八年级数学下学期第2周周测试卷(含解析) 新人教版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省镇江市丹阳市云阳学校八年级(下)第2周周
测数学试卷
一、填空:(本大题共9小题,每题2分,共18分)
1.如图,是从镜中看到的一串数字,这串数字应为.
2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)
3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.
4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.
5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.
6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:
①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.
其中能够证明△DOF≌△EOF的条件的个数有个.
7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为度.
8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.
9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP 之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系.
二、选择题:(每小题3分,共18分)
10.下列轴对称图形中,只有两条对称轴的图形是()
A.B.C.D.
11.用尺规作图,不能作出唯一直角三角形的是()
A.已知两条直角边
B.已知两个锐角
C.已知一直角边和直角边所对的一锐角
D.已知斜边和一直角边
12.直角三角形三边垂直平分线的交点位于三角形的()
A.三角形内B.三角形外C.斜边的中点D.不能确定
13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()
A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA
14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()
A.5cm B.10cm C.20cm D.15cm
15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C、D两点关于OE所在直线对称
D.O、E两点关于CD所在直线对称
三、解答题:(本大题共6小题,共64分)
16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.
(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)
17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.
18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求证:AF平分∠BAC.
19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.
20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.
(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.
21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.
四、知者加速题:(本大题共2题,共20分)
22.如图,已知直线l及其两侧两点A、B.
(1)在直线l上求一点O,使到A、B两点距离之和最短;
(2)在直线l上求一点P,使PA=PB;
(3)在直线l上求一点Q,使l平分∠AQB.
23.如图,在△ABC的一边AB上有一点P.
(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请
画出点M、N的位置;若不能,请说明理由;
(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.
2015-2016学年江苏省镇江市丹阳市云阳学校八年级(下)第2周周测数学试卷
参考答案与试题解析
一、填空:(本大题共9小题,每题2分,共18分)
1.如图,是从镜中看到的一串数字,这串数字应为810076.
【考点】镜面对称.
【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.
【解答】解:∵是从镜子中看,
∴对称轴为竖直方向的直线,
∵镜子中数字的顺序与实际数字顺序相反,
∴这串数字应为810076,
故答案为:810076.
2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)
【考点】全等三角形的判定.
【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);
【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).
理由如下:
∵点D是BC的中点,
∴BD=CD.
在△BDF和△CDE中,
∵,
∴△BDF≌△CDE(SAS).
故答案可以是:DF=DE.
3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.
【考点】全等三角形的判定与性质.
【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.
【解答】解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.
【考点】线段垂直平分线的性质.
【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.
【解答】解:∵DE是AB的中垂线
∴AE=BE,
∵△BCE的周长为14
∴BC+CE+BE=BC+CE+AE=BC+AC=14
∵BC=6
∴AC=8
∴AB=AC=8.
故填8.
5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.
【考点】全等三角形的判定与性质.
【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.
【解答】解:∵CD平分∠ACB
∴∠ACD=∠ECD
∵DE⊥BC于E
∴∠DEC=∠A=90°
∵CD=CD
∴△ACD≌△ECD
∴AC=EC,AD=ED
∵∠A=90°,AB=AC
∴∠B=45°
∴BE=DE
∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.
6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:
①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.
其中能够证明△DOF≌△EOF的条件的个数有4个.
【考点】全等三角形的判定;角平分线的性质.
【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.
【解答】解:∵FD⊥AO于D,FE⊥BO于E,
∴∠ODF=∠OEF=90°,
①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;
②加上条件DF=EF可利用HL判定△DOF≌△EOF;
③加上条件DO=EO可利用HL判定△DOF≌△EOF;
④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;
因此其中能够证明△DOF≌△EOF的条件的个数有4个,
故答案为:4.
7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45度.
【考点】全等三角形的判定与性质;等腰直角三角形.
【分析】由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.
【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=CB.
∵∠ACB=∠DCE=90°,
∴∠ACE=90°﹣∠ACD=∠DCB.
在△ACE和△BCD中,

∴△ACE≌△BCD(SAS).
∴∠B=∠EAC(全等三角形的对应角相等).
∵∠B=45°,
∴∠EAC=45°.
故答案为45°.
8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.
【考点】利用轴对称设计图案.
【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.
【解答】解:如图所示,有4个位置使之成为轴对称图形.
故答案为:4.
9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP 之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.
【考点】全等三角形的判定与性质.
【分析】数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.
【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,
理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,
∵在△E2OP和△DOP中

∴△E2OP≌△DOP(SAS),
∴E2P=PD,
即此时点E2符合条件,此时∠OE2P=∠ODP;
以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,
则此点E1也符合条件PD=PE1,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.
二、选择题:(每小题3分,共18分)
10.下列轴对称图形中,只有两条对称轴的图形是()
A.B.C.D.
【考点】轴对称图形.
【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;
B、C、都只有一条对称轴,不符合题意;
D、有六条,对称轴,不符合题意;
故选A.
11.用尺规作图,不能作出唯一直角三角形的是()
A.已知两条直角边
B.已知两个锐角
C.已知一直角边和直角边所对的一锐角
D.已知斜边和一直角边
【考点】作图—复杂作图.
【分析】能不能作出唯一直角三角形要看所给条件是否满足全等三角形的判定条件,然后利用三角形全等的判定方法对各选项进行判定.
【解答】解:A、已知两条直角边和直角,可根据“SAS”作出唯一直角三角形,所以A选项错误;
B、已知两个锐角,不能出唯一的直角三角形,所以B选项之前;
C、已知一直角边和直角边所对的一锐角,可根据“AAS”或“ASA”作出唯一直角三角形,所以B 选项错误;
D、已知斜边和一直角边,可根据“HL”作出唯一直角三角形,所以D选项错误.
故选B.
12.直角三角形三边垂直平分线的交点位于三角形的()
A.三角形内B.三角形外C.斜边的中点D.不能确定
【考点】线段垂直平分线的性质.
【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.
【解答】解:∵直角三角形的外接圆圆心在斜边中点
可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.
故选C.
13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()
A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA
【考点】全等三角形的判定;等边三角形的性质.
【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE ≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.
【解答】解:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACD=∠ECD+∠ACD,
即∠BCD=∠ACE,
∴在△BCD和△ACE中,
∴△BCD≌△ACE(SAS),
故A成立,
∴∠DBC=∠CAE,
∵∠BCA=∠ECD=60°,
∴∠ACD=60°,
在△BGC和△AFC中,
∴△BGC≌△AFC,
故B成立,
∵△BCD≌△ACE,
∴∠CDB=∠CEA,
在△DCG和△ECF中,
∴△DCG≌△ECF,
故C成立,
故选:D.
14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()
A.5cm B.10cm C.20cm D.15cm
【考点】轴对称的性质.
【分析】由轴对称的性质可得PA=PG,PB=BH,从而可求得△PAB的周长.
【解答】解:
∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,
∴PA=PG,PB=BH,
∴PA+AB+PB=GA+AB+BH=GH=10cm,即△PAB的周长为10cm,
故选B.
15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C、D两点关于OE所在直线对称
D.O、E两点关于CD所在直线对称
【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.
【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;
根据作图得到OC=OD,判断B正确;
根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;
根据作图不能得出CD平分OE,判断D错误.
【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.
∵在△EOC与△EOD中,

∴△EOC≌△EOD(SSS),
∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;
B、根据作图得到OC=OD,
∴△COD是等腰三角形,正确,不符合题意;
C、根据作图得到OC=OD,
又∵射线OE平分∠AOB,
∴OE是CD的垂直平分线,
∴C、D两点关于OE所在直线对称,正确,不符合题意;
D、根据作图不能得出CD平分OE,
∴CD不是OE的平分线,
∴O、E两点关于CD所在直线不对称,错误,符合题意.
故选:D.
三、解答题:(本大题共6小题,共64分)
16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.
(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)
【考点】作图-轴对称变换.
【分析】(1)分别作出A、B、C关于直线MN的对称点即可.
(2)作线段AB的垂直平分线,直线m、n组成的角的平分线,两线的交点就是所求的点.【解答】解:(1)如图1中,作点A关于直线MN的对称点E,点B关于直线MN的对称点F,点C关于直线NM的对称点G,
连接EF、FG.EG,△EFG就是所求作的三角形.
(2)如图2中,图中点P和点P′就是满足条件的点.
17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.
【考点】线段垂直平分线的性质.
【分析】已知DE垂直平分斜边AB可求得AE=BE,∠EAB=∠EBA.易求出∠AEB.
【解答】解:∵DE垂直平分斜边AB,
∴AE=BE,
∴∠EAB=∠EBA.
∵∠CAB=∠B+30°,
∠CAB=∠CAE+∠EAB,
∴∠CAE=30°.
∵∠C=90°,
∴∠AEC=60°.
∴∠AEB=120°
18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求证:AF平分∠BAC.
【考点】等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.
【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.
【解答】证明:∵AB=AC(已知),
∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB(高的定义).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.
∴∠ECB=∠DBC(等量代换).
∴FB=FC(等角对等边),
在△ABF和△ACF中,

∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),
∴AF平分∠BAC.
19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.
【考点】角平分线的性质;全等三角形的判定与性质.
【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED 和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.
【解答】解:AD⊥EF.理由如下:
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△AED和Rt△AFD中,
∵,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠EAF,
∴AD⊥EF(等腰三角形三线合一).
20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.
(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.
【考点】线段垂直平分线的性质.
【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;
(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC 的长,进而得出结论.
【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,
∴AD=BD,AE=CE,
∴AD+DE+AE=BD+DE+CE=BC,
∵△ADE的周长为6cm,即AD+DE+AE=6cm,
∴BC=6cm;
(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,
∴OA=OC=OB,
∵△OBC的周长为16cm,即OC+OB+BC=16,
∴OC+OB=16﹣6=10,
∴OC=5,
∴OA=OC=OB=5.
21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.
【考点】全等三角形的判定与性质.
【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,
(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,
∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,
∴∠ABD=∠ACG,
在△ABD和△GCA中

∴△ABD≌△GCA(SAS),
∴AD=GA(全等三角形的对应边相等);
(2)位置关系是AD⊥GA,
理由为:∵△ABD≌△GCA,
∴∠ADB=∠GAC,
又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,
∴∠AED=∠GAD=90°,
∴AD⊥GA.
四、知者加速题:(本大题共2题,共20分)
22.如图,已知直线l及其两侧两点A、B.
(1)在直线l上求一点O,使到A、B两点距离之和最短;
(2)在直线l上求一点P,使PA=PB;
(3)在直线l上求一点Q,使l平分∠AQB.
【考点】线段垂直平分线的性质;线段的性质:两点之间线段最短;角平分线的性质.【分析】(1)根据两点之间线段最短,连接AB,线段AB交直线l于点O,则O为所求点;(2)根据线段垂直平分线的性质连接AB,在作出线段AB的垂直平分线即可;
(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性质可得出∠BQD=∠B′QD,即直线l平分∠AQB.
【解答】解:(1)连接AB,线段AB交直线l于点O,
∵点A、O、B在一条直线上,
∴O点即为所求点;
(2)连接AB,
分别以A、B两点为圆心,以任意长为半径作圆,两圆相交于C、D两点,连接CD与直线l 相交于P点,
连接BD、AD、BP、AP、BC、AC,
∵BD=AD=BC=AC,
∴△BCD≌△ACD,
∴∠BED=∠AED=90°,
∴CD是线段AB的垂直平分线,
∵P是CD上的点,
∴PA=PB;
(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,
∵B与B′两点关于直线l对称,
∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,
∴△BDQ≌△B′DQ,
∴∠BQD=∠B′QD,即直线l平分∠AQB.
23.如图,在△ABC的一边AB上有一点P.
(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请
画出点M、N的位置;若不能,请说明理由;
(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.
【考点】轴对称-最短路线问题.
【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;
(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,继而求得答案.
【解答】解:(1)①作出点P关于AC、BC的对称点D、G,
②连接DG交AC、BC于两点,
③标注字母M、N;
(2)∵PD⊥AC,PG⊥BC,
∴∠PEC=∠PFC=90°,
∴∠C+∠EPF=180°,
∵∠C=48°,
∴∠EPF=132°,
∵∠D+∠G+∠EPF=180°,
∴∠D+∠G=48°,
由对称可知:∠G=∠GPN,∠D=∠DPM,
∴∠GPN+∠DPM=48°,
∴∠MPN=132°﹣48°=84°.
文本仅供参考,感谢下载!。

相关文档
最新文档