最新七年级数学下册第二学期 二元一次方程组测试题及答案(共五套) 百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新七年级数学下册第二学期 二元一次方程组测试题及答案(共五套) 百度文

一、选择题
1.已知关于x 、y 的二元一次方程组356
310
x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程
组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何
值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③
B .①③
C .②③
D .①②
2.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .4
49x y y x y x -=+⎧⎨
-=+⎩
B .4
49x y y x y x -=+⎧⎨
-=-⎩
C .4
49x y y x y x -=-⎧⎨
-=+⎩
D .4
49x y y x y x -=-⎧⎨
-=-⎩
3.若二元一次方程组,
3x y a x y a
-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为
( ) A .3 B .5 C .7 D .9 4.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )
A .4种
B .5种
C .6种
D .7种
5.已知方程组4520
430x y z x y z -+=⎧⎨+-=⎩
(xyz≠0),则x :y :z 等于( )
A .2:1:3
B .3:2:1
C .1:2:3
D .3:1:2
6.《九章算术》是我国东汉初年编订的一部数学经典著作。

在它的“方程”一章里,一次方程组是由算筹布置而成的。

《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。

把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是
3219
423x y x y +=⎧⎨
+=⎩
,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x 的值为3,则被墨水所覆盖的图形为
A .
B .
C .
D .
7.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10
文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( ) A .0.8 元/支,2.6 元/本 B .0.8 元/支,3.6 元/本 C .1.2 元/支,2.6 元/本
D .1.2 元/支,3.6 元/本
8.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得
乙看错
了方程②中的系数c ,解得,则
的值为( ) A .16
B .25
C .36
D .49
9.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若
1a +2a +…+2018a =69,22
2122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中
为0的个数是( ) A .173
B .888
C .957
D .69
10.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为1
1
x y =⎧⎨=-⎩,则a ﹣2b 的值是
( ) A .﹣2
B .2
C .3
D .﹣3
11.解为1
2x y =⎧⎨=⎩的方程组是( )
A .1
35x y x y -=⎧⎨+=⎩
B .1
35x y x y -=-⎧⎨+=-⎩
C .3
31x y x y -=⎧⎨-=⎩
D .23
35x y x y -=-⎧⎨+=⎩
12.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1
B .1
C .
1
3
D .﹣
13
二、填空题
13.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.
14.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的
1
2用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920
,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了1
12
,则百货区新增的摊位数量与该夜市总摊位数量之比是______.
15.某公园的门票价格如表:
购票人数 1~50 51~100 100以上 门票价格
13元/人
11元/人
9元/人
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.
16.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.
17.已知方程组112
2a x y c a x y c +=⎧⎨+=⎩解为5
10x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨
+=+⎩的解是_______.
18.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.
19.甲乙两人共同解方程组515(1)
42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程
组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为5
4x y =⎧⎨=⎩
;计算
2019
2018
110a
b ⎛⎫+-= ⎪⎝⎭
________.
20.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 21.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ .
22.若方程组223
2x y k x y k +=-⎧⎨+=⎩
的解适合x+y=2,则k 的值为_____.
23.两位同学在解方程组时,甲同学正确地解出
,乙同学因把c 写
错而解得
,则a=_____,b=_____,c=_____.
24.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是7
3x y =⎧⎨=⎩,则关于x 、y 的二元一
次方程组3()()16
2()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.
三、解答题
25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.
(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?
(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
26.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足
2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,
其中点C 在y 轴负半轴上.
(1)求A ,B 两点的坐标;
(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求
BE OE
OC
-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.
27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B
b 满足
|21|280a b a b --+-=.
(1)求A 、B 两点的坐标;
(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;
(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:
3()BCD CEP OPE ∠=∠-∠.
28.阅读下列材料,然后解答后面的问题. 已知方程组3720
41027
x y z x y z ++=⎧⎨
++=⎩,求x+y+z 的值.
解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩

②,
②–①,得x+3y=7③, 把③代入①得,x+y+z=6.
仿照上述解法,已知方程组6422
641
x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值.
29.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.
(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).
(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少?
30.如图,已知∠a 和β∠的度数满足方程组223080
αββα︒

⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.
∠的度数;
(1)分别求∠a和β
(2)请判断AB与CD的位置关系,并说明理由;
(3)求C
∠的度数。

31.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.
(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;
(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?
(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.
32.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?
33.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份用水量(m3)收费(元)
357.5
4927
(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.
34.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)
35.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:
(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;
(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.
36.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,
}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?
4=, }min{2,4?2=, 按照这个规定,解方程组: }}1
{,?{
?3{39,311?4max x x y
min x x y
-=
++=.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【分析】
根据二元一次方程组的解法逐个判断即可. 【详解】
当5k =时,方程组为356
3510x y x y +=⎧⎨+=⎩
,此时方程组无解
∴结论①正确
由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:23
45x y ⎧=⎪⎪⎨⎪=⎪⎩
把23
x =
,45y =代入310x ky +=得24
31035k ⨯+=
解得10k =,则结论②正确
解方程组356310x y x ky +=⎧⎨+=⎩得:202315
45x k y k ⎧
=-⎪⎪-⎨⎪=⎪-⎩

k 为整数
x 、y 不能均为整数
∴结论③正确
综上,正确的结论是①②③ 故选:A . 【点睛】
本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.
2.D
解析:D 【分析】
根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】
解:老师今年x 岁,小红今年y 岁,可得:449
x y y x
y
x

故选:D . 【点睛】
此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.
3.C
解析:C 【分析】
先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】
解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x a
y a =⎧⎨=⎩

把x =2a ,y=a 代入方程3570x y --=,得6570a a --=,
解得:a =7.
【点睛】
本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.
4.C
解析:C 【分析】
设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】
解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:
方程的整数解为:246810x 0
,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩
因此兑换方案有6种, 故选C . 【点睛】
此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
5.C
解析:C 【分析】
先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】 ∵4520430x y z x y z -+=⎧⎨
+-=⎩①

∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】
本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.
6.C
解析:C
根据3219
423
x y x y +=⎧⎨
+=⎩,结合图1可判断出:(1)前面两列为方程的左边,后两列表示一个
数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5;因此,设被墨水所覆盖的图形表示的数字为k ,列出方程组求解即可. 【详解】
由题意可知,(1)前面两列为方程的左边,后两列表示一个数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5, 设被墨水所覆盖的图形表示的数字为k ,则有:
211
427x y x ky +=⎧⎨
+=⎩
将3x =代入可解得:53y k =⎧⎨=⎩
根据图形所表示的数字规律,可推出3k =代表的图形为“|||”. 故答案为:C. 【点睛】
本题考查了二元一次方程组的解法及实际应用,根据图1和其方程组判断出图形所表示的数字是解题关键,此型题较为新颖,是近年来的常考点.
7.D
解析:D 【分析】
首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可. 【详解】
解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:
5104210530x y x y +=⎧⎨
+=⎩ 解得: 1.23.6x y =⎧⎨=⎩
故答案为D. 【点睛】
本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.
8.B
解析:B 【解析】 【分析】
将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代
入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值.
【详解】 把代入得:
,解得:c =4,把代入得:3a +b =5,联立得:,解得:
,则(a +b +c )2=(2﹣1+4)2=25.
故选B .
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 9.A
解析:A
【分析】
首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个
1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩
=== ,解方程组即可确定正确的答案.
【详解】
解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018
=a 12+a 22+…+a 20142+2156,
设有x 个1,y 个-1,z 个0
∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩
=== 化简得x-y=69,x+y=1845,
解得x=888,y=957,z=173,
∴有888个1,957个-1,173个0,
故答案为173.
【点睛】
本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.
10.B
解析:B
【详解】
把11x y =⎧⎨=-⎩代入方程组231ax by ax by +=⎧⎨-=⎩得:231a b a b -=⎧⎨+=⎩

解得:
4
3
1
3 a
b

=
⎪⎪

⎪=-
⎪⎩

所以a−2b=4
3
−2×(
1
3
-)=2.
故选B. 11.D 解析:D 【分析】
根据方程组的解的定义,只要检验
1
2
x
y
=


=

是否是选项中方程的解即可.
【详解】
A、把
1
2
x
y
=


=

代入方程x-y=-1,左边=1≠右边,把
1
2
x
y
=


=

代入方程y+3x=5,左边=5=右边,
故不是方程组的解,故选项错误;
B、把
1
2
x
y
=


=

代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;
C、把
1
2
x
y
=


=

代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;
D、把
1
2
x
y
=


=

代入方程x-2y=-3,左边=-3=右边=-3,把
1
2
x
y
=


=

代入方程3x+y=5,左边=5=右
边,故是方程组的解,故选项正确.
故选D.
【点睛】
本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.
12.D
解析:D
【分析】
已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】
解:根据题中的新定义得:
22018 42019
x y
y x
-=


+=-




①+②得:3x+3y=﹣1,
则x+y=﹣1
3

故选:D.
【点睛】
本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.
二、填空题
13.6
【分析】
设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程
0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.
【详解】
解:设8
解析:6
【分析】
设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y
的代数式表示x得
3
20
2
x y
=-,根据x、y都是整数取出x与y的对应值,得到购买方案.
【详解】
解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,
解得
3
20
2
x y =-,
∵x、y都是正整数,
∴当y=2、4、6、8、10、12时,
x=17、14、11、8、5、2,
∴共有6种购买方案,
故答案为:6.
【点睛】
此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 14.【分析】
由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n和m的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,
解析:3:20
【分析】
由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3
n n n,再假设新增摊
位数量为m ,则餐饮区新增摊位数量为12
m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了
112
建立关系式,进行代入分析即可得出答案.
【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),
6月份的管理费为:1(1)60065012
n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为
12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920
,可得: 91(12)5202
n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,
且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,
由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),
当百货区新增3n ,杂项区新增n 时,满足条件,
所以百货区新增的摊位数量与该夜市总摊位数量之比是
3:(128)3:203:20n n n n n +==.
故答案为:3:20.
【点睛】
本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112
建立关系式,进行代入分析是解答本题的关键. 15.40
【分析】
根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.
【详解】
解:∵ ,,
∴1≤b≤50,51<a≤100,
若a+
解析:40
【分析】
根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.
【详解】 解:∵
12903991313= ,129031171111
=, ∴1≤b ≤50,51<a ≤100,
若a +b ≤100时, 由题意可得:1311129011()990b a a b +=⎧⎨+=⎩
, ∴60150a b =-⎧⎨=⎩
(不合题意舍去), 若a +b >100时,
由题意可得131112909(990b a a b +=⎧⎨+=⎩
), ∴7040a b =⎧⎨=⎩
, 故可70,40.
【点睛】
本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.
16.【分析】
可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙
解析:【分析】
可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.
【详解】
解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩
, 解得19812688x y z =⎧⎪=⎨⎪=⎩

故甲堆原来有198个苹果.
故答案为:198.
【点睛】
考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.
17.【分析】
根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.
【详解】
解:∵方程组
∵解为:x =5,y =10,
∴,

∵,
∴,
①−②,得3a
解析:25
x y ⎧⎨⎩== 【分析】
根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.
【详解】
解:∵方程组112
2==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,
∴112
2510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-
∵1112
2232=32=a x y a c a x y a c ++⎧⎨++⎩, ∴112
232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,
∴x =2,
把x =2代入①得,y =5,
∴方程组1112
2232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩, 故答案为:=2=5x y ⎧⎨⎩
. 【点睛】
本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.
18.824
【分析】
先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出
【详解】
解:∵甲产品每
解析:824
【分析】
先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出
【详解】
解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元
∴100克A 原料和100克B 原料的成本为8元
设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:
[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩
整理得出:4344my y =+
∴餐厅每天实际成本16(8)1612344W x m y x y =++=++
∵43120x y +≤
∴1612480x y +≤
∴餐厅每天实际成本的最大值为:480344824+=(元).
故答案为:824.
【点睛】
本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.
19.0
【分析】
根据题意,将代入方程(2)可得出b 的值,代入方程(1)可得出a 的值,将
a与b的值代入所求式子即可得出结果.
【详解】
解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2 解析:0
【分析】
根据题意,将
3
1
x
y
=-


=-

代入方程(2)可得出b的值,
5
4
x
y
=


=

代入方程(1)可得出a的
值,将a与b的值代入所求式子即可得出结果.【详解】
解:根据题意,将
3
1
x
y
=-


=-

代入方程组中的4x-by=-2得:-12+b=-2,即b=10;

5
4
x
y
=


=

代入方程组中的ax+5y=15得:5a+20=15,即a=-1,

2019
2018
1
10
a b
⎛⎫
+-

⎝⎭
=1-1=0.
故答案为:0.
【点睛】
此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.20.【分析】
先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是
根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程
根据已知条件如果开放3个进口和2个出口,4小时车库
解析:35 8
【分析】
先设1个进口1小时开进x辆车,1个出口1小时开出y辆车,车位总数是a
根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%
x y a
-=
根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%
x y a
-=
方程组可求得x、y关于a的关系式
题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)
a x y
÷-将x、y关于a的关系式代入即可求解.
【详解】
设1个进口1小时开进x辆车,1个出口1小时开出y辆车,车位总数是a
7(23)80%4(32)80%x y a x y a -=⎧⎨-=⎩
解得:131752175a x
a y ⎧=⎪⎪⎨⎪=⎪⎩
1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯
-=(小时) 故答案为:
358
【点睛】
本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同. 21.8或9
【分析】
根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利
解析:8或9
【分析】
根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可.
【详解】
如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,
由题意得:AC+CD+DB+AD+BC+AB=29,
∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB ,
∴3AB+CD=29,
又∵所有线段的长度都是正整数,AB>CD ,
∴AB=8,CD=5或AB=9,CD=2,
即AB 的长度为8或9,
故答案为:8或9.
【点睛】
本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.
22.3
【解析】
分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.
详解:两式相加,得
3(x+y)=3k-3, 由x+y=2, 得3k-3=6,
计算得出k=3,
故答案为:3.
解析:3
【解析】
分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.
详解:两式相加,得
3(x+y)=3k-3, 由x+y=2, 得3k-3=6,
计算得出k=3,
故答案为:3.
点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.
23.﹣2 ﹣2 ﹣2
【解析】
分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=
解析:﹣2 ﹣2 ﹣2
【解析】
分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.
解答:解:把代入,
得,解得,c=-2.
再把代入ax+by=-2,
得,
解得:,
所以a=-2,b=-2,c=-2.
故答案为-2,-2,-2.
点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.
24.【解析】。

相关文档
最新文档