专题17 二次函数与实际问题:图形运动问题(原卷版)2021年中考数学二轮复习之难点突破热点解题方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17 二次函数与实际问题:图形运动问题
1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.
(1)求抛物线的函数表达式;
(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.
2.如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过点A (4,0),B (-1,0),交y 轴于点C . (1)求抛物线的解析式;
(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;
(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.
3.如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .
(1)求抛物线的解析式;
(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;
②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.
4.在平面直角坐标系中,抛物线22y x kx k =--(k 为常数)的顶点为N .
(1)如图,若此抛物线过点()3,1A -,求抛物线的函数表达式;
(2)在(1)的条件下,抛物线与y 轴交于点B ,
①求ABO ∠的度数;
①连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作//CD x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当BPN BNA △△时,线段CD 的长为___.
(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为()2,0,当90MHN ∠=︒时,请直接写出k 的值.
5.如图,已知二次函数图象的顶点坐标为C (1,0),直线y =x+m 的图象与该二次函数的图象交于A 、B 两点,其中A 点坐标为(3,4),B 点在y 轴上.
(1)求m 的值及这个二次函数的解析式;
(2)若P 是线段AB 下方抛物线上一动点,当△ABP 面积最大时,求P 点坐标以及△ABP 面积最大值;
(3)若D为直线AB与这个二次函数图象对称轴的交点,Q为线段AB之间的一个动点,过Q作x轴的垂线,与这个二次函数图象交于点E,问是否存在这样的点Q,使得四边形DCEQ为平行四边形,若存在,请求出Q点的坐标;若不存在,请说明理由.
6.在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.
(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.(2)试求出当t为何值时四边形DFCE的面积为20cm2?
(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.
(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.
7.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C.
(1)求抛物线的函数表达式;
(2)将矩形ABCO绕点A旋转,得到矩形AB'C'O',使点C'落在x轴上,抛物线是否经过点C'?请说明理由.
8.如图,抛物线243y ax ax a =-+(0a >),与y 轴交于点A ,在x 轴的正半轴上取一点B ,使2OB OA =,抛物线的对称轴与抛物线交于点C ,与x 轴交于点D ,与直线AB 交于点E ,连接BC .
(1)求点B ,C 的坐标(用含a 的代数式表示);
(2)若BCD △与BDE 相似,求a 的值;
(3)连接OE ,记OBE △的外心为M ,点M 到直线AB 的距离记为h ,请探究h 的值是否会随着a 的值变化而变化?如果变化,请写出h 的取值范围:如果不变,请求出h 的值.
9.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B .
(1)求A B 、两点的坐标;
(2)若抛物线2
y x bx c =-++的顶点(,)m n 在直线l 上移动. ①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;
②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.
10.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA =OB,B(8,6),过点B作y轴的垂线,垂足为D,点C在线段BD上,点D关于直线OC的对称点在腰OB上.
(1)求AB的长;
(2)求点C的坐标;
(3)点P从点C出发,以每秒1个单位的速度沿折线CB﹣BA运动;同时点Q从A出发,以每秒1个单位的速度沿AO向终点O运动,当一点停止运动时,另一点也随之停止运动.设△BPQ的面积为S,运动时间为t,求S与t的函数关系式.
11.如图,抛物线y=﹣1
2
x2+
3
2
x+2,与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于
点D,已知A(﹣1,0),C(0,2).
(1)求直线BC的解析式;
(2)点E①线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.
(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;