最新 基因工程中常用的工具酶
基因工程常用的工具酶
2024/10/14
.
6
识别序列呈典型的旋转对称型回文结构
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
回文结构:两条核苷酸链的核酸序列呈双重旋转对称排列的 DNA双螺旋结构
2024/10/14
.
14
第三节 DNA聚合酶
2024/10/14
.
15
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
❖作用特点
能够把脱氧核苷酸分子连续的加到DNA分子引物链的3’-OH末端,催 化核苷酸的聚合
❖作用条件
➢ 脱氧核苷酸原料:四种脱氧核苷三磷酸dNTP(dATP、dTTP、 dCTP、dGTP)
属名
种名
株名
Haemophilus influenzae d
HindΙ、 HindⅡ、 Hind Ⅲ
不同限制修饰系统
2024/10/14
.
4
三、Ⅱ型限制酶的特性-识别序列
识别双链DNA分子中特定的4 - 8对核苷酸序列
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
5‘ HO 3‘ HO
T4-PNP
5‘ p 3‘ HO
OH 3‘ OH 5‘
Mg2+ pppATP(g-32P-ATP)
OH 3‘
5‘ HO
BAP / CIP
基因工程中常用的三种工具酶
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
基因工程的工具酶
03
应用领域:基 因工程、生物 制药、环境保
护等领域
04
发展趋势:定 向进化与优化 将成为工具酶 研究的重要方 向,推动基因 工程领域的发
展。
工具酶在合成生物学中的应用与前景
工具酶在合成生物学中的作用:作为构建基因电路的关键元件,实现对基因的精确调控 工具酶的发展趋势:更高效、更精确、更稳定的工具酶不断被开发出来 工具酶在生物制药中的应用前景:利用工具酶进行药物设计和生产,提高药物疗效和降低成本 工具酶在环境保护中的应用前景:利用工具酶进行污染治理和生态修复,保护生态环境和促进可持续发展
工具酶在基因治疗和生物医学中的未来发展
01
基因治疗:工具酶在基因编辑和基因治疗中的应用
02
生物医学:工具酶在疾病诊断和治疗中的应用
03
未来发展:工具酶在个性化医疗和精准医疗中的应用
04
展望:工具酶在基因治疗和生物医学领域的发展趋势和挑战
THANK YOU
YOUR LOGO
04
应用:基因工 程、DNA测序 、基因治疗等
领域
DNA连接酶
功能:连接 DNA片段,形 成重组DNA
特点:高效、 特异性强、稳 定性好
应用:基因克 隆、基因突变、 基因表达调控 等
类型:T4 DNA连接酶、 T7 DNA连接 酶等
聚合酶
01
功能:在基因工程中,聚合酶用于切割和连 接DNA,以实现基因的插入、删除和修改
工具酶:基因工程工具酶是指 在基因工程中用于切割、连接 和修饰DNA的酶
12
34
应用:在基因突变的研究中,
实例:例如,使用限制性内切
基因工程工具酶可以用来诱导
酶切割DNA,然后使用DNA连
基因工程期末考试题及答案
基因工程期末考试题及答案一、选择题(每题2分,共20分)1. 基因工程中常用的工具酶是:A. 纤维素酶B. 限制性内切酶C. 淀粉酶D. 过氧化氢酶答案:B2. 下列哪项不是基因工程的基本步骤?A. 目的基因的获取B. 基因的表达C. 基因的克隆D. 基因的测序答案:D3. 基因枪法是一种:A. 植物转基因方法B. 动物转基因方法C. 微生物转基因方法D. 所有生物的转基因方法答案:A4. 重组DNA技术中,通常使用哪种质粒作为载体?A. 质粒DNAB. 线粒体DNAC. 核糖体RNAD. 染色体DNA答案:A5. 基因工程中,目的基因的表达通常需要:A. 启动子B. 终止子C. 增强子D. 所有选项答案:D二、填空题(每空2分,共20分)1. 基因工程是指按照人们的意愿,将不同来源的基因在体外构建杂合DNA分子,然后导入到活细胞和生物体内,以改变生物的遗传特性并取得新品种或新产品。
2. 基因工程中常用的宿主细胞有大肠杆菌、酵母菌和________。
答案:哺乳动物细胞3. 基因工程中,________是连接目的基因和载体DNA的关键酶。
答案:DNA连接酶4. 目的基因的表达需要________和________的协同作用。
答案:启动子;终止子5. 基因工程产品在医学领域的应用包括生产________、________和基因治疗等。
答案:重组蛋白;单克隆抗体三、简答题(每题10分,共30分)1. 请简述基因工程在农业中的应用。
答案:基因工程在农业中的应用主要包括提高作物的抗病性、抗虫性、抗旱性和提高作物的产量和品质。
例如,通过基因工程培育的抗虫棉可以减少农药的使用,提高棉花的产量和质量。
2. 基因工程在医学领域有哪些应用?答案:基因工程在医学领域的应用包括生产重组蛋白药物、单克隆抗体、基因治疗和疫苗开发等。
例如,利用基因工程技术生产的胰岛素可以治疗糖尿病,单克隆抗体用于治疗癌症和自身免疫性疾病。
3. 请解释什么是转基因生物,并简述其潜在的风险。
基因工程基因工程工具酶
基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。
在基因工程的过程中,基因工程工具酶发挥着关键的作用。
本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。
一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。
它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。
1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。
它们通常识别的序列是4到8个碱基对长,具有一定的对称性。
一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。
1.3 应用限制性内切酶在基因工程中有着广泛的应用。
它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。
通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。
二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。
在基因工程中,连接酶通常被用于连接目标基因和载体。
2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。
它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。
2.3 应用连接酶在基因工程中的应用非常广泛。
它们可以用于构建重组DNA分子、进行目标基因的插入等。
通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。
三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。
在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。
3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。
它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。
3.3 应用修饰酶在基因工程中起着重要的作用。
它们可以用于DNA甲基化的分析、目标基因的修饰等。
基因工程-工具酶
基因敲入
2
能。
利用工具酶将外源DNA片段整合到目标基
因中,实现新基因的表达。
3
基因编辑
通过工具酶修饰目标基因的特定碱基, 实现精确的基因改造。
农业、医药和工业领域的应用
农业
利用基因工程和工具酶,开发抗 虫、抗病、耐旱和高产的转基因 作物。
医药
工具酶在基因治疗中起着关键作 用,用于修复人类遗传病和癌症 等疾病的基因。
基因工程-工具酶
基因工程是利用DNA技术对生物体进行改造的科学,工具酶在基因工程中起 着至关重要的作用。
工具酶的作用
工具酶是基因工程中的重要工具,用于切割、连接和修饰DNA分子,使得科 学家能够精确操控基因。
常用的工具酶类型
限制酶
识别和切割DNA序列,用于定位和克隆特定基因。
连接酶
将不同DNA片段连接在一起,构建重组DNA分子。
修饰酶
对DNA分子进行修饰,如甲基化、去甲基化等。
造极酶
用于扩增DNA序列,如聚合酶链反应(PCR)中 的DNA聚合酶。
工具酶的工作原理
工具酶通过与DNA特定序列的互作用,识别并结合到目标序列上,然后以特 定的方式切割、连接或修饰DNA分子。
பைடு நூலகம்
基因修饰的方法
1
基因敲除
通过工具酶切割目标基因,使其失去功
工业
利用工具酶进行工业发酵,生产 各种化学品、药物和生物燃料。
挑战和限制
• 技术限制:某些DNA序列难以切割或修饰。 • 安全问题:基因修饰可能带来意想不到的风险和后果。 • 伦理考虑:对基因工程的道德和伦理问题需引起广泛关注。 • 法律和监管:基因工程面临严格的法律和监管要求。
分子生物学第四章--基因工程常用工具酶
同裂酶:识别位点相同,酶的来源不同。
同尾酶:识别位点不同,切出片段有相同末端序列。
B.以切出片段末端性质不同可分,粘性末端和平末端。
粘性末端:(Cohesive Ends)两个突出末端可退火互补— — DNA是分子重组的基础
15
同裂酶
又称异源同工酶。指来源不同,但具有相同的识别 序列。 在切割DNA时,其切割点可以是相同的,产生平 头末端,称为同识同切; 切割点也可以是不同的,产生3ˊ或5ˊ粘性末端, 称为同识异切。
第四章 基因工程常用工具酶
1
Manipulating Genes
- Transferring Genes
Restriction Ligation Extract DNA
Transformation
Selection
Culturing
2
重组DNA实验中常见的主要工具酶
3
我们的基本目的是:把外源基因与载体 连接在一起形成重组DNA分子,最少需要以 下两类工具酶:
23
如果用一种限制酶,切割两种不同的DNA时,
产生相同的末端,混合后“退火”,这两种不同的
DNA分子彼此可以连接,形成重组DNA分子。
24
限制性内切酶的剪切方式
25
Yu Zheng, et al. Using shotgun sequence data to find active restriction enzyme genes. Nucleic Acids Res., 2009, 37: e1. Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli.
基因工程操作的工具酶
也称为Kronberg酶,是Kronberg等1956年发 现的第一个DNA聚合酶。
具有三种酶活性
a、5’ ---3’DNA聚合酶活性
CCGATA-OH E.coli DNA pol I CCGATAGCCT
GGCTATCGGA Mg2+ dNTP
GGCTATCGGA
.
46
b、3’ ---5’ 外切酶活性
.
44
3. DNA聚合酶
分为两类: ①依赖于DNA的DNA聚合酶,包括大肠杆菌
DNA聚合酶I(全酶)、大肠杆菌DNA聚合 酶I的Klenow大片段酶、T4 DNA聚合酶、 T7DNA聚合酶和耐高温的DNA聚合酶等。 ②依赖于RNA的DNA聚合酶,有逆转录酶。
.
45
DNA聚合酶
(1)大肠杆菌DNA聚合酶I (E.coli DNA pol I):
.
21
常见的限制性内切酶
限制性核酸内切酶名称 识别序列和切割点
EcoR Ⅰ
G↓AATTC
HindⅡ
GTPy↓PuAC
Hind Ⅲ
A↓AGCTT
BsuR I
GG↓CC
.
22
Pst Ⅰ Sma Ⅰ Xba Ⅰ Xho Ⅰ BamHⅠ Not Ⅰ
CTGCA↓G CCC↓GGG
T↓CTAGA C↓TCGAG G↓GATCC
.
14
限制性酶的识别序列一般为4~8个核苷 酸,这些序列大多呈回纹结构。
Eco RⅠ识别6个核苷酸序列,在特定的G-A 之间切割DNA分子。 5’ … G↓A –A- T –T – C … 3’ 3’ … C – T –T –A –A↑G … 5’
.
15
Pst Ⅰ酶切 5’ … C – T –G –C–A↓G … 3’ 3’ … G↑A–C – G–T– C… 5’
基因工程的工具酶
T
T
A
G
C
C
G
怎样切? • 基因的剪刀——限制性内切酶(简称限制酶)
例:大肠杆菌(E.coli)的一种限制酶能识别GAATTC序列,并在G和A之间切开。
限制酶
限制酶
几种II型限制性核酸内切酶的酶切位点
Pst I
Provindencia stuartii 164
Haemophilus influenzae Rd
4363 pBR322物理图谱
练习题
为了绘制长为3.0kb BamH Ⅰ限制性片段的限制性图谱,分别用EcoR Ⅰ、Hpa Ⅱ、 EcoR Ⅰ+Hpa Ⅱ消化这一片段的三个样品,然后通过凝胶电泳分离DNA片段,溴化乙锭染色后观 察DNA带型。请根据这些结果绘制一个限制性图谱,要标明EcoR Ⅰ和Hpa Ⅱ识别位点间的 相对位置,以及它们之间的距离(kb)。
现非特异性的DNA片段的现象。 易产生星活性的内切酶用*标记。如:EcoR I*
造成星活性参数 甘油浓度12-20%,酶与DNA比例,离子强度,45%聚乙二醇(PEG),有机溶剂,8%二甲基
亚枫,二价阳离子,12%
限制性内切酶的应用
1、重组DNA前的切割 2、构建新质粒 3、构建物理图谱 4、DNA分子杂交 5、制备DNA探针 6、亚克隆以用作序列分析 7、基因定位,DNA同源性研究。
A. 连接的两条链必须分别具有 3′端自由羟基(-OH)和5 ′端磷酸基团(-P),而且只有这两 个基团彼此相邻时才能进行连接反应;
B. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程,因此连接反应必须有能量分子的参与, 通常有两种能量分子,即ATP和NAD+。
是两条链-因此不能将两条单链连接起来或使单链环化起来。
第二章基因工程中常用的工具酶
第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。
用于生物细胞的破壁、转化、核酸纯化、检测等。
§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
双链结构的核酸内切酶。
到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。
种以上不同的核酸内切限制酶。
核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。
型限制酶。
2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。
表示分离到的第三个限制酶。
Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。
基因工程制药技术 基因工程常用工具
三、基因载体2、载体选择标准能自主复制具有两个以上的遗传标记物,便于重组体的筛选和鉴定有克隆位点(外源DNA插入点)即多个单一酶切位点分子量小,以容纳较大的外源DNA3、常用载体质粒DNA噬菌体DNA病毒DNA
Part2 基因工程操作工具
三、基因载体(1)质粒DNA存在于细菌染色体外的小型环状DNA分子具有自我复制功能(松弛、严紧)带有抗性基因及表型识别等遗传性标记物。经改造后具有多克隆位点
Part2 基因工程操作工具
二、DNA连接酶2、不同的DNA连接酶对比
连接酶
底物
辅助因子和激活因子
温度
巯基试剂
黏性末端
平末端
DNA-RNA杂合体
RNA-RNA杂合体
大肠杆菌DNA连接酶
可行
可行
不行
不行
NAD+,Mg2+(1~3mmol/L)
黏性末端:10~15 ℃补平缺口:37 ℃
无
T4DNA连接酶
生化制药工艺
项目五 基因工程制药
1
基因工程的概念
2
基因工程操作工具
3
基因工程操作流程
目ቤተ መጻሕፍቲ ባይዱ录
CONTENTS
基因工程常用工具
02
Part2 基因工程操作工具
一、基因工程操作工具1、基因工程操作要求基因的大小以纳米计算,要对它进行剪切、拼接等操作,没有非常精细的工具是无法进行的。2、基因工程操作工具“分子手术刀”----限制性核酸内切酶 “分子缝合针” ---- DNA连接酶 “分子运输车” ----载体
Part2 基因工程操作工具
二、限制性内切酶1、工具酶
工 具 酶
功 能
基因工程常用工具酶及应用
*
5′CCGATA-OH 3′ 3′GGC DNA聚合酶Ⅰ 5′CCG 3′GGC +dA,dT 3’→5’ 外切酶活性
2.大肠杆菌DNA聚合酶Ⅰ大片段
该酶是用枯草杆菌蛋白酶或胰蛋白酶降解大肠杆菌DNA聚合酶Ⅰ ,从全酶中切去 5‘ → 3’ 外切活性的肽段后产生的一条多肽链,保留了5’→3’聚合和3’→5’外切活性。
5'
5'
3'
-G AATTC-
5'
3'
-CTTAA G-
5'
5'
3'
3'
-GTT AAC-
-CAA TTG-
5' sticky end 5'粘末端
3' sticky end 3'粘末端
blunt end 平末端
*
四.识别位点与切割方式
限制性内切酶识别序列一般为6个核苷酸,如EcoRI,HindIII,BamHI,居多数。
M-MLV-来自于莫络尼鼠的白血病病毒
二 . T4DNA连接酶
催化两个DNA片段的3’-OH和5’-P末端 形成磷酸二酯键
该酶是大肠杆菌T4噬菌体的DNA30编码的产物,分子量68kd。现已由基因工程菌表达。
*
DNA 连接酶
“分子针线”
*
DNA连接酶
连接的部位:磷酸二酯键(梯子的扶手),不是氢键(梯子的踏板)。
01
该酶称为Klenow酶。也称为 Klenow 片段(Klenow fragment)。
02
*
3.T4噬菌体DNA聚合酶
来源于T4噬菌体感染的大肠杆菌,具有
5’→3’ DNA聚合酶活性
基因工程3-3基因操作的工具酶
对于限制性核酸内切酶EcoR I切割后形成的5’ 延伸末端可用32PdATP标记:
而BamH I切割后形成的5’延伸末端可用
32PdGTP标记:
3.3.3 T4 DNA聚合酶 是从T4噬菌体感染的大肠杆菌中分离纯化的一
种特殊的DNA聚合酶。
合成的方向移动——缺口平移(Nick
Translation)。
应用缺口平移法制备DNA杂交探针,其典型的 反应体系是:在25 l总体积中含有1 g纯化的特 定的DNA片段,并加入适量的DNase I、pol I、 32PdNTP和未标记的dNTP。
脱氧核糖核苷酸酶 I(DNase I)是一种内切酶, 它能够水解单链或双链DNA,形成带有5’-磷酸 末端的单(寡)核苷酸。
1. T4 DNA聚合酶也是一种多功能酶:
(1) 5’ 3’的聚合酶活性 (2) 3’ 5’的外切酶活性
其外切酶活性比E.coli DNA Pol I 的活性高200倍。
(3) 取代反应活性
如果在反应混合物中仅存在一种dNTP,则此酶的3’ 5’ 外切酶活性将从dsDNA的3’末端降解,直到互补于这个 dNTP的碱基出现为止,然后在这一位置发生取代反应。
A,故加入寡聚dT后,mRNA就可以成为逆转录酶很好的模 板,由此可合成cDNA。
(2) DNA依赖的DNA聚合酶 以ssDNA为模板,以带有3’-OH末端的DNA
片段为引物,沿5’ 3’方向合成DNA链。
可在新合成的DNA链上合成另一条互补DNA。
(3) 外切RNA酶活性 底物是RNA-DNA杂交分子中的RNA链,其水
2. T4 DNA聚合酶在基因工程中的应用
(1) 以填充反应标记带有5’延伸末端的dsDNA片 段
基因工程中常用的工具酶
五、影响限制性内切酶活性的因素 1.DNA的纯度 2. DNA的甲基化 (1)基因工程使用失去甲基化酶的大肠杆菌 (2)研究基因工程DNA的甲基化程度 (3)改变限制酶的识别特性 3.温度 4.分子结构 5.限制酶的缓冲液 星号活性 EcoRⅠ切 GAATTC EcoRⅠ*切 pupuATpypy 或AATT
第一节限制性核酸内切酶与dna分子的体外切割第二节dna连接酶和dna分子的体外连接第三节其他工具酶第一节第一节限制性核酸内切酶与限制性核酸内切酶与dnadna分子的体切割分子的体切割限制性核酸内切酶是一类能够识别双链dna分子中的某种特定核苷酸序列并由此切割dna双链结构的核酸内切酶
二、基因工程的基本程序 a b 剪切 b
载体质粒
A 外源DNA片段 A b 引入宿 主细胞 选出含有重 组DNA的细 胞扩增表达
外源DNA插入
第二章
基因工程中常用的工具酶
第一节 限制性核酸内切酶与DNA 分子的体外切割 第二节 DNA连接酶和DNA分子的 体外连接 第三节 其他工具酶
第一节
限制性核酸内切酶与DNA 分子的体切割
一、大肠杆菌DNA聚合酶Ⅰ
1.三种活性 (1)5’-3’聚合酶活性(在有dNTP时) (2)3’外切酶活性 (无dNTP时大亚基活性) (3)5’外切核酸酶活性(无dNTP时小亚基活性) 2.在基因工程中的应用 :缺口平移标记技术。
二、DNA聚合酶Ⅰ大片段 (Klenow酶)
1.DNA聚合酶活性 (切除小亚基,保留大亚基) 2. 3’外切酶活性(无dNTP时) 3. 在基因工程中的应用
(1)标记粘性末端. -32P—dNTP 标记平末端 -32P—dNTP (2)将5’端伸出的末端填平 (3)可用来反转录合成双链cDNA。 (4)补平粘性末端。
基因工程中常用的酶
分类与用途
分类
根据识别序列的长度和切割位点的特性,限制性内切核酸酶 可分为Ⅰ型和Ⅱ型。Ⅰ型限制性内切核酸酶识别位点较长, 切割位点不规则;Ⅱ型限制性内切核酸酶识别位点较短,切 割位点规则。
用途
限制性内切核酸酶在基因工程中主要用于DNA的克隆、基因 的定位、突变分析等方面。通过限制性内切核酸酶的切割, 可以将DNA片段分离出来,再进行后续的克隆和转化等操作 。
生物制药
在生物制药中,使用DNA 连接酶将药物基因或疫苗 基因插入到载体中,制备 基因药物或基因疫苗。
03
聚合酶
定义与特性
聚合酶
是一种能够催化DNA复制和修复的酶, 通过聚合核苷酸片段,合成新的DNA 链。
特性
聚合酶具有专一性、高效性和耐受性 等特性,能够在特定的模板指导下, 高效地合成DNA链。
分类与用途
分类
根据来源不同,反转录酶可分为天然反转录酶和重组反转录酶。
用途
在基因工程中,反转录酶主要用于将RNA转录为cDNA,以便进行基因克隆、表达和功能研究。
反转录酶的应用案例
基因克隆
通过反转录酶将mRNA转化为 cDNA,再利用限制性内切酶将其 切割成适当大小的片段,进行基 因克隆和测序。
基因工程中常用的酶
• 限制性内切核酸酶 • DNA连接酶 • 聚合酶 • 反转录酶 • 其他常用酶类
01
限制性内切核酸酶
定义与特性
定义
限制性内切核酸酶是一类能够识 别并切割DNA特定序列的酶,是 基因工程中常用的工具酶之一。
特性
限制性内切核酸酶具有高度的特 异性,能够识别并切割DNA中的 特异序列,切割位点通常是DNA 双链中的特定位点。
限制性内切核酸酶的应用案例
《基因工程的工具——酶与载体》 知识清单
《基因工程的工具——酶与载体》知识清单一、基因工程简介基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
它是在分子水平上对基因进行操作的复杂技术,而实现这一技术的关键就在于一系列特殊的工具,其中酶和载体起着至关重要的作用。
二、基因工程中的酶1、限制性核酸内切酶(限制酶)限制酶是能够识别双链 DNA 分子的某种特定核苷酸序列,并使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开的酶。
限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
例如,EcoRⅠ限制酶只能识别GAATTC 序列,并在 G 和 A 之间切断磷酸二酯键。
限制酶切割DNA 分子产生的末端有两种类型:黏性末端和平末端。
黏性末端是指被限制酶切开的 DNA 双链的切口,带有几个伸出的核苷酸,它们之间正好互补配对;平末端则是指切口平整,不带有伸出的核苷酸。
2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端(如黏性末端或平末端)的 DNA 片段连接起来,形成一个完整的 DNA 分子。
DNA 连接酶与限制酶的作用相反,它通过催化磷酸二酯键的形成,将断开的 DNA 片段重新连接起来。
3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 片段的扩增,如 PCR 技术(聚合酶链式反应)。
PCR 技术中使用的热稳定 DNA 聚合酶(Taq 酶)能够在高温环境下保持活性,不断地将脱氧核苷酸加到引物的 3'端,使 DNA 链得以延伸。
4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA 链,即 cDNA。
这在获取目的基因时非常有用,例如从真核生物细胞中提取出mRNA,然后通过反转录酶合成 cDNA,再进行后续的基因操作。
三、基因工程中的载体1、载体的作用载体在基因工程中主要起到运输目的基因的作用,它能够将目的基因导入到受体细胞中,并使其在受体细胞中稳定存在和表达。
复制、转录、翻译、基因工程中常用酶
复制、转录、翻译、基因工程中常用酶限制性核酸内切酶(限制酶)主要存在于微生物(细菌、霉菌等)中。
一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
是特异性地切断DNA链中磷酸二酯键的核酸酶(“分子手术刀”)。
发现于原核生物体内,现已分离出100多种,几乎所有的原核生物都含有这种酶。
是重组DNA技术和基因诊断中重要的一类工具酶。
DNA连接酶:主要是连接DNA片段之间的磷酸二酯键,起连接作用,在基因工程中起作用。
DNA聚合酶:主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA复制中起做用。
DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。
DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;而DNA连接酶是将DNA双链上的两个缺口同时连接起来。
因此DNA连接酶不需要模板。
RNA聚合酶(又称RNA复制酶、RNA合成酶)的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。
真核生物RNA聚合酶:真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA 聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。
在RNA复制和转录中起作用。
反转录酶:RNA指导的DNA聚合酶,具有三种酶活性,即RNA 指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。
在分子生物学技术中,作为重要的工具酶被广泛用于建立基因文库、获得目的基因等工作。
在基因工程中起作用。
解旋酶:是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。
在细菌中类似的解旋酶很多,都具有ATP酶的活性。