海盐县第二中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海盐县第二中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知双曲线C 的一个焦点与抛物线y 2
=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的
渐近线方程是( ) A .y=
±
x B .y=
±
C .xy=±
2
x
D .y=
±
x
2. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1
B .m >0或m <﹣1
C .m >1或m ≤0
D .m >1或m <0
3. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
4. △ABC 中,A (﹣5,0),B (5,0),点C
在双曲线
上,则
=( )
A

B

C

D .
±
5. 已知抛物线C :2
8y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,
Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )
A .20x y --=
B .20x y +-=
C .20x y -+=
D .20x y ++= 6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如
由2
()()()()()n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430
K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是()
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”;
③采用系统抽样方法比采用简单随机抽样方法更好;
④采用分层抽样方法比采用简单随机抽样方法更好;
A.①③B.①④C.②③D.②④
7.设F1,F2为椭圆=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为()
A.B.C.D.
8.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()
A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i
9.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()
A.B.C.
D.
10.已知直线a平面α,直线b⊆平面α,则()
A.a b B.与异面C.与相交D.与无公共点
11.在等比数列}
{
n
a中,82
1
=
+
n
a
a,81
2
3
=

-
n
a
a,且数列}
{
n
a的前n项和121
=
n
S,则此数列的项数n 等于()
A.4 B.5 C.6 D.7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一
3.841 6.635 10.828
k
2
() 0.050 0.010 0.001
P K k

定要求,难度中等.
12.如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )
A .②④
B .③④
C .①②
D .①③
二、填空题
13.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
14.函数的单调递增区间是 .
15.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
16.已知双曲线

=1(a >0,b >0)的一条渐近线方程是y=
x ,它的一个焦点在抛物线y 2=48x 的准
线上,则双曲线的方程是 .
17.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.
其中真命题为 (填写所有真命题的序号).
18.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨
⎧==α
αsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.
(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.
20.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;
(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.
(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.
21.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(Ⅰ)若点P的坐标为,求f(θ)的值;
(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的
最小值和最大值.
22.已知f(x)=x2﹣(a+b)x+3a.
(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;
(2)若b=3,求不等式f(x)>0的解集.
23. 坐标系与参数方程
线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.
24.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
海盐县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:抛物线y2
=8x的焦点(2,0),
双曲线C 的一个焦点与抛物线y2
=8x的焦点相同,c=2,
双曲线C过点P(﹣2,0),可得a=2,所以b=2.
双曲线C的渐近线方程是y=±x.
故选:A.
【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.
2.【答案】A
【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,
∴﹣m=3﹣|x﹣1|无解,
∵﹣|x﹣1|≤0,
∴0<3﹣|x﹣1|≤1,
∴﹣m≤0或﹣m>1,
解得m≥0或m>﹣1
故选:A.
3.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.4.【答案】D
【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,
∴A与B为双曲线的两焦点,
根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,
则==±=±.
故选:D.
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
5.【答案】B
【解析】
考点:抛物线的定义及性质.
【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.
6.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
7.【答案】C
【解析】解:F
,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.
1
点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,
|PF2|==,由勾股定理可得:|PF1|==.
==.
故选:C.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
8.【答案】A
【解析】解:由z•i=2﹣i得,,
故选A
9.【答案】D
【解析】解:∵f(x)=y=2x2﹣e|x|,
∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,
故函数为偶函数,
当x=±2时,y=8﹣e2∈(0,1),故排除A,B;
当x∈[0,2]时,f(x)=y=2x2﹣e x,
∴f′(x)=4x﹣e x=0有解,
故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,
故选:D
10.【答案】D
【解析】
试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.
考点:平面的基本性质及推论.
11.【答案】B
12.【答案】A
【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
在①中:由异面直线的定义可知:EP与BD是异面直线,
不可能EP∥BD,因此不正确;
在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,
∴EM∥BD,MN∥SD,而EM∩MN=M,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
在③中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,
因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
在④中:由②可知平面EMN∥平面SBD,
∴EP∥平面SBD,因此正确.
故选:A.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
二、填空题
13.【答案】3
14.【答案】[2,3).
【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,
本题即求函数t在(1,3)上的减区间.
利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),
故答案为:[2,3).
15.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
16.【答案】
【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,
则由题意知,点F(﹣12,0)是双曲线的左焦点,
所以a2+b2=c2=144,
又双曲线的一条渐近线方程是y=x,
所以=,
解得a2=36,b2=108,
所以双曲线的方程为.
故答案为:.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.17.【答案】①
【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,
∴①f(x)在(﹣3,1)上是增函数,正确,
x=3是f(x)的极小值点,②④不正确;
③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,
故答案为:①.
18.41
【解析】
三、解答题
19.【答案】(1)1222=+y x .(2)||||PB PA ⋅的最大值为,最小值为2
1.
【解析】

题解析:解:(1)曲线C 的参数方程为⎩⎨⎧==α
α
sin cos 2y x (α为参数),消去参数α
得曲线C 的普通方程为12
22
=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θ
θsin cos 1t y t x 代入1222
=+y x 得01cos 2)sin 2(cos 2
22=-++θθθt t (6分)
设B A ,对应的参数分别为21,t t ,则]1,2
1
[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA .
∴||||PB PA ⋅的最大值为,最小值为2
1
. (10分)
考点:参数方程化成普通方程. 20.【答案】
【解析】解:(I )由题意可得:,解得c=1,a=2,b 2
=3.
∴椭圆E 的方程为=1.
(II )假设▱ABCD 能为菱形,则OA ⊥OB ,k OA •k OB =﹣1.
①当AB ⊥x 轴时,把x=﹣1代入椭圆方程可得: =1,解得y=

取A
,则|AD|=2,|AB|=3,此时▱ABCD 不能为菱形.
②当AB 与x 轴不垂直时,设直线AB 的方程为:y=k (x+1),A (x 1,y 1),B (x 2,y 2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.

k OA•k OB=====

假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
21.【答案】
【解析】解(Ⅰ)由点P的坐标和三角函数的定义可得:
于是f(θ)===2
(Ⅱ)作出平面区域Ω(即△ABC)如图所示,
其中A(1,0),B(1,1),C(0,1).
因为P∈Ω,所以0≤θ≤,
∴f(θ)==,
且,
故当,即时,f(θ)取得最大值2;
当,即θ=0时,f(θ)取得最小值1.
【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
22.【答案】
【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,
当不等式f(x)≤0的解集为[1,3]时,
方程x2﹣(a+b)x+3a=0的两根为1和3,
由根与系数的关系得

解得a=1,b=3;
(2)当b=3时,不等式f (x )>0可化为 x 2﹣(a+3)x+3a >0, 即(x ﹣a )(x ﹣3)>0;
∴当a >3时,原不等式的解集为:{x|x <3或x >a}; 当a <3时,原不等式的解集为:{x|x <a 或x >3}; 当a=3时,原不等式的解集为:{x|x ≠3,x ∈R}.
【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.
23.【答案】
【解析】解:圆C :
的标准方程为(x+1)2+(y ﹣2)2
=4
由于圆心C (﹣1,2)到直线l :3x+4y ﹣12=0的距离
d=
=<2
故直线与圆相交 故他们的公共点有两个.
【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.
24.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α|
=4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32=3
2

∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2
.。

相关文档
最新文档