点P在对角线DB的延长线上时,PE+PF的值是否会发生变化?若变化.请直接写出PE,PF之间的数量关系.答案和解析1.【答案】C【解析】解:A、1000名考生的数学成绩是样本,故A选项错误;B、近5万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误,故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.据此判断即可.本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.【答案】A【解析】解:∵点A,点B关于y轴对称,点A的坐标是(2,-8),∴点B的坐标是(-2,-8),故选:A.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.3.【答案】C【解析】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.4.【答案】B【解析】解:一次函数y=x-1,其中k=1,b=-1,其图象为,故选:B.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.5.【答案】C【解析】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.【答案】C【解析】解:A、对角线相等的四边形不一定是矩形,等腰梯形的对角线也相等,故此选项错误;B、对角线互相垂直的四边形不一定是矩形,例如菱形,菱形的对角线互相垂直,故此选项错误;C、对角线相等的平行四边形是矩形,故此选项正确;D、对角线互相垂直的平行四边形是菱形,故此选项错误.故选:C.根据矩形的判定方法:对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)可以选出答案.此题主要考查了矩形的判定,关键是熟练掌握矩形的判定方法:对角线相等且相互平分的四边形为矩形是解题关键.7.【答案】D【解析】解:设这个多边形边数为n,则1080°=(n-2)•180°,解得n=8.故选:D.多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8.【答案】A【解析】解:∵一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P(-2,3),∴方程组的解是.故选:A.根据二元一次方程组的解即为两直线的交点坐标解答.本题主要考查了一次函数与二元一次方程组的关系,函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.【答案】A【解析】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.本题考查了作图-复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.10.【答案】D【解析】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m-n=-1.故选:D.将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m-n即可解答.本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.11.【答案】C【解析】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选:C.根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.12.【答案】B【解析】解:不等式ax+b≥0的解集为x≤2.故选:B.利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.【答案】C【解析】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形.14.【答案】A【解析】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.15.【答案】C【解析】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10-6=4,设EF=AE=x,则有ED=8-x,根据勾股定理得:x2+42=(8-x)2,解得:x=3,则DE=8-3=5,故选:C.由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD-BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE 的长.此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.16.【答案】C【解析】解:图中的正方形,过ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,则四边形OECF的面积就等于正方形OMCN的面积,如正方形ABCD的边长是1,则OMCN的面积是,因而本题的图形中的每个阴影部分的面积都相等,都是,有n个正方形,则重合部分由n-1个,则总面积是.故选:C.过ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,根据已知可求得一个阴影部分的面积,从而就不难求得n个正方形重叠形成的重叠部分的面积和.本题的阴影很多,能够认识到每个阴影部分等于是小正方形的面积是解题的关键.17.【答案】x≥1且x≠2【解析】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.根据二次根式的性质和分式的意义,被开方数大于等于0,可知x-1≥0;分母不等于0,可知:x-2≠0,则可以求出自变量x的取值范围.本题考查了函数自变量的范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.【答案】80【解析】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.先分析出小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.19.【答案】12【解析】解:设BE=x,则ED=3x,∵∠ABE+∠BAE=90°,∠ABD+∠ADB=90°,∴∠BAE=∠ADE,∵∠AEB=∠AED,∴△ABE∽△DBA,∴=,∴AB2=BE×BD,即36=x(x+3x),解得x=3,BD=3×(1+3)=12,故AC=BD=12.根据相似三角形的判断得出△ABE∽△DBA解答即可.本题涉及到相似三角形的判定与性质,也可以利用直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项得出.20.【答案】6【解析】解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为:6.由于点B与D关于AC对称,所以连接BD,交AC于P点.此时PD+PE的最小值=BE,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.21.【答案】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,{∠DCB=∠FBE amp; CE=BE amp;∠CED=∠BEF amp;,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【解析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.【答案】解:(1)根据题意可得P2(3,3).设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴{3k+b=32k+b=1,k=2.解得{b=−3∴直线l所表示的一次函数的表达式为y=2x-3.(2)把坐标(6,9)代入解析式,∵2×6-3=9,∴点P3(6,9)是在直线l上.【解析】(2,(1)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(3,3)代入直线方程,利用方程组来求系数的值;1),P2(2)把点(6,9)代入(1)中的函数解析式进行验证即可.本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.23.【答案】100 0.5【解析】解:(1)由题意抽取的总人数为m人.由题意=0.05,解得m=100,n==0.5,故答案为100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.(1)根据频数的定义,即可判断;(2)条形图如图所示;(3)用样本估计总体的思想,即可解决问题.本题考查条形统计图、频数分布表、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵直线l1的解析式为y=-x+2经过点C(-1,m),∴m=1+2=3,∴C(-1,3),∵经过点C(-1,3),∴-k+5=3,解得k=2,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=-2.5,则A(-2.5,0),当y=0时,-x+2=0,解得x=2,则B(2,0),△ABC的面积:1×(2+2.5)×3=6.75.2【解析】(1)首先利用待定系数法求出C点坐标,然后再根据C点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.25.【答案】解:(1)由题意得出:yA=20x,y B=300+10x;(2)由y A=20x,当x=0,则y=0,当x=10,则y=200,画出图象即可,由y B=300+10x,当x=0,则y=300,当x=10,则y=400,在图象内描出各点,画出图象即可.当20x=300+10x,解得:x=30,故当推销30千克时,两种方式推销费相同,当超过30千克时,方式A合算,当低于30千克时,方式B合算.【解析】(1)根据:每推销1千克新产品,可获20元推销费,得出yA=20x,再利用公司付给推销员300元的基本工资,并且每推销1千克新产品,还可获10元推销费,yB=300+10x即可得出函数关系式;(2)先根据yA 、yB与x之间的函数关系式分别取两个点,连接即可;根据两个图象的交点坐标,即可判断哪种推销方式较为合算.本题主要考查了利用待定系数法求解一次函数关系式,解题过程中应注意数形结合,使求解过程变得简单.26.【答案】6 24【解析】解:①如图1,连接AC交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD=4,在Rt△ABO中,AO==3,∴AC=2AO=6,=×AC×BD=24,S菱形ABCD故答案为:6,24;②当点P在对角线BD上运动时,PE+PF的值不会发生变化,理由如下:如图,延长EP交CD于点F',∵PE⊥AB,PF⊥AD,∴∠BEP=∠PFD=90°,在菱形ABCD中,AB∥CD,∠ADB=∠CDB,∴∠PEB=∠PF'D=∠PFD=90°,又∵PD=PD,∴△PFD≌△PF'D(AAS),∴PF=PF',∴PE+PF=PE+PF'=EF',=AB•EF'=24,∵S菱形ABCD∵AB=5,∴EF'=,∴PE+PF=;③当点P在对角线BD的延长线上时,PE+PF的值会发生变化,如图3,延长CD交PE于点F',则∠DF'P=∠DFP=90°,∵∠ADB=∠CDB,∠F'DP=∠CDB,∠FDP=∠ADB,∴∠F'DP=∠FDP,又∵DP=DP,∴△PFD≌△PF'D(AAS),∴PF=PF',∵PE-PF'=EF',∴PE-PF=EF',由②知EF'=,∴PE-PF=;④当点P在对角线DB的延长线上时,PE+PF的值会发生变化,如图4,延长CB交PF于点E',理由同③,可证△PBE'≌△PBE(AAS),∴PE'=PE,∵PF-PE'=E'F=,∴PF-PE=.①连接AC交BD于点O,利用勾股定理求出AO的长,得出AC的长,根据菱形面积公式可求出菱形的面积;②延长EP交CD于点F',证明△PFD与△PF'D全等,可得出PE+PF的值等于EF',即菱形的高,利用面积法求出菱形的高即可;③延长CD交PE于点F',证明△PFD与△PF'D全等,可得出PE-PF的值等于EF',即菱形的高;④延长CB交PF于点E',证明△PBE'与△PBE全等,可得出PF-PE的值等于EF',即菱形的高.本题考查了菱形的性质,菱形的面积公式,全等三角形等,解题的关键是理解在点的运动过程中所存在的不变关系.。

人教版2018-2019学年八年级(下册)期末数学测试卷及答案

人教版2018-2019学年八年级(下册)期末数学测试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣12.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.43.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个4.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t5.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

德州市夏津县2018_2019学年八年级数学上插班生试题(含答案)

德州市夏津县2018_2019学年八年级数学上插班生试题(含答案)

山东省德州市夏津县2018-2019学年八年级数学上学期插班生试题第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.) 1. 如图,下列图案可能通过平移得到的是( )A.B.C.D.2.下列语句中,不是命题的是( )A .两点确定一条直线B .垂线段最短C .同位角相等D .作的平分线3.下面四个图形中,∠1与∠2是邻补角的是( )A. B. C. D.4.估计的值在哪两个整数之间( )A .75和77B .6和7C .7和8D .8和95.下列说法中正确的是( )A.实数和数轴上的点是一一对应的B.无理数是开方开不尽的数C.16的平方根是,用式子表示是D.负数没有立方根6.在实数、、、、…(两个之间依次多一个)中,其中无理数的个数有( ) A.个B.个C.个D.个7.已知点P ()5,1a a +-在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A.(4,-2)B.(-4,2)C.(-2,4)D.(2,-4)8. 如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l 1∥l 2的有( )A .1个B .2个C .3个D .4个 9.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 10. 一个正数的平方根为2x+1和x ﹣7,则这个正数为( ) A .5 B .10C .25D .±2511. 下列说法正确的有( ) (1)坐标轴上的点不属于任何象限 (2)(-)2=16(3)如果点(),A a b 位于第四象限,那么0ab <(4)直角坐标系中,在y 轴上且到原点的距离为5的点的坐标是(0,5) (5)过一点有且只有一条直线与已知直线平行A.1个B.2个C.3个D.4个12. 如图,一块从一个边长为20的正方形BCDM 材料中剪出的垫片,经测得FG =9,则这个剪出的图形的周长是( )AA .68B .86C .98D .89第Ⅱ卷(非选择题 共102分)二、填空题:(本大题共6小题,共24分,填写最后结果,每小题填对得4分.) 13.的立方根是 .14.点A (m +3,m +1)在x 轴上,则A 点的坐标为_______. 15.直线,一块含角的直角三角板如图放置,,则______.16.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是 .16题图 17题图17. 如图,三条直线相交于点O ,若CO ⊥AB ,∠COF=62°,则∠AOE 等于 . 18.如图,一张长方形纸折叠后,若得到,则_ _度.A O BE FC三、解答题:(本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.) 19. ( 本题满分16分)计算与求值.(1)(2)2-3-8--3-332)((3)3(x ﹣2)2=27 (4)(x+4)3-125=0 20. ( 本题满分8分)已知的平方根是,的立方根是,求(1)a 与b 的值. (2)a+2b 的平方根.21. ( 本题满分10分)完成下面推理过程:如图,已知DE ∥BC ,DF 、BE 分别平分∠ADE 、∠ABC ,可推得∠FDE =∠DEB 的理由: ∵DE ∥BC ( )∴∠ADE = .( )∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =21, ∠ABE =21.( )∴∠ADF =∠ABE∴ ∥ . ( )∴∠FDE=∠DEB. ( )22. ( 本题满分10分)如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P( )是△ABC的边AC上任意一点,△A BC经过平移后得到△A 1B1C1,点P的对应点为P 1( ) .(1)直接写出点A1,B1,C1的坐标;(2)在图中画出△A1B1C1;(3)连接A A1 ,求△AOA1的面积.23. ( 本题满分10分)如图,已知,,.请你判断与的数量关系,并说明理由;若,平分,试求的度数.24.( 本题满分10分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足 |a +2|+b -4=0,点C 的坐标为(0,3). (1)求a ,b 的值及S △ABC ;(2)若点M 在x 轴上,且S △ACM =13S △ABC ,试求点M 的坐标.25. ( 本题满分14分) 如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上.(1)试写出图1中∠APB、∠PAC、∠PBD之间的关系,并说明理由;(2)如果P点在C、D之间运动时,∠APB,∠PAC,∠PBD之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出∠APB,∠PAC,∠PBD之间的关系,并说明理由.数学试题(答案)第Ⅰ卷(选择题共48分)一、选择题:1.D 2.D 3.D 4.D 5.A 6.C7.A 8.C 9.B 10.C 11.B 12.C第Ⅱ卷(非选择题共102分)二、填空题:13.2 14.(2,0) 15. 16. (-3,0) 17. 18.三、解答题:19. ( 本题满分16分)计算与求值.(每题4分)(1)3.7 (2)(3)x=5或x=-1 (4)x=120. ( 本题满分6分)∵2a-1的平方根是±3,11a+b-1的立方根是4,∴2a-1=9,11a+b-1=64,----2分∴a=5,b=10,----4分∴a+2b=25,即a+2b的平方根是±5.----6分21. ( 本题满分10分)(每空1分)理由是:(已知),(两直线平行,同位角相等),、分别平分ADE、∠ABC,(角平分线定义),(角平分线定义),,(同位角相等,两直线平行),(两直线平行,内错角相等),22. ( 本题满分8分)(1)∵点P(a,b)的对应点为P1(a+6,b−2),∴平移规律为向右6个单位,向下2个单位,∴, (4,−2);--3分(2)△如图所示;---4分(3)△AO 的面积=6×3−12×3×3−12×3×1−12×6×2=18−92−32−6=18−12=6.—8分23. ( 本题满分12分) (1)猜想:∠1=∠BDC ---1分 证明:∵AD ⊥EF ,CE ⊥EF , ∴∠GAD =∠GEC =90∘∴AD ∥CE —3分 ∴∠ADC +∠3=180∘ 又∵∠2+∠3=180∘, ∴∠2=∠ADC ∴AB ∥CD----6分 ∴∠1=∠BDC---8分 (2)∵AD ⊥EF , ∴∠FAD =90∘. ∵AB ∥CD , ∴∠BDC =∠1=,∵DA 平分∠BDC ,∴∠ADC =∠BDC =×70∘=35∘. ----10分 ∵AB ∥CD , ∴∠2=∠ADC =35∘, ∴∠FAB =∠FAD −∠2=−=.----12分24.( 本题满分12分)(1)∵|a +2|+b -4=0,∴a +2=0,b -4=0. ∴a =-2,b =4.---2分 ∴点A(-2,0),点B(4,0).又∵点C(0,3),∴AB =|-2-4|=6,CO =3. ----4分 ∴S 三角形ABC =12AB·CO=12×6×3=9.---6分(2)设点M 的坐标为(x ,0),则AM =|x -(-2)|=|x +2|. 又∵S 三角形ACM =13S 三角形ABC ,∴12AM·OC=13×9,∴12|x +2|×3=3. ----8分 ∴|x +2|=2.即x +2=±2, 解得x =0或-4,----10分故点M 的坐标为(0,0)或(-4,0).---12分25. ( 本题满分14分)(1)如图①,当P 点在C. D 之间运动时,∠APB =∠PAC +∠PBD . 理由如下: 过点P 作PE ∥l 1, ∵l 1∥l 2,∴PE ∥l 2∥l 1,----3分 ∴∠PAC =∠1,∠PBD =∠2,∴∠APB =∠1+∠2=∠PAC +∠PBD ;----5分(2)由(1)知,如果P 点在C. D 之间运动时,∠APB 、∠PAC 、∠PBD 之间的关系不发生变化;----6分(3)如图②,当点P 在C. D 两点的外侧运动,且在l 1上方时,∠PBD =∠PAC +∠APB . 理由如下: ∵l 1∥l 2, ∴∠PEC =∠PBD ,∵∠PAC +∠APB=180∘-∠AEP, ∠PEC=180∘-∠AEP ∴∠PEC =∠PAC +∠APB ,∴∠PBD=∠PAC+∠APB.----10分如图③,当点P在C. D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB. 理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PBD+∠APB=180∘-∠BEP,∠PED=180∘-∠BEP∴∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.----14分(证明方法不唯一)。

山东省德州市宁津县2018-2019学年八年级第二学期期末考试数学试题(图片版)

山东省德州市宁津县2018-2019学年八年级第二学期期末考试数学试题(图片版)

2018-2019学年第二学期末八年级质量检测数学试题参考答案及评分标准一、选择题(每小题4分,共48分)1、B2、B3、B4、B5、C6、A7、B 8、A 9、B 10、B 11、C 12、C二、填空题(每小题4分,共24分)214、0.7 15、8cm16、24 17、318、(,)13、, 3三、解答题:(本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤).19、(本题满分8分,每小题4分)解:(1)原式=3﹣3+3+2=5;………………4分(2)原式=﹣=5﹣2=3.………………8分20、(本题满分10分)解:∵x=(+),y=(﹣),∴x+y=,xy=(1)x2﹣xy+y2;=(x+y)2﹣3xy=7﹣=;………………5分(2)+===12.………………10分21、(本题满分10分)解:解:(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是=6(首);………………3分(2)根据题意得:1200×=930(人),估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.…6分(3)①活动初40名学生平均背诵首数为=5.7(首),活动1个月后40名学生平均背诵首数为=6.65(首);②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7;根据以上数据分析,该校经典诗词诵背系列活动效果好.………………10分22、(本题满分12分)解:(1)∵y=﹣2x+3过P(n,﹣2).∴﹣2=﹣2n+3,解得:n=,∴P(,﹣2),∵y=﹣x+m的图象过P(,﹣2).∴﹣2=﹣×+m,解得:m=﹣;………………6分(2)不等式﹣x+m>﹣2x+3的解集为x>;(3)∵当y=﹣2x+3中,x=0时,y=3,∴A(0,3),∵y=﹣x﹣中,x=0时,y=﹣,∴B(0,﹣),∴AB=3;∴△ABP的面积:AB×=×=.………………12分23、(本题满分12分)解:(1)四边形AEBO是矩形.………………2分证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.………………7分(2)∵菱形ABCD,∴OA=8,∵OE=10,∴AE=6,∴OB=6,∴△ABC的面积=,∴菱形ABCD的面积=2△ABC的面积=96.………………12分24、(本题满分12分)解:(1)方案一:单位赞助广告费10万元,该单位所购门票的价格为每张0.02万元,则y=10+0.02x;………………4分(2)方案二:当x>100时,设解析式为y=kx+b.将(100,10),(200,16)代入,得,解得,所以y=0.06x+4.设乙单位购买了a张门票,则甲单位购买了(400﹣a)张门票,根据题意得0.06a+4+[10+0.02(400﹣a)]=27.2,解得,a=130,∴400﹣a=270,答:甲、乙两单位购买门票分别为270张和130张.………………12分25、(本题满分14分)解:(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;………………6分(2)BH=AF,………………8分理由:∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF。

山东省德州市夏津县2018_2019学年八年级语文下学期招生考试试题新人教版20180814185

山东省德州市夏津县2018_2019学年八年级语文下学期招生考试试题新人教版20180814185

山东省德州市夏津县2018-2019学年八年级语文下学期招生考试试题时间:120分钟满分:150分一、积累与运用(40分)1.下列加点词语中注音完全正确的一项是()(2分)A.累赘(zhuì)譬如(pì)字帖(tiè)诲人不倦(huǐ)B.气氛(fèn)修葺(qì)契约(qì)忍俊不禁(jìn)C.忏悔(chàn)矜持(jīn)颤抖(chàn)血气方刚(xuè)D.羸弱(léi)吞噬(shí)炽热(zhì)屏气凝神(bǐng)2.下列词语中书写不完全正确的一项是()(2分)A.深宵珊珊来迟语无轮次忧心忡忡B.狂澜大庭广众妇孺皆知颠沛流离C.告罄悲天悯人念念有词步履蹒跚D.商酌若有所失删繁就简盘虬卧龙3.下列句子中加点成语使用不正确的一项是()(2分)A.一对长期没有生活在一起的双胞胎兄弟,那血浓于水的亲情,使他们心有灵犀。

在高考填报志愿上,兄弟俩也有着不必言说的默契。

B.近期,赴泰国的中国游客对景区的安全提醒不以为然,强行下海游泳,导致不幸溺亡。

此事引发了中国网民热议。

C.今年NBA总决赛,“联盟第二人”的帽子戴了许久的杜兰特如释重负——在勇士拿到了冠军。

D.当我们在学习中遇到难题时,我们就应该不耻下问地向老师请教。

4.与其他三个划线的短语结构不相同的一项是()(2分)A一弯新月升起了,我们借助B淡淡的月光,在C忽明忽暗的梨树林里走着。

山间的夜风吹得人脸上凉凉的,梨花的D白色花瓣轻轻飘落在我们身上。

5.下列说法不正确的一项是:()(2分)A.卿是我国自唐代开始君对臣的爱称。

由此,我们在看古代影视戏剧中,就不时地听到了“爱卿”与“卿家”等词的用法。

B.中国古代看山水的时候,有一种“阴阳”的概念,古人以山南水北为阴,山北水南为阳。

C.农历九月初九为“重阳”,有登高望远、赏菊赋诗、赐菊花图、插茱萸等习俗。

山东省德州市夏津县2018-2019学年八年级数学上学期插班生试题新人教版

山东省德州市夏津县2018-2019学年八年级数学上学期插班生试题新人教版

山东省德州市夏津县2018-2019 学年八年级数学上学期插班生试题第Ⅰ卷(共 48分)一、(本大共 12 小,在每小出的四个中,只有一是正确的,把正确的出来.每小得 4 分,、不或出的答案超一个均零分.)1.如,以下案可能通平移获得的是()A. B. C. D.2.以下句中,不是命的是()A.两点确立一条直 B .垂段最短 C .同位角相等 D .作的均分3.下边四个形中,∠1与∠2 是角的是()A. B. C. D.4.估的在哪两个整数之()A.75 和 77B.6和 7C.7和8 D .8和95.以下法中正确的选项是()A. 数和数上的点是一一的B.无理数是开方开不尽的数C.16 的平方根是,用式子表示是D.数没有立方根6.在数、、、、⋯(两个之挨次多一个)中,此中无理数的个数有()A.个B. 个C.个D. 个7. 已知点 P a 5,a 1 在第四象限,且到x 的距离2,点 P 的坐 ( )A.(4 ,- 2)B.( - 4, 2)C.( - 2, 4)D.(2 ,- 4)8. 如图,以下条件:①∠1=∠3,②∠ 2=∠ 3,③∠ 4=∠ 5,④∠ 2+∠4=180°中,能判断直线 l ∥1l 2的有()A.1 个B.2 个C. 3 个D.4 个9. 以下图,点P 到直线l 的距离是()A.线段 PA的长度B.线段PB的长度 C .线段 PC的长度 D .线段 PD的长度10.一个正数的平方根为2x+1和 x﹣ 7,则这个正数为()A.5B. 10C.25D.±2511.以下说法正确的有()(1)坐标轴上的点不属于任何象限(2)( -)2=16(3)假如点A a,b位于第四象限,那么ab 0(4) 直角坐标系中,在y 轴上且到原点的距离为 5 的点的坐标是(0,5)( 5)过一点有且只有一条直线与已知直线平行A.1 个B.2个C.3个D.4个12.如图,一块从一个边长为20 的正方形BCDM资猜中剪出的垫片,经测得FG= 9,则这个剪出的M E DGFAH图形的周长是()BCA.68B.86C. 98D. 89第Ⅱ卷(非选择题共 102 分)二、填空题:(本大题共 6 小题,共24 分,填写最后结果,每题填对得 4 分.)13.64 的立方根是.14.点 A( m+3,m+ 1)在 x 轴上,则 A 点的坐标为 _______.15. 直线,一块含角的直角三角板如图搁置,,则______.16.以下图的象棋盘上,若“士”的坐标是 ( ﹣ 2,﹣ 2) ,“相”的坐标是 (3 ,2) ,则“炮”的坐标是 .CFA O B16 题图17E题图17.如图,三条直线订交于点O,若 CO⊥AB,∠ COF=62°,则∠ AOE等于.18. 如图,一张长方形纸折叠后,若获得,则__度.三、解答题: ( 本大题共7 小题,共78 分.解答要写出必需的文字说明、证明过程或演算步骤.)19.( 此题满分 16 分) 计算与求值 .(1)23(2)3(-3)--8- 3-2(3) 3( x﹣2)2=27(4)( x+4)3-125=020. (此题满分8 分 ) 已知的平方根是,的立方根是,求( 1) a 与 b 的值 .(2) a+2b 的平方根.21.( 此题满分 10 分) 达成下边推理过程:如图,已知DE∥ BC, DF、 BE 分别均分∠ ADE、∠ ABC,可推得∠∵ DE∥ BC()∴∠ ADE=.()FDE=∠ DEB的原因:∵DF、 BE分别平分∠ ADE、∠ ABC∴∠ ADF=1, 2∠ ABE=1.() 2∴∠ ADF=∠ ABE∴∥.()∴∠ FDE=∠ DEB.()22. ( 此题满分10 分) 如图,平面直角坐标系中,已知点A(- 3, 3), B(- 5, 1), C(- 2,0), P() 是△ ABC的边 AC上随意一点,△A BC经过平移后获得△A1B C,点 P 的对应点为11P () .1(1)直接写出点 A1, B1,C1的坐标;(2)在图中画出△A1B1C1;(3)连结 A A1 , 求△ AOA1的面积.23. (此题满分10 分) 如图,已知,,.请你判断与的数目关系,并说明原因;若,均分,试求的度数.24.(此题满分10 分 ) 如图,在平面直角坐标系中,点a,b 知足 |a + 2| +b- 4= 0,点 C 的坐标为 (0 , 3).A, B 的坐标分别为A(a , 0) , B(b , 0) ,且( 1)求 a, b 的值及 S△ABC;1( 2)若点 M在 x 轴上,且S△ACM=3S△ABC,试求点 M的坐标 .25. (此题满分14 分)如图,已知直线l 1∥l 2,直线 l 3和直线 l 1、 l 2交于 C、D 两点,点P 在直线 CD 上.( 1)试写出图 1 中∠ APB、∠ PAC、∠ PBD之间的关系,并说明原因;(2)假如 P点在 C、 D之间运动时,∠ APB,∠ PAC,∠ PBD之间的关系会发生变化吗?答:.(填发生或不发生);(3)若点 P在 C、 D 两点的外侧运动时( P 点与点 C、 D 不重合,如图 2、图 3),试分别写出∠APB,∠ PAC,∠ PBD之间的关系,并说明原因.数学试题 ( 答案 )第Ⅰ卷(选择题共 48分)一、选择题:1. D 2.D 3.D 4.D 5.A 6.C7.A8.C9.B10.C11.B12.C第Ⅱ卷(非选择题共 102 分)二、填空题:13.2 14.(2,0) 15.16. (-3,0) 17.18.三、解答题:19.( 此题满分 16 分) 计算与求值 . (每题 4 分)( 1) 3.7(2)(3)x=5或x=-1(4)x=120.( 此题满分 6分)∵ 2a-1 的平方根是± 3, 11a+b-1 的立方根是4,∴ 2a-1=9 , 11a+b-1=64 , ----2分∴a=5, b=10, ----4 分∴a+2b=25,即 a+2b 的平方根是± 5. ----6分21.( 此题满分 10 分) (每空 1 分)原因是:(已知),(两直线平行,同位角相等),、分别均分ADE、∠ ABC,(角均分线定义),(角均分线定义),,(同位角相等,两直线平行),(两直线平行,内错角相等),22.( 此题满分 8分)(1)∵点 P( a, b)的对应点为 P1( a+6, b- 2),∴平移规律为向右 6 个单位,向下 2 个单位,∴,(4, -2) ; --3 分(2) △以下图;---4分(3) △AO的面积=6×3- 12×3×3- 12×3×1- 12×6×2=18 - 92- 32- 6=18- 12=6.— 8 分23.( 此题满分 12 分)(1)猜想:∠ 1=∠BDC ---1分证明:∵ AD⊥EF, CE⊥EF,∴∠ GAD=∠ GEC=90°∴AD∥ CE —3 分°∴∠ ADC+∠3=180又∵∠ 2+∠ 3=180°,∴∠ 2= ∠ADC∴AB∥ CD----6 分∴∠ 1=∠BDC---8分(2)∵ AD⊥ EF,∴∠ FAD=90°.∵AB∥ CD,∴∠ BDC=∠1=,∵DA均分∠ BDC,∴∠ ADC=∠BDC=×70°=35°. ----10分∵AB∥ CD,∴∠ 2=∠ADC=35°,∴∠ FAB=∠ FAD-∠2=-=.----12分24.(此题满分12 分 )(1)∵ |a + 2| + b- 4= 0,∴ a+ 2= 0, b- 4=0.∴ a=- 2, b= 4.---2分∴点 A( - 2,0),点 B(4, 0).又∵点 C(0 ,3),∴ AB= | - 2-4| = 6, CO= 3. ----4分∴ S11分=2AB·CO=2×6×3= 9.---6三角形 ABC( 2)设点 M的坐标为 (x , 0) ,则 AM= |x - ( - 2)| = |x + 2|.1又∵ S 三角形ACM=3S 三角形ABC,111∴ 2AM·OC= 3×9,∴ 2|x+2| ×3=3. ----8分∴ |x + 2| = 2. 即 x+ 2=± 2,解得 x= 0 或- 4, ----10分故点 M的坐标为 (0 , 0) 或 ( - 4,0).---12分25.( 此题满分 14 分)(1)如图①,当 P 点在C. D之间运动时,∠ APB=∠PAC+∠ PBD.原因以下:过点 P 作 PE∥l 1,∵l 1∥ l 2,∴ PE∥ l 2∥ l 1,----3分∴∠ PAC=∠1,∠ PBD=∠2,∴∠ APB=∠1+∠2=∠ PAC+∠ PBD;----5分APB、∠PAC、∠PBD之间的关系不发生变化;----(2) 由 (1)知,假如P 点在C.D之间运动时,∠6 分(3)如图② , 当点P在 C. D两点的外侧运动 , 且在l 1 上方时,∠PBD=∠PAC+∠APB.原因以下:∵l 1∥ l 2,∴∠PEC=∠ PBD,°°∵∠ PAC+∠ APB=180- ∠ AEP, ∠ PEC=180- ∠ AEP∴∠ PEC=∠ PAC+∠ APB,山东省德州市夏津县2018-2019学年八年级数学上学期插班生试题新人教版∴∠ PBD=∠ PAC+∠ APB.----10分如图③ , 当点P在 C.D两点的外侧运动, 且在l 2 下方时,∠PAC=∠PBD+∠APB.原因以下:∵ l 1∥ l 2,∴∠ PED=∠ PAC,°∵∠ PBD+∠ APB=180- ∠ BEP,°∠ PED=180- ∠ BEP∴∠ PED=∠ PBD+∠ APB,∴∠ PAC=∠ PBD+∠ APB.----14分(证明方法不独一)。

山东省德州市2018-2019学年八年级数学上学期招生试题 新人教版

山东省德州市2018-2019学年八年级数学上学期招生试题 新人教版

山东省德州市2018-2019学年八年级数学上学期招生试题试卷满分:100分一.选择题(共12小题,满分36分,每小题3分)1. 4的算术平方根是()A.B.C.±2 D.22.估计+1的值是()A.在2和3之间 B.在3和4之间C.在4和5之间 D.在5和6之间3.已知点A(﹣1,﹣3)和点B(3,m),且AB平行于x轴,则点B坐标为()A.(3,﹣3)B.(3,3)C.(3,1)D.(3,﹣1)4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.点M(﹣3,﹣2)到y轴的距离是()A.3 B.2 C.﹣3 D.﹣26.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.37.不等式组的解集在数轴上可表示为()A.B.C.D.8.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣29.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.410.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B与C的纵坐标相同D.B与D的纵坐标相同11.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1 B.2 C.3 D.412.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°二.填空题(共5小题)13.﹣2的绝对值是.14.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD 的度数是.15.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a= .16.方程组的解是.17.不等式9﹣3x>0的非负整数解是.三.解答题(共6小题)18.计算:.19.解方程组:.20.x取哪些非负整数时,的值大于与1的差.21.如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.22.某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么恰好可以空出一辆车.问共有几辆车,几个学生?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?七升八数学答案一.选择题(共12小题,满分36分,每小题3分)1~6:DCABAD 7~12:DDBCCC二.填空题(共5小题)13.2﹣.14.80°.15.﹣.16..17.0、1、2.三.解答题(共6小题)18.解:原式=4+2﹣﹣,=.19.解:,①×5﹣②×3得:﹣38y=﹣76,y=2,代入①得:3x﹣8=10,x=6.则原方程组的解为.20.解:由题意得:>﹣1,解得x<4,∴x取0,1,2,3.21.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB,∴∠AGD=180°﹣∠BAC=180°﹣80°=100°.22.解:解法一,设汽车有x辆,则45x+15=60(x﹣1),解得x=5,把x=5代入60(x﹣1)=240;答:有5辆汽车,有240名学生.解法二,设汽车x辆,学生y人,则,解得,答:有5辆汽车,有240名学生.23.解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

山东德州2018-2019学年八年级下期末数学试卷含答案解析

山东德州2018-2019学年八年级下期末数学试卷含答案解析

2019-2019学年山东省德州市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1 •若7彷厂:有意义,则m 能取的最小整数值是( )A. m=0B. m=1 C m=2 D. m=32 •下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A . 1, 「,— B. 3, 4, 5 C. 5, 12, 13 D. 2, 2, 3 3.下列二次根式中属于最简二次根式的是()4.函数y=2x -5的图象经过( )A .第一、三、四象限 B.第一、二、四象限 C.第二、三、四象限D .第一、二、三象限5. 如图,矩形ABCD 中,对角线AC, BD 交于点O .若/ AOB=60, BD=8,则AB的长为( )A . 4 B.二 T C. 3 D . 56. 如图,正方形ABCD 中,AE 垂直于BE,且AE=3, BE=4,则阴影部分的面积 是( )d------------------ DD.—A. 16B. 18C. 19D.217. 某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A . 25 B. 26 C. 27 D . 288. 已知P i (- 3, y i ), P 2 (2, y 2)是一次函数y=-x - 1的图象上的两个点, 则y i , y 2的大小关系是( )A . y i =y 2B . y i <y 2 C. y i >yD .不能确定9. 2022年将在北京-张家口举办冬季奥运会, 很多学校开设了相关的课程.如 表记录了某校4名同学短道速滑选拔赛成绩的平均数 匚与方差s 2:队员1队员2 队员3 队员4 平均数;(秒) 51 50 51 50 方差s 2 (秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛, 应该选择A .队员iB .队员2 C.队员3 D .队员4 iO .如图,在平行四边形ABCD 中,/ BAD 的平分线交BC 于点E ,Z ABC 的平分线交AD 于点F ,若BF=i2, AB=iO,则AE 的长为( ii.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )D . i6气温艾i5A . 5cm B. 10cm C. 20cm D. 40cm12. —次函数y i =kx+b 与y 2=x+a 的图象如图,则下列结论①k v 0;②a >0;③当x v 3时,y i < y 2中,正确的个数是(二、填空题(每小题4分,共20分)13. 已知一组数据X i , X 2, X 3,X 4, X 5的平均数是2,那么另一组数据3x i - 2, 3x 2 -2, 3x 3- 2, 3x 4- 2, 3x 5- 2 的平均数是 _____ .16. 矩形纸片ABCD 的边长AB=8, AD=4,将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为 _________.314. _________________________________________ 函数中,自变量x 的取值范围17. ___________ 如图,直线y=kx+b (k M0)与x轴交于点(-4, 0),则关于x的方程kx+b=0 的解为x= .、解答题(本大题共7个小题,写出必要解题步骤,共 64分)19. 一艘轮船以16海里/时的速度离开港口(如图),向北偏东 40°方向航行, 另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向20. 已知:如图,点 E ,F 分别为?ABCD 的边BC, AD 上的点,且/ 仁/2. 21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为 世界读书日”.某校本学年开展了读书活动, 在这次活动中,八年级(1)班40名学生读书册数的情况如表:读书册数 4 5 6 7 8 人数(人)6410128根据表中的数据,求:(1) 该班学生读书册数的平均数; (2)该班学生读书册数的中位数.22.世界上大部分国家都使用摄氏温度「C),但美国、英国等国家的天气预报 使用华氏温度(T).两种计量之间有如表对应: 摄氏温度x(C)…510152025…18•当 x =时,求x 2- x+1的值.华氏温度y (T)…324150596877…已知华氏温度y (T)是摄氏温度x (C)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度-4 T时,求其所对应的摄氏温度.23. 如图,矩形ABCD的对角线AC BD交于点0,且DE// AC, CE// BD.(1)求证:四边形0CED是菱形;(2)若/ BAC=30, AC=4,求菱形0CED的面积.24. 已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发斗小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.2019-2019学年山东省德州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1•若〔『二有意义,贝U m能取的最小整数值是()A. m=0B. m=1 C m=2 D. m=3【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由2士厂.[有意义,则满足3m - 1 > 0,解得m > ,即m》.时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子—(a> 0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A、1,一,一B. 3,4,5 C. 5,12,13 D. 2,2,3【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+ (7)2=3= ( ")2,故是直角三角形,故错误;B、42+32=25=斤,故是直角三角形,故错误;C、52+122=169=1亍,故是直角三角形,故错误;D、22+22=8工32,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3 •下列二次根式中属于最简二次根式的是()A. IB. TC.當D. TT【分析】B D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、〒=4二;Vb Ibl ?D、霄j廿n=2 -;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.4. 函数y=2x-5的图象经过()A.第一、三、四象限B.第一、二、四象限C•第二、三、四象限D.第一、二、三象限【分析】根据一次函数的性质解答.【解答】解:在y=2x- 5中,T k=2>0,b=- 5v0,•••函数过第一、三、四象限,故选A.【点评】本题考查了一次函数的性质,能根据k和b的值确定函数所过象限是解题的关键.5. 如图,矩形ABCD中,对角线AC, BD交于点0.若/ AOB=60,BD=8,贝U AB 的长为()A. 4B. _C. 3D. 5【分析】先由矩形的性质得出OA=OB再证明△ AOB是等边三角形,得出AB=OB=4 即可.【解答】解:•••四边形ABCD是矩形,••• OA= AC, OB= BD=4, AC=BD2 2••• OA=OBvZ AOB=60,•••△ AOB是等边三角形,••• AB=OB=4故选:A.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6. 如图,正方形ABCD中,AE垂直于BE,且AE=3, BE=4,则阴影部分的面积是()sCA. 16B. 18C. 19D. 21【分析】由已知得厶ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD— S\ABE求面积.【解答】解:V AE垂直于BE,且AE=3 BE=4•••在Rt A ABE中,AB2=A E?+B E^=25,S阴影部分=s 正方形ABCD—S A ABE=A$-护AE X BE=19.=25— X 3X 4 =19.故选C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ ABE为直角三角形,运用勾股定理及面积公式求解.7. 某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是 ( ) A. 25 B. 26 C. 27 D. 28【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25. 故选A. 【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8. 已知P i (- 3, y i),P2 (2,y2)是一次函数y=-x- 1的图象上的两个点,则y i,y2的大小关系是( )A. y i=y2B. y i<y2C. y i>yD.不能确定【分析】根据P i (-3, y i),P2 (2, y2)是一次函数y=-x-i的图象上的两个点,由-3<2,结合一次函数y= -x- i在定义域内是单调递减函数,判断出y i,y2的大小关系即可. 【解答】解::P i (- 3, y i),P2 (2, y2)是一次函数y=-x- i的图象上的两个点,且-3<2,二y i >y2.故选:C.【点评】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.9. 2022年将在北京-张家口举办冬季奥运会, 很多学校开设了相关的课程.如 表记录了某校4名同学短道速滑选拔赛成绩的平均数 匚与方差s 2:队员1队员2 队员3 队员4 平均数;(秒) 51 50 51 50 方差s 2 (秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛, 应该选择( )A .队员1B •队员2C •队员3D •队员4【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量, 方 差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数 据越稳定. 【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好, 所以队员2成绩好又发挥稳定. 故选B .【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越 大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越 小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越 稳定.10. 如图,在平行四边形ABCD 中,/ BAD 的平分线交BC 于点E ,Z ABC 的平分线交AD 于点F ,若BF=12, AB=10,则AE 的长为(【分析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形 ABEF 是菱形,得出AE 丄BF, OA=OE OB=OF*BF=6,由勾股定理求出OA ,即可得出 AE 的长.【解答】解:如图所示:•••四边形ABCD 是平行四边形,D . 16 15••• AD// BC,•••/ DAEN AEB,•••/ BAD的平分线交BC于点E,•••/ DAE=Z BAE,•••/ BAEN BEA••• AB二BE 同理可得AB=AF••• AF=BE•••四边形ABEF是平行四边形,••• AB=AF•••四边形ABEF是菱形,••• AE 丄BF, OA=OE OB=OF= BF=6,•••OA=f.汀厶—'「上二一卜广=8 ,••• AE=2OA=16【点评】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11. 如图,菱形ABCD的一边中点M到对角线交点0的距离为5cm ,则菱形ABCD 的周长为()A. 5cmB. 10cmC. 20cmD. 40cm【分析】根据菱形的性质得出AB=BC=CD=ADAO=OC根据三角形的中位线求出BC,即可得出答案.【解答】解:•••四边形ABCD是菱形,••• AB=BC=CD=AD AO=OC••• AM=BM ,BC=2MO=2x 5cm=10cm ,即AB=BC=CD=AD=10cm即菱形ABCD的周长为40cm ,故选D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.12. 一次函数y i =kx+b与y2=x+a的图象如图,则下列结论①k v0;②a>0;③当x v3时,y i v y2中,正确的个数是()、XO/ 32A. 0 B. 1 C. 2 D. 3【分析】根据y i=kx+b和y2=x+a的图象可知:k v 0,a v 0,所以当x v 3时,相应的x的值,y i图象均高于y2的图象.【解答】解:I y i=kx+b的函数值随x的增大而减小,.k v 0;故①正确T y2=x+a的图象与y轴交于负半轴,.a v 0;当x v3时,相应的x的值,y i图象均高于y2的图象,.y i > y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.二、填空题(每小题4分,共20分)13. ___________________________________ 已知一组数据X i, X2, X3, X4, X5的平均数是2,那么另一组数据3x i - 2, 3x2 -2, 3X3- 2, 3X4- 2, 3X5- 2 的平均数是_________________________________________ .【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据X i, X2, X3 , X4, X5的和,然后再用平均数的定义求新数据的平均数.【解答】解:一组数据X i, X2, X3, X4 , X5的平均数是2,有「( X i +X2+X3+X4+X5) =2,那么另一组数据3X I - 2, 3X2 - 2, 3X3- 2, 3X4- 2, 3X5 - 2的平均数是三(3x i-2+3X2—2+3x3 —2+3x4 —2+3x5 —2) =4.故答案为4.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:-二『厂…」* ----------- •i4.函数.一…中,自变量x的取值范围是X》3 .【分析】根据二次根式—有意义的条件是a>0,即可求解.【解答】解:根据题意得:x-3>0,解得:x>3.故答案是:x> 3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式二7〔;,=3【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.16 •矩形纸片ABCD的边长AB=8, AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为2 .【分析】根据折叠的性质得到CG=AD=4 GF=DF=C B CF, / G=90,根据勾股定理求出FC,根据三角形的面积公式计算即可.【解答】解:由折叠的性质可得:CG=AD=4 GF=DF=CD- CF,Z G=90,则厶CFG为直角三角形,在Rt A CFG中,FC=C G+F G,即卩F&=42+ (8- FC 2,解得:FC=5•••△ CEF勺面积=X FC X BC=1Q△ BCE的面积=△ CGF的面积=一X FG X GC=6则着色部分的面积为:10+6+6=22,故答案为:22.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17.如图,直线y=kx+b (k M0)与x轴交于点(-4, 0),则关于x的方程kx+b=0的解为x= - 4【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(-4,0),即当x=- 4 时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=- 4.故答案为:-4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18. (6分)当x=. 时,求x2- x+1的值.【分析】先根据x= .「,整理成x= _+1,再把要求的式子进行配方,然后把x 的值代入,即可得出答案.【解答】解::x= 1二x= :+1,••• x2- x+1= (x-右)2+F= (':+1-右)2+亍=3 '■.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.19. (8分)一艘轮船以16海里/时的速度离开港口(如图),向北偏东40方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【解答】 解:由题意可知,OA=16H6X 「=24 (海里),OB=12+12 X ' =18 (海二 二 里),AB=30海里,v 242+182=3氏即卩 OA 2+OB 2=AB 2,•••△ OAB 是直角三角形,vZ AOD=40,【点评】本题考查的是勾股定理的应用,根据题意判断出厶AOB 是直角三角形是 解答此题的关键.20. ( 10分)已知:如图,点 E ,F 分别为?ABCD 的边BC, AD 上的点,且Z 1 =Z 2.的形状,进而可得出结论.OAB50度.【分析】先由平行四边形的对边平行得出AD// BC,再根据平行线的性质得到ZDAE=Z 1,而Z仁Z2,于是Z DAE=Z2,根据平行线的判定得到AE//CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF【解答】证明:•••四边形ABCD是平行四边形,••• AD// BC,•••/ DAE=/ 1,vZ 1=/ 2,•••/ DAE=/ 2,••• AE/ CF,v AF/ EC,•••四边形AECF是平行四边形,••• A E=CF【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE/ CF是解题的关键.21. (10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为世界读书日”某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.说书册数卑数【分析】(1)根据平均数=「-「=.「',求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可. 【解答】解:(1)该班学生读书册数的平均数为:丄' 二7 ■z=6.3 (册),答:该班学生读书册数的平均数为 6.3册.(2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:=6.5 (册).2答:该班学生读书册数的中位数为 6.5册.【点评】本题考查了中位数和平均数的知识, 解答本题的关键在于熟练掌握求解 平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序 排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22. ( 10分)世界上大部分国家都使用摄氏温度「C),但美国、英国等国家 的天气预报使用华氏温度(T).两种计量之间有如表对应:已知华氏温度y (T)是摄氏温度x (C)的一次函数.(1) 求该一次函数的表达式;(2) 当华氏温度-4 T 时,求其所对应的摄氏温度.【分析】(1)设y=kx+b ,利用图中的两个点,建立方程组,解之即可; (2)令y=-4,求出x 的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx+b (k M 0)次函数的表达式为y=1.8x+32.(2)当 y=- 4 时,代入得-4=1.8x+32,解得 x=- 20. •••华氏温度-4 T 所对应的摄氏温度是-20C.【点评】本题考查一次函数的应用,只需仔细分析表中的数据,利用待定系数法 即可解决问题.23. ( 10分)如图,矩形 ABCD 的对角线 AC BD 交于点0,且DE// AC, CE// BD.(1)求证:四边形OCED 是菱形;由题意,得 /b=32110k+b=50解得£8b=32(2)若/ BAC=30, AC=4,求菱形OCED的面积.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD根据菱形的判定得出即可.(2)解直角三角形求出BC=2 AB=DC=2 —,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF冷BC=1,求出OE=2OF=2求出菱形的面积即可. 【解答】(1)证明::CE// OD, DE// OC,•••四边形OCED是平行四边形,•••矩形ABCD,二AC=BD OC=:AC, OD= 一BD,••• OC=OD•••四边形OCED是菱形;(2)解:在矩形ABCD中 , / ABC=90 , / BAC=30 , AC=4,••• BC=2••• AB=DC=2 二,连接OE,交CD于点F ,•••四边形ABCD为菱形,••• F为CD中点,v O为BD中点,••• OE=2OF=2S菱形OCE[= X OE X CD弓X2X241=2/1.【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24. (10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.【分析】(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于•小时4是一次函数.可根据待定系数法列方程,求函数关系式.g(2) 4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了 .:小时行使的距离.从图象可看出求乙车离出发地的距离y (千米)与行驶时间x (小时)之间是正比例函数关系,用待定系数法可求解.(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:(1)当0w x<3时,是正比例函数,设为y=kx,x=3 时,y=300,代入解得k=100,所以y=100x;当3v x w 上-时,是一次函数,设为y=kx+b ,4k=-80 ,b=540' 所以 y=540- 80x .综合以上得甲车离出发地的距离 y 与行驶时间 x 之间的函数关系式 为:flOOK (0< X<3)y= ;1」二一片*咯工!(2) 当 x= 时,y 甲=540- 80X £=180;乙车过点(斗,180),y 乙=40x .( 0w x < )(3) 由题意有两次相遇.① 当 0w x <3,100x+40x=300,解得 x=「② 当 3v x w 时,(540- 80x ) +40x=300,解得 x=6.综上所述,两车第一次相遇时间为第 [小时,第二次相遇时间为第6小时.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实 际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的 问题.代入两点(3, 300)、(晋,0),得-2? (3k+b=3004 玄+b 二 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省德州市夏津县2018-2019学年八年级数学下学期招生考试试题 时间:120分钟 分值:150分
一、选择题:(每小题4分,共48分。


1、已知a<b,则下列式子正确的是( ) A.a+5>b+5 B.3a>3b C.-5a>-5b D.
3a >3
b 2、下列方程中是二元一次方程的是( )
A.27xy x +=
B.15y x +=
C.22x y -=
D.22x y +=
3、设n 为正整数,且,则n 的值为( ) A .9 B .8 C .7 D .6
4、下列运动属于平移的是( )
A .荡秋千
B .急刹车时,汽车在地面上的滑动
C .风筝在空中随风飘动
D .地球绕着太阳转
5、下列计算:①都是27的立方根;②;③的立方根是2;④,其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
6、如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM,若∠AOM =35°,
则∠CON 的度数是( )
A .65°
B .55°
C .45°
D .35°
7、为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是( )
A .2000名学生的体重是总体
B .2000名学生是总体
C .每个学生是个体
D .150名学生是所抽取的一个样本
,则被遮盖的两个数分别为( )
9、已知点P (x ,y )的坐标满足|x|=3,且xy <0,则点P 的坐标是( )
A .(3,-2)
B .(-3,2)
C .(3,-4)
D .(-3,4)
10、《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( ) A. ⎪⎩⎪⎨⎧+=+=1215.4x y x y B. ⎪⎩⎪⎨⎧-=+=1215.4x y x y C. ⎪⎩⎪⎨⎧+=-=1215.4x y x y D. ⎪⎩⎪⎨⎧-=-=12
15.4x y x y 11、关于x 的不等式组21111x x a
-⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为( )
A. 56a ≤<
B. 56a <≤
C. 6a 4≤<
D. 46a <≤
12、将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )
A .(11,3)
B .(3,11)
C .(11,9)
D .(9,11)
二、填空题:(每个小题5分,满分25分。


13、某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.
15、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是
____________.
16、有下列四个命题:①对顶角相等;②同位角相等;③任何一个实数都有一个立方根,但不一定有平方根;④直线外一点到这条直线的垂线段,叫做点到直线的距离;⑤不等式2752x x -≤-的正整数解有2个。

其中是假命题的序号是 .
17、已知点A (2,2),B (1,0),点C 在坐标轴上,且三角形ABC 的面积为2,请写出所有满足条件的点C 的坐标: .
三、解答题:(本题7个小题,共 77分。


18、(本题满分12分,每题6分)
解方程组:⎩
⎨⎧=+=-1634y x y x ⎩⎨⎧=+=-623452y x y x 19、(本题满分12分,每题6分)
(1)解不等式组,并把解集在数轴上表示出来:⎩⎨
⎧->+>--1
214)2(3x x x x (2)求x 的值:24160-=(x+2)
20、(本题满分8分)
如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:
(+1,+4),从(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中,
(2)若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程;
(3)若图中另有两个格点M 、N ,且,,则应记作什么?
21、(本题满分8分)
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我
市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红
枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同
口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,
并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
22、(本题满分12分)
如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.
(1)求证:AB∥DE;
(2)BD平分∠EBC吗?为什么?
23、(本题满分12分)
某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的
数量不能超过B型课桌凳数量的2
3
,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的
总费用最低?
24、(本题满分13分)
(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;
(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;
(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).
一、选择题:(每小题4分,共48分。

) 1-5 CCABB 6-10 BAADB 11-12AA
二、填空题:(每个小题5分,满分25分。


13、40 14、3 15、同位角相等,两直线平行. 16、②④⑤
17、(-1,0)(3,0)(0,2)(0,-6) 三、解答题:(本题7个小题,共 77分。


18、(本题满分12分,每题6分)
51x y =⎧⎨=⎩ 20
x y =⎧⎨=⎩ 19、(本题满分12分,每题6分)
(1)21x -<< 图略; (2)
20、(本题满分8分)
(2)图中(+2,0);D(+1,2) --3分 (2)10 ----5分
(3)若图(-2,-2)---8分
21题、(本题满分8分)
(1)60÷10%=600(人)--2分 (2)略 --5分
(3)8000×40%=3200(人) ---8分
22、(本题满分12分)
1)证明:∵∠2与∠ABE 是对顶角,
∴∠2=∠ABE.∵∠1=∠2,∴∠1=∠ABE,∴AB∥DE;---5分
(2)解:BD 平分∠EBC.
理由:∵由(1)知AB∥CD,
∴∠AED+∠BAE=180°,∠BEF=∠EBC.
∵∠BAE=∠BDE,∴∠AED+∠BDE=180°,∴AE∥BD,
∴∠AEB=∠DBE.∵EA平分∠BEF,∠BEF=∠EBC,
∴BD平分∠EBC.---12分
23、(本题满分12分)
(1)、A型180元,B型220元;---5分
(2)、3种方案;A型80套,B型120套;
A型78套,B型122套;A型79套,B型121套.---11分费用最低方案:A型80套,B型120套.--12分
24、(本题满分13分)
(1)证明:如图1,过P作PM∥AC,
∵AC∥BD,∴AC∥BD∥PM,
∴∠1=∠PAC,∠2=∠PBD,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)∠APB+∠PBD+∠PAC=360°,
证明:如图2,
过P作PM∥AC,
∵AC∥BD,∴AC∥BD∥PM,
∴∠1+∠PAC=180°,∠2+∠PBD=180°,
∴∠1+∠PAC+∠2+∠PBD=360°,即∠APB+∠PBD+∠PAC=360°;(3)∠APB=∠PBD﹣∠PAC,---
证明:过P作PM∥AC,如图3,。

相关文档
最新文档