五年级数学《平行四边形的面积》教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级数学《平行四边形的面积》教案
《平行四边形面积的计算》教学设计篇一
平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。

教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。

同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:
(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法
平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。

本课的教学设计由直观到抽象,层层深入。

从动手操作观察思考归纳概括初步反馈,遵循了概念教学的原则和学生的认知规律。

通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。

这正体现了概念教学的顺序:动作感知形成表象抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。

引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。

互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程
(一)复习铺垫
教具逐个出示:
1、图(1)是什么图形?它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?
2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?
学生独立思考,讨论后反馈。

(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)
3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。

现在谁能计算图(3)的面积?
学生独立计算后,反馈。

你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。


(二)导入新课
图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。

(教具出示下图)
你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。

出示课题。

(三)引导探究
1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)
谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)
反馈交流:根据学生的回答教具演示“转化过程”。

《平行四边形面积的计算》教学设计篇二
一、说教材
1、地位:
学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。

从而完成新知的建构过程。

同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。

2、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。

能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

培养学生探索精神和合作精神。

3、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。

教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。

二、说教法设计
本课采用建构主义理论指导下的主体式、抛锚式教学方式。

以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。

三、说学法指导
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。

故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。

四、说教学程序
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。

根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:
(一)利用“几何画板”创设情境,激情导入
首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。

此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。

(二)利用“几何画板”大胆放手、导学达标
1、数格子算面积。

2、猜想平行四边形的面积可能和什么有关?
3、证明猜想
在证明猜想是否正确时,大胆放手,指导学生在“几何画板”上操作,并小组合作完成填空:长方形的面积与原平行四边形的面积,长方形的长相当于平行四边形的,因为长方形的面积=,所以平行四边形的面积=。

经师生互动、交流,得出了平行四边形的面积计算公式:平行四边形的面积=底*高。

(三)利用网络,精心设计形式多样的练习。

在本设计中,我则根据学生的年龄特点与认知规律,教材体系与网络优势,设计了一个专题学习网站,通过设置多点链接,整合信息技术与数学学科,整合网络技术与几何画板工具,利用强大的交互功能,让学生进行个性化的自主性学习活动。

使学生在教师的指导下,自主选择学习的策略和方法,自己控制和调节学习的进程,在师生、生生、人机、个体与集体之间多纬度的交流,凭借网络资源的优势,在开放的环境中完成知识的意义建构过程。

在本课中,我把练习设计设计成“试试你的本领”。

让学生自由上网自由选题进行训练。

同学可以调阅学习伙伴的学习情况。

也可以利用网络进行讨论。

能力差点的学生可以得到更多的关心,真正体现生生互动。

(四)归纳总结,拓展延伸
教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。

通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。

教师顺势揭示了课题,突出重点。

课末提出了“你还能用折纸或其他方法证明平行四边形的面积计算公式吗?”。

鼓励学生想出多种方法来证明平行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。

在课的组织形式上,我将通过“师生互动”、“生生互动”和“人机对话”等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到“信息互补”、共同提高的目的。

纵观本课设计,我坚持以“学生为本”“以学定教”的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。

在课堂教学中,学生是学习的主人,是信息加工的主体,是意义主动建构者,而教师则是“意义建构”的帮助者、促进者。

本方案设想,使学生在开放的网络环境中凭借几何画板工具,自主探索,自主探索、完成知识的意义建构过程。

五、说板书设计:
平行四边形的面积
平行四边形的面积= 底× 高
《平行四边形面积的计算》教学设计篇三
以下是小编收集的《平行四边形面积的计算》说课稿,希望大家喜欢!
各位专家,各位同仁,大家好!
今天我说课的内容是人教版义务教育课程标准实验教课书五年级上册第五单元第一课时,课题是:(手指课件)《平行四边形的面积》。

(点击课件显示:)一、说教材
平行四边形的面积属于空间与图形的知识领域,本册教材承担着让学生探索并掌握平行四边形、三角形、梯形面积公式的任务。

而平行四边形面积的计算又是本单元的第一节课,
探索它的面积公式的方法又是探索三角形和梯形面积公式的基础,可见本节课知识的重要性。

本节课的学习是在学生掌握了长方形和正方形面积计算公式,理解平行四边行特征等知识的基础上学习的,它又是学生进一步学习多边形面积计算的必备知识。

教材在编排这部分内容时,不但重视知识形成的过程,而且注意留给学生自主探索和交流的空间。

主要体现在(点击课件显示教材内容)没有直接给出结论,而是在老师的引导下放手让学生进行探究、实验、讨论交流,从而获得数学知识。

课程标准这样描述:
tilde;探索并掌握三角形、平行四边形和梯形的面积公式。

基于课程标准的要求,基于对教材的理解,基于对学生的研究和已有知识的分析,我拟定了以下三维目标:
(点击课件)二、说教学目标
知识目标:探索并发现、掌握平行四边形面积计算公式,能够利用这个知识解决实际问题。

能力目标:在经历动手操作、交流探究的过程中,培养学生动手动脑及探索发现、
归纳总结及培养空间观念等多种能力
情感目标:让学生在参与学习的过程中,感受数学独特的魅力,获得成功体验,
并产生学习数学的积极情感。

以上目标的制定有层次、而且具有可操作性。

教学重点:为了促进目标的达成,课前我对学生进行了初步的调查,有的学生已
经知道三角形的面积计算公式,但却不知道为什么。

因此,我确定
本节课的教学重点:平行四边形面积计算公式的推导。

教学难点:学生能够切实理解由平行四边形剪拼成长方形后,长方形的长和宽与
平行四边形底和高的关系将成为本节课的难点。

为了突破教学重难点,本节课我将采用自主探究、合作交流的教学方式。

通过课件演示和实践操作,激发学生参与学习的积极性,培养他们的创新精神和应用意识。

同时,我将组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。

使自主探究的学习方式贯穿教学全过程,以便学生真正成为学习的主人。

(点击课件)三、说教学具准备:
根据教学需要我准备了多媒体课件(如果有最好能展示平行四边形转化为长方形的过程)。

同时让学生每人准备了3个平行四边形,一把直尺、面积格、三角板和剪刀。

(应出现在课件上)
(点击课件)四、说教学过程
新课程强调,有效的学习活动不是单纯地依赖模仿与记忆,而是一个主动建构的过程,为了能更好地凸显主动建构的教学理念,高效完成教学目标,特设计如下四个环节。

(点击课件出现四个环节)
(点击课件)环节一:激趣引入
为了让学生体会到数学生活的快乐。

在新课开始,我结合学生喜爱的动画慢羊羊、喜羊羊和、懒羊羊分地的情景导入:村长慢羊羊给喜羊羊和懒羊羊各分了一块土地让它们种菜吃,(点击课件出现P80页的两块地,并出现问题:这两块地的面积哪一个大呢?)可它们都认为慢羊羊分的不公平,这可把慢羊羊气急坏了,它真的不知道该怎么办了?,就想找同学们帮助他解决这个问题。

通过这样一个简单而有趣的故事引入,自然引出本课所要研究的重点内容,并使学生在不知不觉中开始对主题的思考。

在这样一个浓厚的引入氛围中,就为学生的参与加大了马力,为学习新知丰富了情趣。

点击课件)环节二:探究发现
本环节分步六完成:
第一步:回忆旧知,引出课题(点击课件)
依据学生对上述故事感兴趣这一可贵资源,我将以故事的问题为主线,进一步引导组织学生动手实践,帮助慢羊羊想办法。

同学们,要想知道这两块地的大小其实就是比较它们的什么?,喜羊羊分的地是长方形,以前我们学习过长方形的面积,在最初的时候人们使用最原始的方法拿一个个面积单位去密铺,最后数一数用了几个面积单位,这种方法比较麻烦,经过大量的实践,人们找到了求面积的另一种方法:公式计算法,还记得长方形的面积计算公式吗?随着学生的回答我板书公式,要想知道喜羊羊分得面积是多少,必须知道长方形的什么?经过测量长方形的长是6m,宽是4m,能算出这块地的面积吗?有了长方形面积公式的成果人们也会探究推出其它图形的面积,如懒羊羊的土地,它是什么形状的?如果知道了平行四边形的面积公式,我们就能求出这块土地的面积,也就能帮慢羊羊村长解决问题了,平行四边形的面积公式是什么呢?这节课我们就来研究平行四边形的面积。

(板书课题:平行四边形的面积)
通过回顾长方形的面积计算方法所走过的路,指出探究图形面积的一般方法后迅速提出本节的研究任务,简洁明快,重点突出。

第二步:大胆猜想,调动思维(点击课件)
假设大家手中的1号卡片就是懒羊羊的土地,你认为平行四边形的面积怎么求?学生可能会有两种猜想:(1)长times;宽,通过让学生指确认也就是邻边相乘。

(2)底times;高,接下来让学生根据这两种猜想量出平行四边形图形的有关数据,分别求出它的面积。

经过学生测量计算出现两种结果,到底哪一种是正确的?引领学生回到最基本最有效的方法来检验,用面积格测量。

通过鼓励学生的大胆猜想,调动学生的思维,两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。

第三步:不同数法,渗透转化(点击课件)
接下来请同学们在1号卡片上铺上面积格,请你数一数它占了多少小格?经过学生尝试发现学生会有不同的数格方法,有先数整格的,然后把不满一格的拼成一个整格,还有把三角形部分整块平移动变成长方形的,我及时抓住后一种方法,让学生到展台上演示,通过长方形的面积公式计算出来平行四边形的面积,同时提出问题:这位同学是把什么图形转化为了什么图形?转化前后面积变不变?为什么?怎样才能确保转化为长方形呢?经过这几个问题的思考,学生的思路会更加清晰,道理会更加明白。

第四步:动手操作,利用转化(点击课件)
在学生明白了这种方法后,请同学们利用上面一剪一拼的方法,动手操作,利用面积格把手中的2号平行四边形求出来。

经过这一操作学生掌握了转化方法,但转化前后图形的关系还需梳理,这时又提出问题让学生思考:转化前的平行四边形的底和高和转化后的长方形的长和宽有什么关系?
第五步:思维飞跃,抽象公式(点击课件)
学生认知是由浅入深的,通过动手实践,他们已经知道:转化前后面积相等,长方形的和平行四边形底相等,宽和高也相等。

有了前面充分的直观操作,足以让学生寻求计算方法了,至此我提出了新的任务,以促使方法上的飞跃。

不是所有的平行四边形都能剪拼成长方形的,能不能不剪拼直接求出3号平行四边形的面积?经过小组合作讨论,学生利用直接测量平行四边形的底和高,然后相乘,发现平行四边形的面积等于底times;高。

我肯定同学们的发现,为了使学生的思维更加深刻,我会再提出问题:谁能讲清楚,为什么平行四边形的面积=底times;高?这个环节的设计,让学生动手、动脑,集思广益,充分发挥学生的主动性,通过测量、计算、思考,从思维上实现了从感性到抽象的飞跃,悟出了知识的来龙去脉,可以说平行四边形的面积公式使学生的探究的
结果。

老师的适时点拨和问题质疑起到了虎龙点睛,把思维引向深刻的效果。

第六步:前呼后应,解决问题(点击课件)
至此公式的顺利推导,字母公式的简洁表示都已经水到渠成,突破教学重难点,完成了本节课的教学目标。

为了使环节更加完整,我让同学们利用推导出的平行四边形的公式,给出图形的数据计算赖羊羊土地的面积,并与长方形喜羊羊的土地面积比较,从而得出面积相等的确切答案,为慢羊羊彻底解决问题,慢羊羊开心的笑了,同学们也获得了成功的喜悦。

(点击课件)环节三:指导看书。

课堂上我及时指导学生看书,找出计算公式并填写完整,并让学生读一读得出的结论。

培养学生良好的学习习惯。

(点击课件)环节四:巩固运用
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练。

才能得到理解内化效果。

我依据由易到难,由浅入深的练习要求,本着重基础、验能力、拓思维的原则,设计以下四个层次的练习:
(1)基础练习:算出下面每个平行四边形的面积。

(点击课件出现对应的练习题)
每节课的基础练习是非常必要的,通过这个练习,巩固新知,加深学生对图形的认识,正确分清平行四边形对应的底和高。

(2)变式练习(点击课件出现对应的练习题)
已知平行四边形的面积,给出底或高的长度,算出它的高或低。

在第一题的基础上,增加了逆向运用的练习题,体现了学习知识的灵活性。

(3)综合练习(点击课件出现对应的练习题)
下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。

此题需要学生综合运用知识,进行逻辑推理,深化对平行四边形面积公式的理解。

(4)拓展练习(点击课件出现对应的练习题)
为了培养学生的思维能力,给学生思考问题创设一个更大的空间。

我(说清楚拓展到什么程度,怎么拓展的)让学生从中感受到数学的魅力,使课堂回味无穷。

以上多层次的练习,使学生在学会新知的同时,形成技能。

体现了不同的学生在数学上得到不同的发展这一新理念。

(点击课件)环节五:全课总结
课堂总结是本节课所学知识的归纳和总结,在引导学生回忆知识和学习方法后,我进行及时总结,总结中有知识的概括,有探究方法的回忆,更有数学思想的渗透。

这样做既有基本知识和基本能力的培养,又有基本数学思想方法和基本活动经验的渗透。

六、说板书设计
(手指板书)这是我的板书设计,力求体现知识性、简捷性,把数学思想方法孕含其中。

从整体来看,既突出了本节课的重心,又凸显了清晰的课堂结构。

以上是我对《平行四边形的面积》一课的说课,不妥之处,敬请各位专家同仁多提宝贵意见,谢谢。

《平行四边形面积的计算》教学设计篇四
教学目标:1.经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验。

2.知道平行四边形的面积公式。

3.会求平行四边形的面积。

4.利用教师的情感特征调动学生学习的积极性和主动性。

教学重点:1.平行四边形面积公式的推导过程。

2.应用平行四边形的面积公式进行计算。

教学难点:平行四边形面积公式的推导过程。

教学关键:转化前后平行四边形与长方形面积及各部分间的对应关系。

教学过程:
一。

启动导入:
1、电脑出示长方形图形:
指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积。

指生口答
问:你是怎么做的?
②出示:
这还是长方形吗?你能求出它的面积吗?( 生:18平方厘米。

)
生小组内先交流一下,指生反馈
得出两种方法:(1)数格子法(2)将它转化成一个长方形,再求出它的面积。

师重点评讲第二种方法。

③出示:这个图形,你会求它的面积吗?( 生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形。

再根据长方形的面积公式长×宽就可以求出这个图形的面积。

(电脑课件演示转化过程).
2、刚才,这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)
把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。

刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。


3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。

(板书课题)
二、主动探索:
1、引导探索:不规则的图形可以转化成长方形来求出它的面积。

平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。

电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积。

转化后思考:
①转化成怎样的图形?你是如何转化的?(如何画线)
②通过转化你发现了什么?
③说明了什么?学生分四人小组讨论,教师点拨。

学生汇报。

学生可能出现的情况:
问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)
生:我们把平行四边形沿高剪开,变成了长方形。

转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。

说明求出了长方形的面积,也就求出了平行四边形的面积。

小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。

并且知道转化前后面积的大小没有变化。

下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。

2、推导公式:。

相关文档
最新文档