北师大版数学八年级下册第三章单元测试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版数学八年级下册第三章测试题
姓名:得分:
一、选择题
1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()
A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()
A.30°B.35°C.40°D.50°
3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)
4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()
A.a2B.a2C.a2D. a
5.关于这一图案,下列说法正确的是()
A.图案乙是由甲绕BC的中点旋转180°得到的
B.图案乙是由甲绕点C旋转108°得到的
C.图案乙是由甲沿AB方向平移3个边长的距离得到的
D.图案乙是由甲沿直线BC翻转180°得到的
6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()
A.(﹣1,)B.(﹣1,)或(﹣2,0)
C.(,﹣1)或(0,﹣2)D.(,﹣1)
7.下列图形中,既是中心对称图又是轴对称图形的是()
A.B. C.D.
8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()
A.(4,2)B.(5,2)C.(6,2)D.(5,3)
9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()
A.55°B.60°C.65°D.70°
10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()
A.4 B.3 C.2 D.1
11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()
A.∠BCB′=∠ACA′B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()
A.5 B.4 C.D.
二、填空题
13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.
14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.
15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.
16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.
17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.
三、解答题
18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)画出△ABC关于y轴对称图形△A1B1C1;
(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;
(3)求(2)中线段OA扫过的图形面积.
19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.
(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.
20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:②线段DE与AC的位置关系是;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如
图4).若在射线BA上存在点F,使S
△DCF =S
△BDE
,请直接写出相应的BF的长.
21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)
(1)求旋转木马E处到出口B处的距离;
(2)求海洋球D处到出口B处的距离(结果保留整数).
22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).
(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.
23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC=;
(2)求线段DB的长度.
答案与解析
1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()
A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.
【专题】选择题
【分析】根据平移的性质,结合图形可直接求解.
【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,
∴平移距离就是线段BE的长度.
故选B.
【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()
A.30°B.35°C.40°D.50°
【考点】R2:旋转的性质;JA:平行线的性质.
【专题】选择题
【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.
【解答】解:由题意得:
AC=AC′,
∴∠ACC′=∠AC′C;
∵CC′∥AB,且∠BAC=75°,
∴∠ACC′=∠AC′C=∠BAC=75°,
∴∠CAC′=180°﹣2×75°=30°;
由题意知:∠BAB′=∠CAC′=30°,
故选A
【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.
3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)
【考点】R7:坐标与图形变化﹣旋转.
【专题】选择题
【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.
【解答】解:如图,OA=3,PA=4,
∵线段OP绕点O逆时针旋转90°到OP′位置,
∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,
∴P′点的坐标为(﹣3,4).
故选C.
【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.
4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()
A.a2 B.a2 C.a2 D. a
【考点】R2:旋转的性质.
【专题】选择题
【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=
∠FOC,于是可证明△ODE≌△OCF,得到S
△ODE =S
△OCF
,所以S
阴影部分
=S
△DOC
=S
正方
形ABCD
=a2.
【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,
∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,
∠DOF+∠COF=90°,
∴∠EOD=∠FOC,
在△ODE和△OCF中,
,
∴△ODE≌△OCF,
∴S
△ODE =S
△OCF
,
∴S阴影部分=S
△DOC =S
正方形ABCD
=a2.
故选B.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
5.关于这一图案,下列说法正确的是()
A.图案乙是由甲绕BC的中点旋转180°得到的
B.图案乙是由甲绕点C旋转108°得到的
C.图案乙是由甲沿AB方向平移3个边长的距离得到的
D.图案乙是由甲沿直线BC翻转180°得到的
【考点】Q5:利用平移设计图案.
【专题】选择题
【分析】直接利用旋转的性质得出旋转中心进而得出答案.
【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.
故选:A.
【点评】此题主要考查了旋转变换,正确得出旋转中心是解题关键.
6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()
A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2) D.(,﹣1)
【考点】R7:坐标与图形变化﹣旋转.
【专题】选择题
【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.
【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,
∴tan∠AOB==,
∴∠AOB=30°.
如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣1,﹣);
如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣2,0);
综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);
故选B.
【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.
7.下列图形中,既是中心对称图又是轴对称图形的是()
A.B. C.D.
【考点】R5:中心对称图形;P3:轴对称图形.
【专题】选择题
【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图,不是轴对称图形,故本选项错误;
C、既是中心对称图又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()
A.(4,2) B.(5,2) C.(6,2) D.(5,3)
【考点】Q3:坐标与图形变化﹣平移.
【专题】选择题
【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.
【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),
∴向右平移4个单位,
∴B(1,2)的对应点坐标为(1+4,2),
即(5,2).
故选:B.
【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()
A.55°B.60°C.65°D.70°
【考点】R2:旋转的性质.
【专题】选择题
【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠C AA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CA′A=45°,∠CA′B′=20°=∠BAC
∴∠BAA′=180°﹣70°﹣45°=65°,
故选:C.
【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()
A.4 B.3 C.2 D.1
【考点】R2:旋转的性质.
【专题】选择题
【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.
【解答】解:如图连接PC.
在Rt△ABC中,∵∠A=30°,BC=2,
∴AB=4,
根据旋转不变性可知,A′B′=AB=4,
∴A′P=PB′,
∴PC=A′B′=2,
∵CM=BM=1,
又∵PM≤PC+CM,即PM≤3,
∴PM的最大值为3(此时P、C、M共线).
故选B.
【点评】本题考查旋转变换、解直角三角形、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.
11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()
A.∠BCB′=∠ACA′B.∠ACB=2∠B
C.∠B′CA=∠B′A C D.B′C平分∠BB′A′
【考点】R2:旋转的性质.
【专题】选择题
【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.
【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,
∵CB=CB',
∴∠B=∠BB'C,
又∵∠A'CB'=∠B+∠BB'C,
∴∠A'CB'=2∠B,
又∵∠ACB=∠A'CB',
∴∠ACB=2∠B,故B正确;
∵∠A′B′C=∠B,
∴∠A′B′C=∠BB′C,
∴B′C平分∠BB′A′,故D正确;
故选C.
【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.
12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()
A.5 B.4 C.D.
【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【专题】选择题
【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.
【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,
∵∠1+∠QEF=∠3+∠DFQ=45°,
∴∠QEF=∠DFQ,∵∠2=∠3,
∴△DQF∽△FQE,
∴===,
∵DQ=1,
∴FQ=,EQ=2,
∴EQ+FQ=2+,
故选D
【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.
【考点】Q2:平移的性质.
【专题】填空题
【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.
【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,
∴线段AB和线段A′B′的位置关系是平行且相等.
故答案为:平行且相等.
【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.
【考点】Q2:平移的性质.
【专题】填空题
【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.
【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,
又∵∠B与∠C互余,
∴∠EFG与∠EGF互余,
∴在△EFG中,∠FEG=90°(三角形内角和定理),
∴△EFG为Rt△EFG,
故答案是:直角.
【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.
15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.
【考点】R2:旋转的性质.
【专题】填空题
【分析】根据旋转的性质可得AB=AB′,∠BA B′=40°,然后根据等腰三角形两底角
相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.
【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,
∴AB=AB′,∠BAB′=40°,
在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,
∵∠AC′B′=∠C=90°,
∴B′C′⊥AB,
∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.
故答案为:20.
【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.
16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.
【考点】Q3:坐标与图形变化﹣平移.
【专题】填空题
【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.
【解答】解:∵点A(2,3)向左平移1个单位长度,
∴点A′的横坐标为2﹣1=1,纵坐标不变,
∴A′的坐标为(1,3).
故答案为:(1,3).
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.
【考点】R2:旋转的性质;KP:直角三角形斜边上的中线.
【专题】填空题
【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.
【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,
∴AB==5cm,
∵点D为AB的中点,
∴OD=AB=2.5cm.
∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,
∴OB1=OB=4cm,
∴B1D=OB1﹣OD=1.5cm.
故答案为1.5.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.
18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)画出△ABC关于y轴对称图形△A1B1C1;
(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;
(3)求(2)中线段OA扫过的图形面积.
【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;P7:作图﹣轴对称变换.【专题】解答题
【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;
(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;
(3)利用扇形的面积公式即可得出结论.
【解答】解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求;
(3)∵OA==5,
∴线段OA扫过的图形面积==π.
【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.
(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.
【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.
【专题】解答题
【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.
【解答】解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求.
【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关
键.
20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:③线段DE与AC的位置关系是;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如
图4).若在射线BA上存在点F,使S
△DCF =S
△BDE
,请直接写出相应的BF的长.
【考点】KD:全等三角形的判定与性质.
【专题】解答题
【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点
C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;
(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°﹣∠B=90°﹣30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2;
故答案为:DE∥AC;S1=S2;
(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S
△DCF1=S
△BDE
;
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,
∠CDF2=360°﹣150°﹣60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=4,
∴BE=×4÷cos30°=2÷=,
∴BF1=,BF2=BF1+F1F2=+=,
故BF的长为或.
【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.
21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)
(1)求旋转木马E处到出口B处的距离;
(2)求海洋球D处到出口B处的距离(结果保留整数).
【考点】R2:旋转的性质.
【专题】解答题
【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;
(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.
【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,
∴BE=AE=×80=40(米);
(2)∵在Rt△ABE中,∠BAE=30°,
∴∠AEB=90°﹣30°=60°,
∴∠CED=∠AEB=60°,
∴在Rt△CDE中,DE=≈=40(米),
则BD=DE+BE=40+40=80(米).
【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.
22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).
(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.
【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.
【专题】解答题
【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;
(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.
【解答】解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2 B2C2即为所求.
【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC=;
(2)求线段DB的长度.
【考点】R2:旋转的性质.
【专题】解答题
【分析】(1)证明△ACD是等边三角形,据此求解;
(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE和CE的长,然后在Rt△BDE中利用勾股定理求解.
【解答】解:(1)∵AC=AD,∠CAD=60°,
∴△ACD是等边三角形,
∴DC=AC=4.
故答案是:4;
(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=DC•cos30°=4×=2,
∴BE=BC﹣CE=3﹣2=.
∴Rt△BDE中,BD===.
【点评】本题考查了旋转的性质以及解直角三角形的应用,正确作出辅助线,转化为直角三角形的计算是关键.。