延寿县第三中学校2019-2020学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延寿县第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________
一、选择题1.已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是()
A.y=x﹣4 B.y=2x﹣3 C.y=﹣x﹣6 D.y=3x﹣2
2.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且
=0,tan∠PF1F2=,则此椭圆的离心率为()
A.B.C.D.
3.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()
A.B.C.D.
4.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是()
A.20人B.40人C.70人D.80人
5.已知向量,,其中.则“”是“”成立的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件
6.若动点分别在直线:和:上移动,则中点所在直线方程为()
A.B.C.D.
7.若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()
A.{x|﹣1<x<1} B.{x|﹣2<x<1} C.{x|﹣2<x<2} D.{x|0<x<1}
8.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为()
A.15,10,25 B.20,15,15 C.10,10,30 D.10,20,20
9.复数z=在复平面上对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
10.复数Z=(i为虚数单位)在复平面内对应点的坐标是()
A.(1,3) B.(﹣1,3)C.(3,﹣1)D.(2,4)
11.若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()
A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)12.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312
二、填空题
13.阅读如图所示的程序框图,则输出结果的值为.
【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
14.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是.
15.已知,不等式恒成立,则的取值范围为__________.
16.已知A (1,0),P ,Q
是单位圆上的两动点且满足
,则
+的最
大值为
. 17.定义在
上的可导函数
,已知
的图象如图所示,则的增区间
是 ▲ . 18.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)
=9;④“函数f (x )在区间a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,k ,2k+1)”;其中所有正确结论的序号是 .
三、解答题
19.(本小题满分10分)选修4-5:不等式选讲 已知函数,
.
(1)解不等式
;
(2)对任意的实数,不等式恒成立,求实数
的最小值.111]
20.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点.
(1)求证:平面PDC ⊥平面PAD ;
(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.
x y
1 2 1
O
21.设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
22.(本小题满分12分)已知函数().
(I)若,求的单调区间;
(II)函数,若使得成立,求实数的取值范围.
23.(本小题满分10分)
已知圆过点,.
(1)若圆还过点,求圆的方程;
(2)若圆心的纵坐标为,求圆的方程.
24.(本小题满分12分)
在等比数列中,.
(1)求数列的通项公式;
(2)设,且为递增数列,若,求证:
.
延寿县第三中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题1.【答案】A
【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.
两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)
∴直线AB的斜率k=1,
∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.
故选A,
2.【答案】A
【解析】解:∵
∴,即△PF1F2是P为直角顶点的直角三角形.
∵Rt△PF1F2中,,
∴=,设PF2=t,则PF1=2t
∴=2c,
又∵根据椭圆的定义,得2a=PF1+PF2=3t
∴此椭圆的离心率为e====
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
3.【答案】D
【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),
联立,得(2k2+1)x2+8k2x+8k2﹣2=0,
∵过点M(﹣2,0)的直线l与椭圆有公共点,
∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,
整理,得k2,
解得﹣≤k≤.
∴直线l的斜率k的取值范围是[﹣,].
故选:D.
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.
4.【答案】A
【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,
则这样的样本容量是n==20.
故选A.
【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组
距=是解答的关键.
5.【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若,则或
所以“”是“”成立的充分而不必要条件。
故答案为:A
6.【答案】
【解析】
考点:直线方程
7.【答案】D
【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.
8.【答案】B
【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为
800×=20,600×=15,600×=15,
故选B.
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
9.【答案】A
【解析】解:∵z===+i,
∴复数z在复平面上对应的点位于第一象限.
故选A.
【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.
10.【答案】A
【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应
点的坐标是(3,1).
故选:A.
【点评】本题考查了复数的运算法则、几何意义,属于基础题.
11.【答案】C
【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,
令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,
结合函数的定义域知,f′(x)>0的解集为(2,+∞).
故选:C.
12.【答案】A
【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为=0.648.
故选:A.
二、填空题
13.【答案】
【解析】根据程序框图可知,其功能是求数列的前1008项的和,即
.
14.【答案】.
【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,
所以三棱柱的体积:××1×1×2=,
故答案为:.
【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
15.【答案】
【解析】
试题分析:把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可,设关于的函数
对任意的,当时,,即,解得
;当时,,即,解得,∴的取值范围是;故答案为:.考点:换主元法解决不等式恒成立问题.
【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数
必须是关于这个量的一次函数,二是要有这个量的具体范围.
16.【答案】.
【解析】解:设=,则==,的方向任意.
∴+==1××≤,因此最大值为.
故答案为:.
【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.
17.【答案】(﹣∞,2)
【解析】
试题分析:由,,所以的增区间是(﹣∞,2)
考点:函数单调区间
18.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.
…
一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
三、解答题
19.【答案】(1)或;(2).
【解析】
试题解析:(1)由题意不等式可化为,
当时,,解得,即;
当时,,解得,即;
当时,,解得,即(4分)
综上所述,不等式的解集为或. (5分)
(2)由不等式可得,
分离参数,得,∴
∵,∴,故实数的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法.1
20.【答案】
【解析】解:(1)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD
∵AD⊥CD,PA、AD是平面PAD内的相交直线,∴CD⊥平面PAD
∵CD⊆平面PDC,
∴平面PDC⊥平面PAD;
(2)取AD中点O,连接EO,
∵△PAD中,EO是中位线,∴EO∥PA
∵PA⊥平面ABCD,∴EO⊥平面ABCD,
∵AC⊆平面ABCD,∴EO⊥AC
过O作OF⊥AC于F,连接EF,则
∵EO、OF是平面OEF内的相交直线,
∴AC⊥平面OEF,所以EF⊥AC
∴∠EFO就是二面角E﹣AC﹣D的平面角
由PA=2,得EO=1,
在Rt△ADC中,设AC边上的高为h,则AD×DC=AC×h,得h=
∵O是AD的中点,∴OF=×=
∵EO=1,∴Rt△EOF中,EF==
∴cos∠EFO==
【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.
21.【答案】
【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,
即有(ax﹣1)(x﹣1)>0,
当a=0时,即有1﹣x>0,解得x<1;
当a<0时,即有(x﹣1)(x﹣)<0,
由1>可得<x<1;
当a=1时,(x﹣1)2>0,即有x∈R,x≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a<0时,解集为{x|<x<1};
a=1时,解集为{x|x∈R,x≠1};
a>1时,解集为{x|x>1或x<};
0<a<1时,解集为{x|x<1或x>}.
(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,
即为ax2﹣(a+1)x+1>0,
即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.
设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].
则g(﹣1)>0,且g(1)>0,
即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,
即(x﹣1)(x+2)<0,且x(x﹣1)>0,
解得﹣2<x<1,且x>1或x<0.
可得﹣2<x<0.
故x的取值范围是(﹣2,0).
22.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请
23.【答案】(1);(2).
【解析】
试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程
,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方
程.
试题解析:(1)设圆的方程是,则由已知得
,解得.
故圆的方程为.
(2)由圆的对称性可知,圆心的横坐标为,故圆心,
故圆的半径,
故圆的标准方程为.
考点:圆的方程
24.【答案】(1);(2)证明见解析.
【解析】
试题分析:(1)将化为,联立方程组,求出,可得
;(2)由于为递增数列,所以取,化简得
,,其前项和为.
考点:数列与裂项求和法.1。