高考新题型——数学多选题专项练习附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数的概念与基本初等函数多选题
1.已知函数()2,0
21,0
x x ax x f x x -⎧+≤=⎨->⎩,则( )
A .()f x 的值域为()1,-+∞
B .当0a ≤时,()()
2
1f x f x >+
C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=
D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】
A .考虑2a =时的情况,求解出各段函数值域再进行判断;
B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;
C .作出
222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;
D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出
a 是否有解,并判断结论是否正确.
【详解】
A .当0x >时,21011x
y -=->-=-,当0x ≤时,2
22
24a a y x ax x ⎛⎫=+=+- ⎪⎝
⎭,取2a =,此时()2
111y x =+-≥-,
所以此时的值域为[)1,-+∞,故A 错误;
B .当0a ≤时,2
22
24a a y x ax x ⎛⎫=+=+- ⎪⎝
⎭的对称轴为02a x =-≥,所以()f x 在
(],0-∞上单调递减,
又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,
又因为2
2
131024x x x ⎛⎫+-=-+> ⎪⎝
⎭,所以21x x +>,所以()()
21f x f x >+,故B 正
确;
C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:
由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2
y x ax =-+与21x y -=-相
交于()00,x y ,
因为点()00,x y 在函数2
y x ax =-+的图象上,所以点()00,x y --在函数2
y x ax =+的图
象上,
所以()()()00000f x f x y y +-=+-=,
所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;
D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()2
11,0x
y -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,
且22
,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭
,若方程有三个根,则有2
4a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,
所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】
思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.
2.设函数2,0()1
2,0
2x e x f x x x x ⎧≤⎪=⎨-++>⎪⎩
,对关于x 的方程2
()()20f x bf x b -+-=,下
列说法正确的有( ).
A .当223b =-+
时,方程有1个实根 B .当3
2
b =
时,方程有5个不等实根 C .若方程有2个不等实根,则
17
210
b <≤ D .若方程有6个不等实根,则32232
b -+<< 【答案】BD 【分析】
先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】
函数()2
2,0,0()132,01,0
22x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪
==⎨⎨-++>--+>⎪⎪⎩⎩
,作图如下:
由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝
⎦,令()f x t =,则3,2
t ⎛⎤∈-∞ ⎥⎝
⎦
,则方程转化为2
20b bt t +-=-,即2
22()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭
选项A 中,223b =-+时方程为(2
2234230t t -+-=+,即(2
310t +=,
故31t =,即131,12()f x ⎛⎫
∈ ⎪⎝⎭
=,看图知存在三个根,使得()31f x =,故A
错误; 选项B 中,32b =
,方程即2
31022t t -+=,即22310t t -+=,解得1t =或12
t =,当()1f x t ==时看图可知,存在3个根,当1
()2
f x t ==
时看图可知,存在2个根,故共5个不等的实根,B 正确;