平顶山市第一中学初三数学九年级上册期末试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平顶山市第一中学初三数学九年级上册期末试题及答案
一、选择题
1.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点
D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )
A .3.6
B .4.8
C .5
D .5.2 2.下列方程是一元二次方程的是( )
A .2321x x =+
B .3230x x --
C .221x y -=
D .20x y +=
3.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )
A .2
B .
5
4
C .
53
D .75
4.已知关于x 的一元二次方程 (x - a )(x - b ) -1
2
= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2 B .a < x 1< x 2 < b
C .x 1< a < x 2 < b
D .x 1< a < b < x 2
5.把函数2
12
y x =-
的图象,经过怎样的平移变换以后,可以得到函数()2
1112
y x =-
-+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 6.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2
B .y =(x ﹣3)2+2
C .y =(x +2)2+3
D .y =(x ﹣2)2+3
7.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则
图中阴影部分的面积是()
A.23
32
π
-B.
2
3
3
π
-C.3
2
π-D.3
π-
8.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()
A.1
4
B.
1
3
C.
1
2
D.
2
3
9.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根
C.有一个根是x=1 D.不存在实数根
10.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()
A.6 B.8 C.10 D.12
11.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC 的度数等于()
A.50°B.49°C.48°D.47°
12.下列说法正确的是()
A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似
13.下表是二次函数y=ax2+bx+c的部分x,y的对应值:
x … ﹣1 ﹣
1
2
0 12
1
32
2
52
3 …
y … 2 m
﹣1
﹣
7
4 ﹣2 ﹣
7
4
﹣1 14
2 …
可以推断m 的值为( ) A .﹣2
B .0
C .
14
D .2
14.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是
A .(6,0)
B .(6,3)
C .(6,5)
D .(4,2)
15.已知抛物线与二次函数2
3y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .2
3(1)
3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-
D .23(1)3y x =-++
二、填空题
16.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.
17.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则
sin DEC ∠=______.
18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.
19.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .
20.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.
21.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号) 22.二次函数2
y ax bx c =++的图象如图所示,给出下列说法:
①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).
23.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得
1.6,1
2.4AB m BC m ==,则建筑物CD 的高是__________m .
24.方程22x x =的根是________.
25.一组数据3,2,1,4,x 的极差为5,则x 为______. 26.如图,
O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,
则MN 的长为__________.
27.数据1、2、3、2、4的众数是______.
28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.
29.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 30.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.
三、解答题
31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...
),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);
(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒
∠=∠=,对角线BD 平分∠ABC .
求证: BD 是四边形ABCD 的“相似对角线”; 运用:
(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.
32.如图,在△ABC 中,BC 的垂直平分线分别交BC 、AC 于点D 、E ,BE 交AD 于点F ,AB =AD .
(1)判断△FDB 与△ABC 是否相似,并说明理由; (2)BC =6,DE =2,求△BFD 的面积.
33.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).
(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由. 34.如图,AB 为
O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且
2D A ∠=∠.
(1)求D ∠的度数. (2)若
O 的半径为2,求BD 的长.
35.如图甲,在△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题: (1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值,S 的最大值是多少; (2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形PQP′C ,当四边形PQP′C 为菱形时,求t 的值;
(3)当t 为何值时,△APQ 是等腰三角形.
四、压轴题
36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;
(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.
37.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连
接AP 、BP ,过点C 作CM
BP 交PA 的延长线于点M .
(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;
(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 38.数学概念
若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是
ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念
(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足
180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的
边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)
①如图①,DB DC = ②如图②,BC BD =
深入思考
(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点
Q .(不写作法,保留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;
④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .
(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.
40.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。
)
(1)如图①,小菲同学把一个边长为1的正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O 所经过的路程;并求顶点O 所经过的路线;
图①
(2)小菲进行类比研究:如图②,她把边长为1的正方形纸片OABC 放在直线l 2上,OA 边与直线l 2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:
图②
问题①:若正方形纸片OABC 接上述方法翻转一周回到初始位置,求顶点O 经过的路程; 问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是
41202
π+。
(3)①小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA 与这个正方形的一边OA 重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB 的相对位置和初始时一样),求顶点O 所经过的总路程。
图③
②若把边长为1的正方形OABC 放在边长为1的正五边形OABCD 上翻转(如图④),直到正方形第一次回到初始位置,求顶点O 所经过的总路程。
图④
(4)规律总结,边长相等的两个正多边形,其中一个在另一个上翻转,当翻转后第一次回到初始位置时,该正多边形翻转的次数一定是两正多边形边数的___________。
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
根据平行线分线段成比例定理即可解决问题. 【详解】 解:
////AD BE CF ,
AB DE
BC EF ∴
=,即1 1.23EF =, 3.6EF ∴=, 3.6 1.2 4.8DF EF DE ∴++===,
故选B . 【点睛】
本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.A
解析:A 【解析】 【分析】
根据一元二次方程的定义逐一判断即可. 【详解】
解:A . 2321x x =+是一元二次方程,故本选项符合题意;
B . 3230x x --是一元三次方程,故本选项不符合题意;
C . 221x y -=是二元二次方程,故本选项不符合题意;
D . 20x y +=是二元一次方程,故本选项不符合题意;
故选A .
【点睛】
此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.
3.D
解析:D
【解析】
【分析】
如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题.
【详解】
如图连接BE 交AD 于O ,作AH ⊥BC 于H .
在Rt △ABC 中,∵AC=4,AB=3,
∴2234+,
∵CD=DB ,
∴AD=DC=DB=
52, ∵12•BC•AH=12
•AB•AC , ∴AH=125
, ∵AE=AB ,DE=DB=DC ,
∴AD 垂直平分线段BE ,△BCE 是直角三角形,
∵12•AD•BO=12
•BD•AH , ∴OB=125
, ∴BE=2OB=245
,
在Rt △BCE 中,EC=2
222247555BC BE ⎛⎫-=-= ⎪⎝⎭
. 故选D .
点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型. 4.D
解析:D
【解析】
【分析】
根据二次函数的图象与性质即可求出答案.
【详解】
如图,设函数y =(x−a )(x−b ),
当y =0时,
x =a 或x =b ,
当y =12
时, 由题意可知:(x−a )(x−b )−
12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,
由抛物线的图象可知:x 1<a <b <x 2
故选:D .
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.
5.C
解析:C
【解析】
【分析】
根据抛物线顶点的变换规律作出正确的选项.
【详解】
抛物线212y x =-的顶点坐标是00(,),抛物线线()21112
y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,)
,
即将函数212
y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112
y x =-
-+的图象. 故选:C .
【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
6.A
解析:A
【解析】
【分析】
直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,
再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.
故选:A .
【点睛】
解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.
7.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出
△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.
【详解】
连接BD ,
∵四边形ABCD 是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB 是等边三角形,
∵AB=2,
∴△ABD
的高为3,
∵扇形BEF 的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,
在△ABG 和△DBH 中,
2
{34
A A
B BD ∠=∠=∠=∠,
∴△ABG ≌△DBH (ASA ),
∴四边形GBHD 的面积等于△ABD 的面积,
∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602
π⨯-⨯⨯ =
233
π-. 故选B . 8.C
解析:C
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.
【详解】
根据题意画图如下:
共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,
则2次抽出的签上的数字的和为正数的概率为
612=12
; 故选:C .
【点睛】
本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 9.A
解析:A
【分析】
直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.
【详解】
∵x =﹣1为方程x 2﹣8x ﹣c =0的根,
1+8﹣c =0,解得c =9,
∴原方程为x 2-8x +9=0,
∵24b ac ∆=-=(﹣8)2-4×9>0,
∴方程有两个不相等的实数根.
故选:A .
【点睛】
本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()2
00++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.
10.D
解析:D
【解析】
【分析】
连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.
【详解】
连接AO 、BO 、CO ,
∵AC 是⊙O 内接正四边形的一边,
∴∠AOC =360°÷4=90°,
∵BC 是⊙O 内接正六边形的一边,
∴∠BOC =360°÷6=60°,
∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,
∴n =360°÷30°=12;
故选:D .
【点睛】
本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.
解析:A
【解析】
【分析】
连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.
【详解】
连接OC,
由题意得,OB=OC=BC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∵∠AOB=40°,
∴∠AOC=100°,
由圆周角定理得,∠ADC=∠AOC=50°,
故选:A.
【点睛】
本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
12.A
解析:A
【解析】
【分析】
根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.
【详解】
解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;
B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;
C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;
D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.
故选:A.
【点睛】
本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的
性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.
13.C
解析:C
【解析】
【分析】
首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】
解:观察表格发现该二次函数的图象经过点(1
2
,﹣
7
4
)和(
3
2
,﹣
7
4
),
所以对称轴为x=13
22
2
+
=1,
∵51
11
22
⎛⎫
-=--
⎪
⎝⎭
,
∴点(﹣1
2
,m)和(
5
2
,
1
4
)关于对称轴对称,
∴m=1
4
,
故选:C.
【点睛】
本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.14.B
解析:B
【解析】
试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.
A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,
△CDE∽△ABC,故本选项不符合题意;
B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;
C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,
△EDC∽△ABC,故本选项不符合题意;
D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,
△DCE∽△ABC,故本选项不符合题意.
故选B.
15.D
解析:D
【解析】
【分析】
先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.
【详解】
∵抛物线与二次函数23y x =-的图像相同,开口方向相同,
3a ∴=-
∵顶点坐标为(1,3)-
∴抛物线的表达式为2
3(1)3y x =-++
故选:D .
【点睛】
本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题
16.115°
【解析】
【分析】
根据∠ED C =180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE 即可.
【详解】
由题意可知:CA =CE ,∠ACE=90°,
∴∠E=∠CAE=45°,
∵∠ACD=7
解析:115°
【解析】
【分析】
根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.
【详解】
由题意可知:CA =CE ,∠ACE =90°,
∴∠E =∠CAE =45°,
∵∠ACD =70°,
∴∠DCE =20°,
∴∠EDC =180°﹣∠E ﹣∠DCE =180°﹣45°﹣20°=115°,
故答案为115°.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.
17.【解析】
【分析】
根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.
【详解】
【解析】
【分析】
根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC
∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.
【详解】
如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,
在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,
∵D为AB的中点,
∴CD=1
5 2
AB= ,
由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,
∴CE=1
5 2
MN,
∵DM⊥BC,DC=DB,
∴CM=BM=1
3 2
BC=,
∴EM=CE-CM=5-3=2,
∵DM=1
4 2
AC,
∴由勾股定理得,DE=∵CD=CE=5,CN⊥DE,
∴
∴由勾股定理得,CN=
∴sin∠DEC=
25 CN
CE
.
故答案为:25
.
【点睛】
本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.
18.115°
【解析】
【分析】
根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】
解:连
解析:115°
【解析】
【分析】
根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.
【详解】
解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.
【点睛】
本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条
件.
19.【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
∴圆锥的底面半径为cm,
∴底面周长为2π×6=12
解析:12π
【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
6
=cm,
∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,
故答案为:12π.
【点睛】
本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.20.2或﹣1
【解析】
【分析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
当y=1时,有x
解析:2或﹣1
【解析】
【分析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
当y=1时,有x2﹣2x+1=1,
解得:x1=0,x2=2.
∵当a≤x≤a+1时,函数有最小值1,
∴a=2或a+1=0,
∴a=2或a=﹣1,
故答案为:2或﹣1.
【点睛】
本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.
21.()
【解析】
设它的宽为xcm .由题意得
.
∴ .
点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约
解析:(10)
【解析】
设它的宽为x cm .由题意得
:20x =. ∴10x =
.
点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之
比等于较短部分与较长部分之比,其比值是一个无理数,即12
,近似值约为0.618. 22.①②④
【解析】
【分析】
根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.
【详解】
解:∵对称轴是x=-=1,
∴ab <0,①正确;
∵二次函数y=ax2+b
解析:①②④
【解析】
【分析】
根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.
【详解】
解:∵对称轴是x=-
2b a
=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),
∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;
∵当x=1时,y <0,
∴a+b+c <0,③错误;
由图象可知,当x >1时,y 随x 值的增大而增大,④正确;
当y >0时,x <-1或x >3,⑤错误,
故答案为①②④.
【点睛】
本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.
23.5
【解析】
【分析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.
【详解】
解:由题可知,BE⊥AC,DC⊥AC
∵BE//DC,
∴△AEB∽△ADC,
∴,
即:,
∴CD=10.
解析:5
【解析】
【分析】
先证△AEB ∽△ABC ,再利用相似的性质即可求出答案.
【详解】
解:由题可知,BE ⊥AC ,DC ⊥AC
∵BE //DC ,
∴△AEB ∽△ADC , ∴BE AB CD AC
=, 即:
1.2 1.61.61
2.4
CD =+, ∴CD =10.5(m ).
故答案为10.5.
本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.
24.x1=0,x2=2
【解析】
【分析】
先移项,再用因式分解法求解即可.
【详解】
解:∵,
∴,
∴x(x-2)=0,
x1=0,x2=2.
故答案为:x1=0,x2=2.
【点睛】
本题考查了一
解析:x 1=0,x 2=2
【解析】
【分析】
先移项,再用因式分解法求解即可.
【详解】
解:∵22x x =,
∴22=0x x -,
∴x(x-2)=0,
x 1=0,x 2=2.
故答案为:x 1=0,x 2=2.
【点睛】
本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
25.-1或6
【解析】
【分析】
由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.
【详解】
解:当x 是最大值,则x-(1)=5,
所以x=6;
当x 是最小值,
解析:-1或6
【分析】
由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.
【详解】
解:当x是最大值,则x-(1)=5,
所以x=6;
当x是最小值,则4-x=5,
所以x=-1;
故答案为-1或6.
【点睛】
本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.
26.2
【解析】
【分析】
连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.
【详解】
解:如图所示,连接OA,
∵半径交于点,是的中点,
∴AM=BM==4
解析:2
【解析】
【分析】
连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】
解:如图所示,连接OA,
∵半径ON交AB于点M,M是AB的中点,
∴AM=BM=1
2
AB=4,∠AMO=90°,
∴在Rt△AMO中
∵ON=OA,
∴MN=ON-OM=5-3=2.
故答案为2.
【点睛】
本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
27.2
【解析】
【分析】
根据众数的定义直接解答即可.
【详解】
解:数据1、2、3、2、4中,
∵数字2出现了两次,出现次数最多,
∴2是众数,
故答案为:2.
【点睛】
此题考查了众数,掌握众数的
解析:2
【解析】
【分析】
根据众数的定义直接解答即可.
【详解】
解:数据1、2、3、2、4中,
∵数字2出现了两次,出现次数最多,
∴2是众数,
故答案为:2.
【点睛】
此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.28.【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比
为1:3,根据勾股定理求
解析:25
【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.
【详解】
过点C作CF⊥AE,垂足为F,
在Rt△ACD中,CD=22
1310
+=,
由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,
∴CF=AC•sin45°=
2
2
,
由AC∥BD可得△ACE∽△BDE,
∴
1
3 CE AC
DE BD
==,
∴CE=1
4
CD=
10
,
在Rt△ECF中,sin∠AEC=
225
210
CF
CE
=⨯=,
故答案为:25
.
【点睛】
考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.
29.m≤且m≠1.
【解析】
【分析】
【详解】
本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.。