最新高中物理 第四章 电磁感应章末总结学案 新人教版选修3-2(考试必备)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章电磁感应
章末总结
一、楞次定律的理解与应用
1.感应电流的磁场总要阻碍引起感应电流的磁通量的变化.感应电流的磁场方向不一定与原磁场方向相反,只有在磁通量增加时两者才相反,而在磁通量减少时两者是同向的.2.“阻碍”并不是“阻止”,而是“延缓”,回路中的磁通量变化的趋势不变,只不过变化得慢了.
3.“阻碍”的表现:增反减同、来拒去留等.
例1如图1甲所示,圆形线圈P静止在水平桌面上,其正上方固定一螺线管Q,P和Q共轴,Q中通有变化电流i,电流随时间变化的规律如图乙所示,图甲中箭头方向为电流正方向,P所受的重力为G,桌面对P的支持力为F N,则( )
图1
A.t1时刻F N>G,P有收缩的趋势
B.t2时刻F N=G,此时穿过P的磁通量为0
C.t3时刻F N=G,此时P中无感应电流
D.t4时刻F N<G,此时穿过P的磁通量最小
答案 A
解析当螺线管中电流增大时,其形成的磁场不断增强,因此线圈P中的磁通量向下增大,根据楞次定律可知线圈P将阻碍其磁通量的增大,故线圈有收缩的趋势,线圈中产生逆时针感应电流(从上向下看),由安培定则可判断,螺线管下端为N极,线圈等效成小磁铁,N极向上,则此时F N>G,故A正确;当螺线管中电流不变时,其形成磁场不变,线圈P中的磁通量不变,因此磁铁线圈中无感应电流产生,线圈和磁铁间无相互作用力,故t2时刻F N=G,此时穿过P的磁通量不为0,故B错误;t3时刻螺线管中电流为零,但是线圈P中磁通量是变化的,因此此时线圈中有感应电流,故C错误;t4时刻电流不变时,其形成磁场不变,线圈P中磁通量不变,故D错误.
二、电磁感应中的图象问题
对图象的分析,应做到:
(1)明确图象所描述的物理意义;
(2)明确各种物理量正、负号的含义;
(3)明确斜率的含义;
(4)明确图象和电磁感应过程之间的对应关系.
例2如图2所示,三条平行虚线位于纸面内,中间虚线两侧有方向垂直于纸面的匀强磁场,磁感应强度等大反向.菱形闭合导线框ABCD位于纸面内且对角线AC与虚线垂直,磁场宽度与对角线AC长均为d,现使线框沿AC方向匀速穿过磁场,以逆时针方向为感应电流的正方向,则从C点进入磁场到A点离开磁场的过程中,线框中电流i随时间t的变化关系图象可能是( )
图2
答案 D
解析 导线框ABCD 在进入左边磁场时,由楞次定律和安培定则可以判断出感应电流的方向应为正方向,选项B 、C 错误;当导线框ABCD 一部分在左磁场区,另一部分在右磁场区时,回路中的最大电流要加倍,方向与刚进入时的方向相反,选项D 正确,选项A 错误.
电磁感应中图象类选择题的两个常见解法
1.排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.
2.函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,却是最有效的方法. 三、电磁感应中的电路问题
求解电磁感应中电路问题的关键是分清楚内电路和外电路.
“切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电阻则是外电阻.
例3 把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图3所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v 向右移动经过环心O 时,求:
图3
(1)棒上电流的大小和方向及棒两端的电压U MN ; (2)在圆环和金属棒上消耗的总热功率. 答案 (1)4Bav 3R 方向由N →M 23
Bav
(2)8B 2a 2v 2
3R
解析 (1)把切割磁感线的金属棒看成一个具有内阻为R 、电动势为E 的电源,两个半圆环看成两个并联电阻,画出等效电路如图所示.
等效电源电动势为:E =Blv =2Bav . 外电路的总电阻为:R 外=R 1R 2R 1+R 2=1
2
R . 棒上电流大小为:I =
E R 总=2Bav 12
R +R
=4Bav 3R
. 电流方向从N 流向M .
根据闭合电路欧姆定律知,棒两端的电压为电源路端电压.U MN =IR 外=2
3Bav
(2)圆环和金属棒上消耗的总热功率为: P =IE =8B 2a 2v
2
3R
.
电磁感应中电路问题的分析方法
1.明确电路结构,分清内、外电路,画出等效电路图.
2.根据产生感应电动势的方式计算感应电动势的大小,如果是磁场变化,由E =n ΔΦ
Δt 计算;
如果是导体切割磁感线,由E =Blv 计算. 3.根据楞次定律或右手定则判断感应电流的方向. 4.根据电路组成列出相应的方程式. 四、电磁感应中的力电综合问题
此类问题涉及电路知识、动力学知识和能量观点,综合性很强,解决此类问题要注重以下三点: 1.电路分析
(1)找“电源”:确定出由电磁感应所产生的电源,求出电源的电动势E 和内阻r . (2)电路结构分析
弄清串、并联关系,求出相关部分的电流大小,为求安培力做好铺垫. 2.力和运动分析
(1)受力分析:分析研究对象(常为金属杆、导体线圈等)的受力情况,尤其注意安培力的方向.
(2)运动分析:根据力与运动的关系,确定出运动模型,根据模型特点,找到解决途径.
3.功和能量分析
(1)做功分析,找全力所做的功,弄清功的正、负.
(2)能量转化分析,弄清哪些能量增加,哪些能量减小,根据功能关系、能量守恒定律列方程求解.
例4 如图4所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m ,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN .Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg 、电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2
,问:
图4
(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度v 多大;
(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.
答案 (1)由a 流向b (2)5 m/s (3)1.3 J
解析 (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置时ab 刚好不下滑,ab 所受摩擦力为最大静摩擦力,设其大小为F fmax ,有F fmax =
m 1g sin θ①
设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BLv ② 设电路中的感应电流为I ,由闭合电路欧姆定律有
I =E R 1+R 2
③ 设ab 所受安培力为F 安,有F 安=BIL ④
此时ab 受到的最大静摩擦力方向沿导轨向下,由平衡条件有F 安=m 1g sin θ+F fmax ⑤ 联立①②③④⑤式,代入数据解得v =5 m/s. (3)设cd 棒运动过程中在电路中产生的总热量为Q 总, 由能量守恒定律有m 2gx sin θ=Q 总+12
m 2v 2
又Q=R1
R1+R2
Q总,解得Q=1.3 J.。