测井曲线的识别及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲测井曲线的识别及应用
钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法;钻井获取的岩芯资料直观、准确,但成本高、效率低;岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真;测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径;
鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种;
综合测井系列:重点反映目的层段钻井剖面的地层特征;测量井段由井底到直罗组底部,比例尺1:200;由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成;探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线;
标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口黄土层底部,比例尺1:500,多用于盆地宏观地质研究;过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线;近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项;
一、测井曲线的识别
微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异;微电极常用于判断砂岩渗透性和薄层划分;感应—八侧向测井用于判定砂岩的含油水层性能;四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分;它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑;
1、微电极测井
大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层;泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物;冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米;侵入带是钻井液与地层中流体的混合部分;
微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法;由三个微电极系测得的微梯度和微电位两条曲线组成;微梯度探测范围横向深度4—5厘米,显示的是泥饼的电阻值泥饼的厚度一般在3—5厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2倍;微电位探测深度8—10厘米,显示的是冲洗带的电阻值;当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好;所以,主要用来判断储层的渗透性能;
微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2~5米薄层时使用较多,曲线的拐点处为小层界面;
2、感应测井
感应测井是利用电磁感应的原理来测量地层的导电性能;双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值;深感应探测深度约为中感应的二倍距井筒四米左右,反映的是原始地层的电阻率;中感应反映的是距井筒1~2米范围内地层的电阻率;八侧向反映的是井壁附近的电阻率;这种由近到远的三组合比较清楚的指示了电阻率的径向变化;是我们判定储层性质,定性划分油水层,定量解释油层的含油饱和度、含水饱和度的主要依据;
非渗透性的泥、页岩,钻井泥浆对其浸染较小,没有泥饼和侵入带,深、中、浅三个部位的电阻率差别较小,所以,深感应、中感应、八侧向三条曲线形态接近或重合;
致密砂岩段钻井泥浆对其浸染较小,侵入带较浅,八侧向反映的是冲洗带+侵入带的电阻率,深、中感应反映的均是原始地层的电阻率,所以,深、中感应电阻值相等曲线重合,八侧向电阻率值较高曲线峰态明显;
渗透性好的砂岩段侵入带较深,深、中、八三条曲线差异较大,渗透性越好曲线间距越大;当原始地层为水层时,电阻值向着远井方向递减,含水饱和度越高电阻率越小,所以,测得的视电阻率值深感应最小,八侧向最大,中感应居中,在测井图上,深、中、八三条曲线由左向右平行排列;当原始地层为油层时,油层电阻值高于侵入带而低于井壁附近,所以,深感应电阻率大于中感应而小于八侧向,中、深、八三条曲线由左向右依次排列;
平时工作中,我们常以中感应曲线为中轴,以深感应曲线的正负偏态,判定储层的含油水性;深感应曲线负偏时深感应曲线在中感应曲线左边,是水层;深感应曲线正偏时深感应曲线在中感应曲线右边,则为油层;
另外,感应测井受高阻邻层钙质层等影响小,对低电阻地层反映灵敏,也是我们确定延长统标志层—凝灰岩的主要依据之一;曲线的半幅点为层系界面;
3、普通电阻率测井
普通电阻率测井根据电极系大小分为1米、2.5米、4米电阻率测井,不同的地区根据自己的地层特征选择最适合自己的电极系,长庆近年来均采用四米电阻率测井系;主要用于定性划分岩石类型和判定砂岩的含油、含水性能;
一般情况下,泥岩、页岩、煤表现为高电阻,砂岩中等~略低电阻,凝灰岩低电阻;但仅根据四米视电阻率数值的大小,并不能准确判定它所反映的岩石性质,因为砂岩含油时电阻会上升,含水时电阻会下降,油层粒度较细、地层水矿化度较高或泥浆侵入较深时电阻率也较低;这种视电阻率解释的多义性,必须用其他测井曲线来弥补;四米电阻测井曲线的上下组合形态、变化趋势在大层段地层对比划分时应用较多;
4、声速测井
声速测井是一种研究声波在岩石单位距离的传播时间的测井方法;它利用声波在不同密度的岩石中传播速度的差异,判定岩性和定量计算孔隙度的大小;
泥岩、页岩、煤孔隙小较致密,声波穿越单位厚度地层用的时间短,速度快,所以,声速曲线幅度较高,呈尖刀状向右突出;
砂岩孔隙发育,孔隙内又有油水等液体,声波穿越单位厚度地层用的时间长,速度慢,所以,声速曲线幅度较低、较平直;
随着砂岩物性和孔隙中填充物的变化,砂岩的声速曲线也会有一些小的起伏或摆动;砂岩疏松,物性变好,曲线向右抬升;砂岩致密,物性变差,曲线向左偏移;延长组油层声速一般在220微秒/米左右,延安组油层声速一般在240微秒/米左右;
灰岩、钙质夹层声速曲线幅度较低,曲线幅度以砂岩为对称轴,呈小尖峰状向左突出;
密度测井曲线与声速测井曲线形态接近,但对泥页岩反应更灵敏,尖刀状峰值更高,两条曲线互相参照解释储层物性精度会更高;
5、井径测井
井孔直径的变化也是岩石性质的一种间接反映;泥、页岩层常因泥浆的浸泡和冲刷造成井壁坍塌,出现井径扩大;渗透性岩层常因泥浆液体滤失形成的泥饼使井
径缩小,而在致密岩层粉砂岩、钙质层处井径一般变化不大,实际井径接近钻头直径;井径曲线是识别疏松地层与致密地层的首选依据,也是地层对比划分的重要标志;
6、自然电位测井
自然电位测井获取的是井内不同深度上的自然电位与地面上某一点的固定电位值之差;自然电位测井曲线图上用每厘米偏转所代表的毫伏数和正负方向来表示井内自然电位数值的相对高低,而无绝对的零线;
通常把自然电位曲线上对应厚层泥岩的自然电位值的连线当作基线,称为泥岩基线;某一地层的自然电位相对于泥岩基线发生偏离时,则称为自然电位异常;曲
线偏向泥岩基线的左方为负异常,偏向泥岩基线的右方为正异常;
这一偏转方向,主要取决于井筒内泥浆滤液矿化度与地层水矿化度的相对大小;在一般情况下,测井时泥浆滤液矿化度必须小于地层水矿化度,因此自然电位显示
为负异常;在自然电位曲线上有异常出现的地方,该异常相对于泥岩基线偏转的距离,叫做自然电位异常幅度;远近储层物性越好、厚度越大,自然电位曲线负偏幅度越大;纯砂岩的自然电位负偏幅度最大;随着砂岩中泥质含量的增加或粒度减小或
孔隙减少,自然电位曲线负偏幅度随之减小;因此,根据自然电位曲线负偏幅度变化,可以区分地层的岩石性质,定性判断砂岩的渗透性、旋回性、粒度等;自然电位测井;常用曲线的半幅点来进行分层;
7、自然咖玛测井
粘土颗粒能够吸附较多的放射性元素的离子,所以泥岩就具有较强的自然放射性;利用这一特性测量地层咖玛射线总强度,用于区分岩性、定量计算地层的泥质
含量的测井方法叫自然咖玛测井;
泥岩、页岩放射性元素含量高,自然咖玛曲线幅度高;砂岩、煤放射性元素含量低,自然咖玛曲线幅度低;砂岩中随着泥质含量增减,自然咖玛曲线幅度发生变化;
自然咖玛测井是划分岩性的主要依据之一;
一般情况下,用曲线半幅点确定岩层界面,岩层较薄时则用曲线拐点划分界面;
二、测井曲线的应用
测井曲线受泥浆性能、温度、仪器等多种因素影响,一条曲线往往不能准确的
反映地下情况,必须把几条曲线结合起来分析;曲线幅度的高低仅限于本井上下围
岩之间的对比,同一地层邻井之间曲线幅度的高低、数值的大小可以参考,但不同
区域同一测井系列的曲线可比性较小;
常见岩石的电性特征:
砂岩:低伽玛、高自然电位、小井径、中~较低声速、中~低电阻、中~低感应,微电极曲线平直且电位与梯度差异大;
泥岩:高伽玛、低自然电位、大井径、高声速、高电阻、高感应;
油页岩长7:高伽玛、高自然电位甚至高过本井的砂岩,高声速、高电阻、高感应;高自然电位是油页岩与泥岩的最大区别
煤线:低伽玛、低自然电位、大井径、高声速、高电阻、高感应;低伽玛是煤线与泥岩的主要区分标志
凝灰质泥岩:尖刀~指状低感应、高声速、大井径、高伽玛、低自然电位,低电阻;
第二讲、地层对比与划分
地层是区域构造运动和地史演化的产物,是油气藏的载体;同一时期、同一构造运动中形成的地层,具有相同的沉积特点和储渗特性;地层对比的目的就是将具有相同岩性、电性、成因、上下接触关系的地层归为一类,追踪它们在时间、空间上的变化规律,研究与油气藏有关的地层;
地层对比划分可分为岩芯对比和测井曲线对比两种,常用的是测井曲线对比法;
一地层对比划分依据
地层对比划分依据有标志层和标准层两个;
1、标志层:
标志层是大层1~3级旋回,对比划分的依据;
标志层的确定原则:岩性典型,电性特征明显,易识别,分布稳定,易与追踪;鄂尔多斯盆地经过近四十年的实践摸索,将煤层炭质泥岩和凝灰质泥岩作为地层对比划分的标志层;它们是特定气候条件下区域性的沉积物,全盆地内普遍发育,代表性强,覆盖面广;
若煤层、凝灰岩不发育,标志层电性特征不明显时,可将与标志层位置相当,电性特征典型的泥、页岩作为地层对比划分的参考依据;
2、标准层:
用标志层将大层确定之后还必须选定一些标准层作为细分小层的依据;这些标准层多数是在油层附近且分布稳定的泥岩;
标准层是小层四级旋回,对比划分的主要依据;
二地层对比划分的原则与方法
地层对比划分的原则:“旋回对比,分级控制”;
地层对比划分的方法:先追踪标志层,后确定标准层,再找含油层段;即:先定大层后分小层;
1、旋回级别的分类:
一级旋回:延安组、延长组
一级旋回受区域构造运动控制;在全区分布稳定,含有一套生储组合或储盖组合;
二级旋回:延10、延9,长3、长2……
二级旋回是一级旋回中的次级旋回;每个旋回都有大体相同的沉积特征;
三级旋回:长8
1、长8
2
、长3
1
、长3
2;
三级旋回受局部构造运动控制,由几个沙泥岩段组成;
四级旋回:长8
11、延8
1
2、延8
1
3
四级旋回受水动力条件及局部沉积作用控制,由单一岩性或由粗到细从砂岩开始到泥岩结束、由细到粗的一个周期组成;四级旋回是地层对比划分中的最小级别,也叫沉积单元,如果再细分就叫油砂体;
一级~三级旋回一般叫大层划分,四级和四级以下的一般叫小层对比划分;开发系
统大多数开展的都是四级旋回的追踪对比;
2、延长组地层划分方法
延长统十个油层组的划分依据主要是凝灰质泥岩,次为泥页岩;
凝灰质泥岩在岩屑中为白色片状,手摸有滑腻感,在荧光灯下发橘红色强光;在测井剖面上具有尖刀状低感应、高声速、大井径、高伽玛的电性特征;厚2米左右;
延长统地层依据岩性组合和十个标志层,划分为十个油层组;十个标志层代码为:K0~K9,自下而上为:
K0:位于长10底;
K1:位于长7底,是长7与长8的分界线,厚20m左右;底部有2m厚的凝灰岩,中上部是15~20m厚的油页岩;因其在陕北延河流域的张家滩地区出露,所以人们常称为“张家滩页岩”;
油页岩在电测图上以自然电位曲线负偏幅度较高甚至高过砂岩,区别于泥页岩;
K2:位于长6
3
底部,是长7与长6的分界线;
K3:位于长6
2
底;
K4:位于长4+5底,是长4+5与长6的分界线;在陕北地区较发育,陇东地区基本上是泥岩;
K5:位于长4+5中部,是长4+5
1与长4+5
2
的分界线,厚度6~8m,在声
速曲线上表现出4个一组的齿状尖子,感应曲线特征不明显;
K6:位于长3底,是长3与长4+5的分界线;
K7:位于长2底,是长2与长3分界线;
K8:位于长2中部,是长2
1与长2
2
的分界线;
K9:位于长1底,是长1与长2的分界线;
3、延安组地层划分方法
煤线是延安组地层对比的主要标志层;煤线在测井图上具有:低伽玛、大井径、高声速、高电阻4m、高感应的特征;低伽玛是测井图上区分煤线与泥岩的主要标志;
延安组地层沉积时区域气候由干冷~暖湿进行周期性循环,干冷时沉积河湖砂泥岩,暖湿时沉积沼泽煤系地层;两个煤系之间的地层代表了一个完整的旋回和气候周期,周而复始使延安组地层韵律性极强;分层时把二个煤层之间的一套地层作为一个二级旋回煤层归下伏地层,煤顶为分层界限;
延4+5~延10地层顶部普遍发育煤线,若遇有些区块、有些层位煤线不发育时,可借用邻区或邻井作参考;具体方法是:挑选与本区距离最小、最接近的井做参考,根据两区地层厚度和砂岩旋回性变化趋势,以泥岩为分界线逐井由区外向区内推;。